Introduction to Quantitative Methods, Quiz 2

- 1. Let \mathbb{N} denote the set of positive integers. Answer the following questions.
 - a. (20 points) Give the definitions of least upper bound of a set $S \subset \mathbb{R}$.
- b. (20 points) What is the value of $\inf\{\frac{1}{x^n} : n \in \mathbb{N}, x \in \mathbb{R} \text{ and } x > 1\}$ 2. (30 points) Let $A \subseteq B \subseteq \mathbb{R}$, prove that $\sup A \stackrel{\checkmark}{\underset{\bullet}{\bullet}} \sup B$ and $\inf A \stackrel{\checkmark}{\underset{\bullet}{\bullet}} \inf B$
- 3. Recall that the mathematical construction of a real number is a cut. A cut α is a subset of \mathbb{Q} satisfying the following conditions.
 - (1) $\alpha \neq \emptyset, \mathbb{Q}$
 - (2) If $p \in \alpha, q \in \mathbb{Q}$ and q < p, then $q \in \alpha$ (closed downwards).
 - (3) If $p \in \alpha$, then there is a $q \in \alpha$ such that p < q (no largest number).

Answer the following questinos:

- a. (30 points) If a relation \leq defined on cuts is defined such that $\alpha < \beta$ if and only if $\alpha \subsetneq \beta$ for any two cuts α, β . Show that < is an order on cuts.
- b. (20 points) If p is a rational number and $p^2 < 2$, let $q = \frac{2p+2}{p+2}$. Show that p < q and also $q^2 < 2$. Then deduce that the set $\{x \in \mathbb{Q} : x < 0\} \cup \{x \in \mathbb{Q} : x^2 < 2\}$ is a cut.

1. Let \mathbb{N} denote the set of positive integers. Answer the following questions.

a. (20 points) Give the definitions of least upper bound of a set $S \subset \mathbb{R}$.

| (a) An upper bound x of a set S is a number x such that X>r for all rES A Least Upper Bound & of a set & is a number REIR, s.t 1. It is an upper bound of \$ 2. If r<x, r is not an upper bound of \$.

b. (20 points) What is the value of $\inf\{\frac{1}{x^n} : n \in \mathbb{N}, x \in \mathbb{R} \text{ and } x > 1\}$

 $(.(b) Claim O = \inf \left\{ \frac{1}{\pi^n} : n \in \mathbb{N}, \pi \in \mathbb{R} \right\}$ l.e. For all yzo, 3 h s.t. y 3 m Lemma $x^{h} = [1+(x-1)]^{h} \ge 1+n(x-1)$ (pf) n=1: n=1+(x-1) $n = 2: T^{2} = \left[1 + (x-1) \right]^{2} = (1 + 2(x-1) + (x-1)^{2} \ge (1 + 2(x-1))^{2} \ge (1 +$ $h - 1 \rightarrow h$: $x^{n} = \left[1 + (x - 1) \right]^{n} = \left[1 + (x - 1) \right] \cdot \left[1 + (x - 1) \right]^{n-1}$ $\ge \left[\left(+ \left(x - i \right) \right) \cdot \left[\left(+ \left(n - i \right) \left(x - i \right) \right] = \left(+ n \left(x - i \right) + \left(n - i \right) \left(x - i \right)^{2} \right) \right]$ ≥ 1+ n(x+1) ¥ Archimedean Property:

Let
$$a = k - 1$$

 $b = \frac{1}{2} - 1$ $\Rightarrow \exists n \leq 4, n(k-1) \neq 1 \geq (\frac{1}{2} - 1) \neq 1 = \frac{1}{2}$

 $\frac{1}{5} \leq h(x-1) + 1 \leq x^n \quad \Rightarrow \forall \ \frac{1}{x^n} \quad \Rightarrow$ Hence,

2. (30 points) Let $A \subseteq B \subseteq \mathbb{R}$, prove that $\sup A \searrow \sup B$ and $\inf A \oiint \inf B$

Claim: We only need to prove that 2 lent 4.B. (1) Sup B is an upper bound of A ⇒ Sup B ≥ sup A (2) infB is a lower bound of A ⇒ infB ≤ infA ~ largest L.B. pf of (1): For all XEB, XS sup B=b > For all yEASB, JSb ⇒ b is un U. B. of A. pt of (2) is similar, #

- 3. Recall that the mathematical construction of a real number is a cut. A cut α is a subset of \mathbb{Q} satisfying the following conditions.
 - (1) $\alpha \neq \emptyset, \mathbb{Q}$
 - (2) If $p \in \alpha, q \in \mathbb{Q}$ and q < p, then $q \in \alpha$ (closed downwards).
 - (3) If $p \in \alpha$, then there is a $q \in \alpha$ such that p < q (no largest number).

Answer the following questinos:

a. (30 points) If a relation \leq defined on cuts is defined such that $\alpha < \beta$ if and only if $\alpha \subsetneq \beta$ for any two cuts α, β . Show that < is an order on cuts.

For all cuts d,
$$\beta$$
, r , an order on cut satisfies:
(1) Either $d \leq \beta$, $d \geq \beta$, $d \geq \beta$ is thre.
(2) If $d \leq \beta$, $\beta \leq r$, then $d \leq r$.
Pf of (1): Given two cuts d , β .
Case 1: $d \geq \beta$ (as sets) \Rightarrow $d \geq \beta$ (as order) or.
Case 1: $d \geq \beta$ (as sets) \Rightarrow $d \geq \beta$ (as order) or.
Case 1: $d \neq \beta$, so $\exists \pi \in a$ such that $\pi \notin \beta$
Need to show that $d \geq \beta$ or $d \leq \beta$.
Claim: For all $y \in \beta$, we have $y < r$.
(1) If $y = r$: $\pi \in \beta$ ($\Rightarrow \epsilon$)
(2) If $y > r$: since β is a cut, $y \in \beta$, $\pi \in Q$, $y > r \Rightarrow r \in \beta$
(3) So, $y < r$ is the only possibility, y
Then, since d is a cut, $\Rightarrow y \in c$ the all $y \in \beta$. $\Rightarrow \beta \leq d$.
Pf of (2): $d < \beta \Rightarrow d \leq \beta$, $\gamma \Rightarrow d \leq \beta \leq r \Rightarrow d < r$,
(For all $x \in d$, $\pi \in d \leq \beta \leq r \Rightarrow \pi \in r$)

b. (20 points) If p is a rational number and $p^2 < 2$, let $q = \frac{2p+2}{p+2}$. Show that p < q and also $q^2 < 2$. Then deduce that the set $\{x \in \mathbb{Q} : x < 0\} \cup \{x \in \mathbb{Q} : x^2 < 2\}$ is a cut.

(1) $p < g \iff p < \frac{\gamma p+2}{p+2} \iff p^2 + \gamma p < 2p+2 \iff p^2 < 2_{\frac{\alpha}{2}}$ $g^{2}-2 = \frac{(2p+2)^{2}}{(p+2)^{2}} - 2 = \frac{4p^{2}+8p+4-2p}{(p+2)^{2}}$ (2) q²<2: $= \frac{\lambda(p^2 - \lambda)}{(b+\lambda)^2} < 0$ Let d= freQ: rcof U {rEQ: x2c2} $(\iota) \, \alpha \neq \phi \, Q \, ,$ (pt) 0 Ed, but 22 > 2 = 2 & d. # (2) If pex, geQ, then p<8. (pf) If g co: ged. It 270; p> & 70. Since p2 < 2, 82 < p2 < 2. So, g Ed . \$ (3) If $p \in d$, then $q = \frac{2p+2}{p+2}$ satisfies (1) $g \in Q$. 12 670 (3) q²< 2