1. (20 points) Let X and Y be two metric spaces. Give the definition of a function f: X — Y being
continuous. You may give any equivalent definition.
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2. (20 points) Find the set S such that the function f(x) = Z5t is continuous on S but not continuous
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3. Let f(z) = 323 + 222 + x + 1. Explain why the following statements are true:
(a) (10 points) The set X ={z € R: 0 < f(x) < 1} is open.
(b) (10 points) The set Y = {f(x): 0 < x < 1} is closed and bounded.
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4. (20 points) Prove that if f: R — R is strictly monotone (strictly increasing or decreasing) and

-ene-to-one, then f is continuous. Deduce that z* is a continuous function on R for all k.
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let T(O)= %X‘
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d.

(a) (10 points) Let M be a metric space and f: M — R™ be a function, f can be represented by
functions in each coordinate, i.e., f(x) = (f1(z), fa(x), ..., fn(x)). Prove that f is continuous
if and only if f; is continuous for all 1 <7 < n.

(b) (10 points) Let f be a function from R™ and let f(x) = Az + b, where A is an n X m matrix
and b is a vector in R™. Prove that f is continuous.
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