1. Let {p,} be a sequence.
(a) (15 points) What is the meaning of * lim p,, = p’?
n—oo

(b) (15 points) What is the meaning of "{p,} is a Cauchy sequence.”?
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2. Find the limit of each of the following sequences. You should provide an N — e argument rather
than just write out the answers.

(a) (10 points) {a,} C R and a,, = 11%22

(b) (10 points) {b,} C R? and b,, = (%, %t2)
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3. (20 points) Let {z,,} be a sequence in R that converges to a real number d, prove that

lim (222 + 3z, +4) = 2d* + 3d + 4.
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4.

(a) (10 points) Let {a,} be a sequence in a metric space (X, d). Assume that there is a subsequence
of {a,} converges, does {a,} always converge? Explain your answer.

(b) (10 points) If we further assume {a,} is a Cauchy sequence, does {a,} always converge?
Explain your answer. Note that if X is a general metric space that is not complete, then a
Cauchy sequence in X does not always converge.
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