Online Math Camp (24F) Week 1 (8/12)

Set: A collection of objects, e.g.
$$S_1 = \{\Delta, -7, X, \bigcirc\}$$

 $S_2 = \{1, 2, 3, 4, 5\} = \{\pi : \chi \text{ is an integer, and } 1 \le \pi \le 5\}$
list all elements in the set describe properties of elements in the set
Def: $\chi \in A$: χ is in A .
 $\chi \notin A$: χ is NOT in A .
 $A \subset B$: A is a subset of B .
Def: $A \cap B = \{\chi : \chi \in A \text{ and } \chi \in B\}$: the intersection of A and B
 $A \cup B = \{\chi : \chi \in A \text{ or } \pi \in B\}$: the union of A and B
 $A \subseteq B = \{\pi : \chi \notin A\}$: the complement of A
 $A \subseteq B = \{\pi : \chi \notin A\}$: the set difference of A and B
 $A \subseteq B = \{\pi : \chi \notin A \text{ ond } \pi \notin B\}$: the set difference of A and B
 $A \times B = \{(a, b): a \in A, b \in B\}$: the product of A and B .

Rational Numbers

$$Q = \left\{ \begin{array}{l} \frac{m}{n} : m, n \in \mathbb{Z} \right\} \text{ is the set of rational numbers, and can be} \\
expressed as a relation (m, n) .
However, the representation is NOT unique: $\frac{2}{5} = \frac{1}{5}$ (When is it unique?)
In fact, $\frac{n}{b} = \frac{c}{d} \iff ad = bc$
Define $(a,b) \sim (c, d)$ if $ad = bc$. This is an equivalent relation.
(pt) Exercise.$$

Addition and Multiplication

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
Note the if $\frac{a'}{b'} = \frac{a}{b}, \frac{c'}{d'} = \frac{c}{d}, \Rightarrow \frac{a'}{b'} + \frac{c'}{d'} = \frac{a}{b} + \frac{c}{d}, \quad b = \frac{a'}{b}, \quad c' = \frac{a}{b}, \quad c' = \frac{a}{c}, \quad c' = \frac$