Introduction to Quantitative Methods, Quiz 8

- 1. Let $\{p_n\}$ be a sequence.
 - (a) (15 points) What is the meaning of $\lim_{n \to \infty} p_n = p$?
 - (b) (15 points) What is the meaning of $\{p_n\}$ being a Cauchy sequence??
- 2. Find the limit of each of the following sequences. You should provide an $N \epsilon$ argument rather than just writing out the answers.
 - (a) (10 points) $a_n = \frac{2n^2}{1+n^2}$
 - (b) (10 points) $b_n = (\frac{1}{n}, \frac{n+2}{3n})$
 - (c) (10 points) $c_n = 1 + \frac{1}{3} + \ldots + \frac{1}{3^{n-1}}$
- 3. (20 points) Let x_1, x_2, \ldots, x_n be a sequence in \mathbb{R} that converges to a real number d, prove that

$$\lim_{n \to \infty} (2x_n^2 + 3x_n + 4) = 2d^2 + 3d + 4.$$

- 4. (a) (10 points) Give a sequence $\{a_n\}$ such that there is a subsequence of $\{a_n\}$ that converges, does $\{a_n\}$ converge? Explain your answer.
 - (b) (10 points) If we further assume $\{a_n\}$ is a Cauchy sequence, does $\{a_n\}$ converge? Explain your answer.