Last time :

· Definition of sets: A collection of objects or numbers. ${\mathcal{O}}$ peration on sets :ANB . $A\,\mathsf{UB}$, $\mathsf{A}\!\times\!\mathsf{B}$, $\mathsf{A}\!\times\!\mathsf{B}$ · Equivalence Relation =, ~ ... on ^a set Reflexivity $\qquad \, \alpha \sim a$ Symmetry $a \sim b \Rightarrow b \sim a$ Transitivity $a \sim b$, $b \sim c \implies a \sim c$ · rational numbers : fractions or ratios of two integers $\frac{a}{b}$ or $a:b$ Addition Fractions or
 $\frac{Q}{b}$ or $Q : b$

Addition $\frac{Q}{b} + \frac{C}{d} = \frac{0d + bc}{bd}$

Multiplication $\frac{Q}{b} \cdot \frac{C}{d} = \frac{ac}{bd}$ loday , we are going to introduce $11)$ Constrution of real numbers (R) from rational numbers $\mathbb{Q}(R)$ 12) Well-defined arithmetic operations and orders on IR. ¹³¹ Least upper bound property) the completeness of the real numbers)

Why we need real numbers ?

ly we need real numbers!
• Foundation of real analysis and calculus, and also all the science built on them.

. A mathematical model for continuous physical quantities, such as the position in the space, time, etc

• Good mathematical properties that can used to define functions and solutions of equations x^2 = 2

Things need to be known before we explicitly construct real numbers .

· The real numbers are pure and abstract mathematical objects , and the construction seems artificial - But some properties that was used in the construction, such as the <u>least upper bound property</u>, are also useful afterwards.

· There are other ways constructing the real numbers , and it can be shown that they are all equivalent .

· Cauchy sequences of rational numbers .

Construction of real numbers R

• Idea: Every real number is associated with a cut

· Dedekind : A cut x is a subset of Q s.t.

 \bigcirc d \neq ϕ , Q ③ If p∈ x, & ∈Q and <mark>8<p, then & ∈ x (closed downward)⇒All lower ration numbers</mark> ³ If $P \in \mathcal{A}$, then there is a gcd s.t. $P \in \mathcal{B}$ (<mark>no largest number</mark>) Example : "'
"d = $P \in \mathcal{A}$, then there is a $\mathcal{B} \in \mathcal{A}$ s.t. $P \in \mathcal{B}$ (no large
 $\{ \chi \in \mathbb{Q} : \neg I \in X \in \}$ is not a cut $(\circledcirc \neg f_{a_i} | s_i)$ (2) $\beta = \{x \in \mathbb{Q}: x \in I\}$ is not a cut $\left(\circledast$ fails) (3) For any $r \in \mathbb{Q}$, $r^* = \{x \in \mathbb{Q} : x \in r\}$ is a cut \cdots r
F Proposition: The set $\{x \in \mathbb{Q} : x \infty\}$ $\bigcup \{x \in \mathbb{Q} : x^2 < 2\}$ is a cut. are in the set & $N_{\text{for every infimal}}$ number, there is always ^a larger rational number in the set l

This might be the construction of $\sqrt{2}$

Theorem : DIR is an ordered field

Theorem: _O R is an ordered field
(Rudin 1.19) @ R contains Q as a subfield.

you can the following operations:

· Roughly speaking, a <u>field</u> is a mathematical structure that addition, subtraction, multiplication, division.

 $\bigoplus \alpha + \beta \pm \beta$, \bigoplus sine $\alpha \pm \mathbb{Q}$, $\beta \pm \mathbb{Q}$. (pf) at Q = \exists aqd, acQ. $\beta \star Q \rightarrow 3$ b & β , b ϵQ . \circledA For $r+s\in\circledast$ for all $q< r+s$, $\mathfrak{f}\in\mathbb{Q}\Rightarrow q\in\circledast\mathfrak{g}$ (a) For $r+s \in \alpha + \beta$, for all $q < r+s$, $\beta \in G$
(gf) $q-s < r \Rightarrow q-s \in \alpha$ (sine α is a cut) r 1+
8
⇒ 8 $= (8-5) + 5$
 $= 8-5$
 $= 8$
 $= 8$
 $= 10$
 $= 8$ \Rightarrow ξ -s
 \Rightarrow ξ -s
 \Rightarrow ξ

under the map \overline{p} , the addition multiplication, order in Q are preserved. \overrightarrow{p} \overrightarrow{p} \overrightarrow{r}

 $\frac{1}{2}$ Proposition: (1) If $a \leq b$, then $a + c \leq b + c$ (1) If asb, then atcsbfc
(2) If r70 and acb, then racrb. For all a,b,c,r ER.

Remark: This kind of field is called ordered field.

least upper bound

Def : Let ECS , ^S is ordered. If there exists ^a BES S. t . for all $x \in C$ we have $x \leq \beta$, then β is called an upper bound for E . Def: Let ECS, if $a \in S$ s.r.

(1) α is an upper bound of E. (1) α is an upper bound of E.
and (2) if $r < \infty \Rightarrow r$ is not an upper bound of E. (12) is equivalent to that Y is an upper bound of $E \implies Y \ge \alpha$) nd (2) if r<x ⇒ r is not 0n upper bound ot E
(12) is equivalent to that r is an upper bound of E ⇒ 17d)
Then d is called the <u>least upper bound (1.a.b.</u>) of E or <u>supremum</u> of E In this case, we write $\alpha =$ <mark>r boun</mark>
sup E

 $Example:$ Let $5=Q$

²t ^{S=Q}
⁽¹⁾ E is Q set with finite elements , sup E = largest_element_in E . (2) $E = \{ +\frac{1}{n}, \text{h}\in \mathbb{N} \}$, sup $E =$

(3)
$$
E = \{ X \in \mathbb{Q} : X^2 \le 2 \}
$$
, $sup E$ does not exist.

Least upper bound property

Ihm : ^R has the least upper bound property. That is , for every non-empty subset ^A of IR if A has an upper bound, then it also has α l.u.b. in S.

Skotch of proof: A is a collection of cuts, with upper bound β, is a collection of calls, with upper bound p.
Let r= U{d·d∈A} (Notice that d is a cut, so it is a subset of Q). Check that D r is an cut \circledcirc γ = sup A .

 $Example: E = \int X \in \mathbb{Q}: X^2$ (1) :
<2[}], sup E exists in IR.

Exercise : Leta ⁼ supe , then 2⁼ ² . In this sense C ⁼ 52.

Similarly , the lower bound and greatest lower bound (infimum) of ^a set can be defined.

· \overline{Def} : Let $E \subset S$, S is ordered.

If there exists α r ϵ S s.t.

for all $x \in L$ we have $x \ge r$,

then r is called α lower bound for E .

Def: Let ECS , if $\exists d \in S$ s.t.

(1) d is a lowerbound of E . and (2) if $r \geq \emptyset$ is not a lower bound of E (12) is equivalent to that \qquad is a lower bound of $E \Rightarrow Y \le d$) Ind (2) if $r \ge \infty$ is not a lower bound of E

(12) is equivalent to that r is a lower bound of $E \Rightarrow r \le \infty$)

Then ∞ is called the greatest lower bound of E or infimum of E

I this case, we write $\alpha = \inf E$. I this case , we write X ⁼

If ^a set ECR has ^a lower bound , then infE always exist due to the following fact and the least upper bound property

Proposition : inf $E = -\sup(-E)$.

Useful fact:
\n
$$
inf\{\frac{1}{n}, n\in\mathbb{N}\} = 0
$$

\n \Leftrightarrow 4920, there is a nEN st. 92n
\nThis is a Corollary of the following property
\nProposition (Archimedean property)
\n $\forall x, y > 0, \exists n \in \mathbb{N}$ such that $nx > 9$.
\nthere is a
\nUseful fact (Q is dense in R)
\n $\forall x, y \in R, x$

$$
\forall x, y \in \mathbb{R}, x \prec y \implies \exists \& \in \mathbb{R} \text{ s.t. } x \prec \exists \prec y.
$$

Next time : complex numbers the principle of induction .