Last time :

· Definition of sets: A collection of objects or numbers. Uperation on sets: ANB, AUB, ANB, AXB · Equivalence Relation =. ~... on a set Reflexivity a~a Symmetry a~b => b~a · rational numbers : fractions or ratios of two integers. $\frac{a}{b}$ or a:b $\begin{array}{ccc} Addiction & \frac{a}{b} + \frac{c}{d} = & \frac{ad+bc}{bd} \\ \\ Multiplication & \frac{a}{b} \cdot \frac{c}{d} = & \frac{ac}{bd} \end{array}$ Today, we are going to introduce (1) Construction of real numbers (\mathbb{R}) from rational numbers (\mathbb{Q}) (2) Well-defined arithmetic operations and orders on IR. (3) Least upper bound property (the completeness of the real numbers)

Why we need real numbers?

Foundation of real analysis and calculus, and also all the science built on them.

. A mathematical model for continuous physical quantities, such as the position in the space, time, etc.

• Good mathematical properties that can used to define functions and solutions of equations $X^2 = 2$

Things need to be known before we explicitly construct real numbers.

• The real numbers are pure and abstract mathematical objects, and the construction seems artificial. But some properties that was used in the construction, such as the <u>least upper bound property</u>, are also useful afterwards.

. There are other ways constructing the real numbers, and it can be shown that they are all equivalent.

· Cauchy sequences of rational numbers.

Construction of real numbers IR

· Idea: Every real number is associated with a cut

· Dedekind: A cut & is a subset of Q s.t.

 $\square d \neq \phi, Q$ ② If pEX, &EQ and &<p, then &EX (closed downward) ⇒All lover ration numbers are in the set of 3 If PEd, then there is a &Ed s.t. P(& (no largest number) Stor every national Example: ", d= {x ∈ Q: -1 < x < 1} is not a cut (@ fails) number, there is always a larger rational number (2) $\beta = \{x \in \mathbb{R} : x \leq -1\}$ is not a cut (3) fails) in the set ! (3) For any $r \in \mathbb{Q}$, $r' = \{x \in \mathbb{Q} : x \in r\}$ is a cut. ····· **Proposition**: The set $\{x \in \mathbb{Q} : x(o)\} \cup \{x \in \mathbb{Q} : x^2 < 2\}$ is a cut.

This might be the construction of Jz

Theorem: OIR is an ordered field

(Rudin 1.19) @ IR contains Q as a subfield.

you can the following operations:

· Roughly speaking, a field is a mathematical structure that addition, subtraction, multiplication, division.

 $\bigcirc \alpha + \beta \neq \phi, \bigcirc \sin \alpha = \alpha \neq 0, \beta \neq 0.$ $(p_1) \land \downarrow Q \Rightarrow \exists \land e_d, \land e_Q.$ $\beta \neq Q \Rightarrow \exists b \notin \beta, b \in Q$ ②For researe, for all g < res, g∈Q ⇒ g∈a+β</p> (pf) g-s<r => g-s Ed (sine d is a cut)

under the map $\mathbb{Q} \longrightarrow \mathbb{R}$, the addition, multiplication, order in \mathbb{Q} are preserved. $\mathbb{A} \longrightarrow \mathbb{A}^*$

Proposition: (1) If $a \leq b$, then $a \neq c \leq b \neq c$ (2) If r 70 and $a \leq b$, then $r \leq r \leq b$. for all $a, b, c, r \in \mathbb{R}$.

Remark: This kind of field is called ordered field.

least upper bound

Def: Let $E \subset S$, S is ordered. If there exists a $\beta \in S$ s.t. for all $\chi \in C$ we have $\chi \leq \beta$, then β is called an <u>upper bound</u> for E. Def: Let $E \subset S$, if $\exists d \in S$ s.r. (1) d is an upper bound of E. and (2) if $r \subset a \Rightarrow r$ is not on upper bound of E(2) is equivalent to that r is an upper bound of $E \Rightarrow r \neq d$) Then d is called the least upper bound (1.u.b.) of E or <u>supremum</u> of E. In this Case, we write d = sup E.

Example: Let S=Q

(1) E is a set with finite elements, $\sup E = |argest| element in E$. (2) $E = \{ 1 - \frac{1}{2}, n \in \mathbb{N} \}$, $\sup E = 1$

Least upper bound property

<u>Thm</u>: IR has the <u>least upper bound property</u>. That is, for every non-empty subset A of IR

if A has an upper bound, then it also has a l-u.b. in S.

Sketch of proof: A is a collection of cuts, with upper bound β . Let $Y = \bigcup \{d : d \in A\}$ (Notice that d is a cut, so it is a subset of \mathbb{Q}). Check that \mathcal{O} Y is an cut \mathfrak{O} Y = sup A.

Example: E= { XEQ: x²<2}, sup E exists in R.

Exercise: Let $\alpha = \sup E$, then $\alpha^2 = 2$. In this sense $\alpha = \sqrt{2}$.

Similarly, the lower bound and greatest lower bound (infimum) of a set can be defined.

· Def: Let ECS, S is ordered.

If there exists a res s.t.

for all $X \in \mathbb{C}$ we have $X \ge Y$,

then r is called a lower bound for E.

Def: Let ECS, if ∃ d ∈ S s.r. (1) d is a lower bound of E. and (2) if r7d ⇒ r is not a lower bound of E ((2) is equivalent to that r is a lower bound of E ⇒ r≤d) Then d is called the <u>greatest lower bound</u> of E or infimum of E. I this case, we write d= infE.

If a set ECR has a lower bound, then inf E always exist due to the following face and the least upper bound property

Proposition : in $f = - \sup(-E)$

Useful fact:
inf
$$\{\frac{1}{n}, n \in \mathbb{N}\} = 0$$

(=) $\forall y > 0$, there is a n \in \mathbb{N} s.t. $y > \frac{1}{n}$
This is a Corollary of the following property
Proposition (Archimedean property)
 $\forall X, Y > 0$, $\exists n \in \mathbb{N}$ such that $n > Y$.
 $\forall X, Y > 0$, $\exists n \in \mathbb{N}$ such that $n > Y$.
 $\forall X, Y > 0$, $\exists n \in \mathbb{N}$ such that $n > Y$.

Next time: complex numbers the principle of induction.