1. (20 points) Let X and Y be two metric spaces. Give the definition of a function $f: X \to Y$ being continuous. You may give any equivalent definition.

$$\begin{array}{c} \hline \underline{Pefinition \ 1} \\ \hline For any \ X \in X \ and \ E > 0, \ there exist a \\ real number \ S \ such \ that for all \ |Y-X| < 8, \\ we have \ \left[f(\mathfrak{Y})-fix\right] < E \\ \hline \underline{Pefinition \ 2} \\ \hline If \ \left[X^n\right] \ is \ a \ sequence \ in \ X \ and \ \left[\lim_{n \to \infty} X_n = \Im, \\ then \ \left[\lim_{n \to \infty} f(X_n) = f(\Im)\right] \\ \hline \underline{Pefinition \ 3} \\ \hline For \ all \ open \ sets \ U \subseteq Y, \ the \ set \\ f^{-1}(Y) : \ \int x \in X : \ f(x) \in U \ is \ open. \end{array}$$

2. (20 points) Find the set S such that the function $f(x) = \frac{x+1}{x^2}$ is continuous on S but not continuous on $\mathbb{R} \setminus S$.

We claim that
$$S = IR \setminus \{\circ\}$$

(1) $IR \setminus \{\circ\} \in S$:
 $R \setminus \{\circ\} \in S$:
 $R \setminus \{\circ\} \in S$:
 $R \setminus \{\circ\}$,
 $SO \xrightarrow{Xt}_{X^2}$ is continuous on $IR \setminus \{\circ\}$.
(2) $O \notin S$:
Let $X_n = \frac{1}{n}$, we have $\lim_{n \to \infty} X_n = O$
We have $f(X_n) = \frac{X_n + 1}{X_n^2} > \frac{1}{X_n^2} = n^2$ for all n .
The sequence $\{f(X_n)\}_{n=1}^{\infty}$, diverges. Hence $f(X)$ is not continuous
 $R \setminus X = O$.

3. Let $f(x) = 3x^3 + 2x^2 + x + 1$. Explain why the following statements are true:

- (a) (10 points) The set $X = \{x \in \mathbb{R} : 0 < f(x) < 1\}$ is open.
- (b) (10 points) The set $Y = \{f(x) : 0 \le x \le 1\}$ is closed and bounded.

f(x) is a polynomial, f is continuous on R (a) For any continuous function, the preimage of a open set is open. Since (0,1) is open, we have $X = f^{-1}((0,1))$ is open (b) For any continuous function, the image of a compact set is compact. By Heine-Borel theorem [0,1] is compact Then $\chi = f([E_0, 1])$ is compact, and therefore it is closed and bounded.

4. (20 points) Prove that if $f: \mathbb{R} \to \mathbb{R}$ is strictly monotone (strictly increasing or decreasing) and -one-to-one, then f is continuous. Deduce that x^k is a continuous function on \mathbb{R} for all k. bijective

8

- 5. (a) (10 points) Let M be a metric space and $f: M \to \mathbb{R}^n$ be a function, f can be represented by functions in each coordinate, i.e., $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$. Prove that f is continuous if and only if f_i is continuous for all $1 \le i \le n$.
 - (b) (10 points) Let f be a function from \mathbb{R}^m and let f(x) = Ax + b, where A is an $n \times m$ matrix and b is a vector in \mathbb{R}^n . Prove that f is continuous.

(a) For any sequence
$$\{x_n\}$$

We have $\lim_{m\to\infty} f(x_m)$ exists if and only if
 $\lim_{m\to\infty} f_i(x_m)$ exist. If one of them are true,
 $n\to\infty$
then $\lim_{m\to\infty} f(x_m) = (\lim_{m\to\infty} f_i(x_m), \dots, \lim_{m\to\infty} f_i(x_m))$
Suppose $\{x_n\}$ converges to $p = (P_i, \dots, P_n)$
Then $\lim_{m\to\infty} f(x_m) = f(P_i)$ if and only if
 $\lim_{m\to\infty} f_i(x_m) = f_i(P_i)$
Therefore, f is continuous if and only if f_i is
continuous.
(b) Let $A = \begin{pmatrix} a_{i_1} \dots a_{i_m} \\ a_{i_1} \dots a_{i_m} \end{pmatrix}$ and $b = (b_{i_1}, \dots, b_n)$
Let $A_i = (a_{i_1}, \dots, a_{i_m})$ be the i-th row of A .
We have $f_i(x) = A_i(x + b_i) = \sum_{k=1}^{m} a_{i_k} x_k + b_i$.
Now we show that f_i is continuous.

For any
$$\varepsilon > 0$$
, let $\delta = \max_{k} |a_{k}|$
Then for $a_{Ny} = x, y \in x^{\infty}$ such that $\sum_{k=1}^{\infty} |x_{k} \cdot y_{k}| \leq S$
we have
 $[f_{i}(x) - f_{i}(y)] = |A; (x - y)]$
 $= |\sum_{k=1}^{\infty} a_{i,k} (x_{k} \cdot y_{k})]$
 $< (\max_{k} a_{i,k}) \sum_{k=1}^{\infty} |x_{k} \cdot y_{k}|$
 $< \varepsilon$
Therefore f_{i} is continuous.
By $S.(a)$, f is continuous.