





Relationship between open and closed sets.

Theorem: If E is an open set,
then
$$E^{c} = M \setminus E$$
 (the complement of E) is closed,
and vice versa.
Pf: E is open
(a) any point $p \in E$ has a neighborhood $N_{r}(P) \subseteq E$
(b) $P \in E$, P is not a limit point of E^{c}
(c) $P \in E$, P is not a limit point of E^{c}
(c) $P \in E$, P is not a limit point of E^{c}
(c) E^{c} is closed
Union and Intersections of open $Sets / clased$ sets
Lemma (De Morgan's laws on sets)
Let $\{E_{\alpha}\}$ be a collection of sets,
the following properties hold
(1) $(Q \in A)^{c} = Q \in E_{\alpha}^{c}$
(2) $(Q \in A)^{c} = Q \in E_{\alpha}$

Theorem
(1) Arbitrary (finite or infinite) union of open sets is open
(2) Finite intersection of open sets is open
By lemma and the previous theorem, these Can be stated in terms
of open sets
(2) Arbitrary intersections of open sets is open
(4) Finite union of closed sets is open
(4) Finite union of closed sets is open
(4) Finite union of closed sets is open
(5)
$$\forall x \in Vs_x$$
, $x \in Sa$ for some d
 $\Rightarrow = nbha N + x, N \leq Sa$ (then $N \leq Vs_a$)
Therefore, Vs_a is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open
(2) Let S_1, \dots, S_n be opent sets
 $\forall x \in QS_a$ is open sets for all $1 \leq i \leq n$
Let $r = finn r:$, $Nr(x) \in Nr_i(x) \leq S_i$ for all $1 \leq i \leq n$
Let $r = finn r:$, $Nr(x) \in Nr_i(x) \leq S_i$ for all $i \Rightarrow Nr_i(x) \leq f_i$ S;
Remark A more general notion of the open sets in metric space is
 $copology$. A topology on a set X is a collection of subset
of X, called open sets and satisfying the following axions.
(1) X, Φ are open sets.
(2) Any Orbitrary union of open sets is open.
(3) Any finite intersection of open sets is open.
(3) Any finite intersection of open sets is open.
The above theorem shows that every metric space
(2n be given a topology, in which the open set in
this topology are open sets defined by the metric and
neighborhoods

Definition: A set E is dense in metric space X
if every point of X is a limit point of E or in E
\Leftrightarrow $\overline{E = X}$
-
\leftarrow) Every open set of X contains $p \in E$
Example: Q is dense in R
countable uncountable