Introduction to Quantitative Methods, Quiz 2

- 1. Let N denote the set of positive integers. Answer the following questions.
	- *a*. (20 points) Give the definitions of least upper bound of a set $S \subset \mathbb{R}$.
	- *b*. (20 points) What is the value of $\inf{\frac{1}{x^n} : n \in \mathbb{N}, x \in \mathbb{R} \text{ and } x > 1}$
- 2. (30 points) Let $A \subseteq B \subseteq \mathbb{R}$, prove that sup $A \geq \sup B$ and $\inf A \leq \inf B$ ①
- 3. Recall that the mathematical construction of a real number is a cut. A cut α is a subset of $\mathbb Q$ satisfying the following conditions. tative Methc

ver the following qu

pper bound of a set
 $n \in \mathbb{N}, x \in \mathbb{R}$ and x

sup *B* and inf *A*

a real number is a
	- $(1) \alpha \neq \emptyset, \mathbb{Q}$
	- (2) If $p \in \alpha, q \in \mathbb{Q}$ and $q < p$, then $q \in \alpha$ (closed downwards).
	- (3) If $p \in \alpha$, then there is a $q \in \alpha$ such that $p < q$ (no largest number).

Answer the following questinos:

- *a*. (30 points) If a relation \leq defined on cuts is defined such that $\alpha < \beta$ if and only if $\alpha \subsetneq \beta$ for any two cuts α, β . Show that \lt is an order on cuts.
- *b*. (20 points) If *p* is a rational number and $p^2 < 2$, let $q = \frac{2p+2}{p+2}$. Show that $p < q$ and also *q*² < 2. Then deduce that the set {*x* ∈ $Q : x < 0$ } ∪ {*x* ∈ $Q : x²$ < 2} is a cut.

1. Let N denote the set of positive integers. Answer the following questions.

a. (20 points) Give the definitions of least upper bound of a set $S \subset \mathbb{R}$.

1. (a)
\nAn upper bound x of a set 5 is a number x
\nsuch that X>7 r for all r65
\nA Least Upper Bound x of a set 5 is a number x6/R, s.t
\n1. x is an upper bound of 5
\n2. If r < r, r is not an upper bound of 5.
\nb. (20 points) What is the value of inf
$$
\frac{1}{x^n}
$$
: $n \in N, x \in R$ and $x > 1$ }
\n1. (b) C/ain 0 = inf $\frac{1}{x^n}$: $h \in N$, $\frac{n \in R}{x > 1}$
\n1. e. For all Y > 0, \exists h s.t. y > $\frac{1}{x^n}$
\n1. e. $C = \frac{1}{x^n} \sum_{i=1}^{n} \frac{1}{x_i} + \sum_{i=1}^{n} \frac{$

$$
\frac{1}{100}
$$
 For all $y > 0$, $\frac{1}{3}$ h s,t, $y > \frac{1}{x^{2n}}$
\n
$$
\frac{1}{x^{2n}} = \frac{1}{x
$$

Archimedean Property:

\n
$$
\frac{11}{11} \quad a_{1}b > 0, \quad a_{2}b \in \mathbb{R} \quad \exists h \text{ s.t. } n \neq b
$$
\n
$$
\frac{1}{11} \quad a_{2} \times -1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq (\frac{1}{9} - 1) + 1 = \frac{1}{9}
$$
\n
$$
\frac{1}{11} \quad b = \frac{1}{9} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3} - 1 \quad \Rightarrow \exists h \text{ s.t. } n(k-1) + 1 \geq \frac{1}{3
$$

 \leq $\frac{2}{7}$ \Box sup B and $\operatorname{int} A \ \underline{\mathbf{v}}$

 $Clain: We only need to prove that$ $that$ $\frac{1}{2}$ least $\frac{1}{2}$. B. ↑ (1) Sup B is an upper bound of $A \Rightarrow$ Sup B \geq sup A (2) inf B is a lower bound of $A \ni h f B \leq h f A$
Largest L.B. pf of (1) : Fr all $x \in B$, $x \leq s$ mp $B = b$ \Rightarrow For all y E A \leq B, y s b \leq β , γ \leq β
 \Rightarrow β is an U. B. of A. pt of ¹²¹ is similar. #

- 3. Recall that the mathematical construction of a real number is a cut. A cut α is a subset of $\mathbb Q$ satisfying the following conditions.
	- $(1) \alpha \neq \emptyset, \mathbb{Q}$
	- (2) If $p \in \alpha, q \in \mathbb{Q}$ and $q < p$, then $q \in \alpha$ (closed downwards).
	- (3) If $p \in \alpha$, then there is a $q \in \alpha$ such that $p < q$ (no largest number).

Answer the following questinos:

a. (30 points) If a relation \leq defined on cuts is defined such that $\alpha < \beta$ if and only if $\alpha \subsetneq \beta$ for any two cuts α, β . Show that \langle is an order on cuts.

For all cuts d,
$$
\beta
$$
, Γ , an order on cut satisfies:

\n(1) Either $d \le \beta$, $d \le \beta$, $d \ge \beta$ is the α .

\n(2) If $d \le \beta$, $d \le \beta$, $d \ge \beta$ is the α .

\n(3) If $d \le \beta$, $\beta \le \gamma$, then $\alpha \le \Gamma$.

\nFor all β is the α and β .

\nCase 2: $d \ne \beta$, β is the α and β .

\nCase 3: $d \ne \beta$, β is the α and β is the α and β .

\nCase 4: $d \ne \beta$, β is the α and β is the α and β .

\nCase 5: $d \ne \beta$, we have $d \le \beta$.

\nCase 6: $d \le \beta$, we have $d \le \beta$.

\nFor all $\beta \in \beta$, we have $d \le \beta$.

\nFor all β is a cut, $\beta \in \beta$, we have β .

\nFor all β is a cut, β is a cut, β is a cut, β is a cut.

\nThen, since d is a cut, β is the only possibility.

\nThen, since d is a cut, β is the α and β is the <

(1) $p < \frac{p}{p+2}$ $\Leftrightarrow p < \frac{p+2}{p+2}$ $\Leftrightarrow p^2 + \gamma p < 2p+2$ $\Leftrightarrow p^2 < 2$ (2) 9^{2} (2) : is a rational number and $p^2 < 2$, let $q = \frac{2p+2}{p+2}$. Show that $p < q$

luce that the set $\{x \in \mathbb{Q} : x < 0\} \cup \{x \in \mathbb{Q} : x^2 < 2\}$ is a cut.
 $\Leftrightarrow \rho < \frac{2p+2}{p+2} \Leftrightarrow \rho^2 + \sqrt{2p+2} \Leftrightarrow \rho^2$
 $\frac{2p+2}{p+2} \Leftrightarrow \frac{2(p+$ <u>2p</u> = $\frac{\partial p}{\partial x}$ \boldsymbol{J} $(1) + 12$ $2 < \frac{2p+2}{p+2} \iff$
 $\frac{(2p+2)^2}{(p+2)^2} - 2$
 $\frac{2(p^2-2)}{(p+2)^2} < 0$ $\geq \frac{\sum (p^2 - 2)}{(p + 2)^2} < 0$ L_{e+} $d = \begin{cases} \pi \in \mathbb{Q} : \pi \in \mathbb{Q} \end{cases}$ $U \left\{ \pi \in \mathbb{Q} : \pi^2 c \right\}$ (1) $\alpha \neq \phi$, \mathbb{Q} ; (pf) oca, but 2^2 > 2 = 2 $26d$, # (2) If $p \in \alpha$, but $2 \ge 2$ \Rightarrow $2 \in \alpha$.
(2) If $p \in \alpha$, $q \in \mathbf{Q}$, then $p < \beta$. (2) If $p \in \alpha$, $q \in Q$
(pf) If $q \in \alpha$. $q \in \alpha$. If g co: g e x.
If g 2°; p > 2>, o. Since p² < 2, g² < p² < 2. So, g Ex ₂₅ (3) If ped, $P \ge 620$. Then $P = \frac{2p+2}{p+2}$ satisfies (1) $P \in Q$
then $P = \frac{2p+2}{p+2}$ satisfies (1) $P \in Q$ $|v\rangle$ $k > \rho$ (3) $9² < 2$