1. (20 points) State the Heine-Borel theorem. A subset K of R (or IR) is compact 1. if and only if K is closed and bounded.

- 2. Let K be a compact subset of  $\mathbb{R}^n$ , x is a point in  $\mathbb{R}^n$ .
  - (a) (10 points) Let A be the set  $\{z \in \mathbb{R} : z = d(x, y) \text{ for some } y \in K\}$ , where d(x, y) is the Euclidean distance in  $\mathbb{R}^n$ . Prove that A is a compact subset of  $\mathbb{R}$ .
  - (b) (10 points) Show that there exist  $y^* \in K$  such that  $d(x, y^*) \leq d(x, y)$  for all  $y \in K$ .



3. (20 points) Let  $X_{\alpha\alpha\in S}$  be a collection of connected sets such that  $\bigcap_{\alpha\in S} X_a \neq \emptyset$ , prove that  $\bigcup_{\alpha\in S} X_a$  is connected.

3. We prove by contradiction  
Suppose 
$$\bigcup_{d \in S} X_d$$
 is not connected,  
there exist non-empty separated sets A and B such that  
 $\bigcup_{d \in S} X_d = A \cup B$  and  $\overline{A} \cap B = A \cap \overline{B} = \Phi$   
Let X be any element in  $\bigcap_{\alpha \in S} X_\alpha$ , WLOG let X  $\in A$ .  
For any  $\alpha \in S$ ,  $X_\alpha = X_\alpha \cap (\bigcup_{\alpha \in S} X_\alpha) = (X_\alpha \cap A) \cup (X_\alpha \cap B)$   
Since  $X_\alpha \cap A \subseteq A$  and  $X_\alpha \cap B \subseteq B$ , they are separated  
Note that  $X_\alpha$  is connected and  $\chi \in X_\alpha \cap A$ .  
Therefore,  $X_\alpha \cap B = \Phi$  and  $X_\alpha \subseteq A$  for all  $\alpha$   
Then  $B = B \cap (\bigcup_{\alpha \in S} X_\alpha) = \bigcup_{\alpha \in S} (X_\alpha \cap B) = \Phi$ , a contradiction  
Hence  $\bigcup_{\alpha \in S} X_\alpha$  is connected.

4. (20 points) Two sets A and B in a metric space are called separated if  $A \cap \overline{B} = B \cap \overline{A} = \emptyset$ . A set S in a metric space is called *totally disconnected* if for any distinct  $x, y \in S$ , there exist separated sets A and B such that  $x \in A, y \in B$  and  $A \cup B = S$ . Prove that the Cantor set is totally disconnected in  $\mathbb{R}$ .

The Cantor set is 
$$C = \bigcap_{n=1}^{\infty} K_n$$
, where  $K_n$  is union of  
some disjoint closed intervals with the same length  $3^n$ .  
Let  $\chi, y \in C$  and  $\chi \neq y$ . There exist  $n \in \mathbb{N}$  such that  $3^n < |\chi - y|$   
Then  $\chi, y$  are not in the same interval in  $K_n$   
Suppose  $\chi \in \left[\frac{d}{3^n}, \frac{d+1}{3^n}\right]$  and  $y \in \left[\frac{B}{3^n}, \frac{B+1}{3^n}\right]$   
We have  $\alpha + 1 \neq \beta$ . Then the intervals  $(-\infty, \frac{d+1}{3^n} + \beta)$   
and  $\left(\frac{d+1}{3^n} + 2\beta, \infty\right)$  are separated sets  
when  $g < \frac{1}{3^n} + \beta$ .  $(-\infty, \frac{a+1}{3^n} + \beta)$   $(-\infty, \frac{a+1}{3^n} + \beta)$   
 $Let A = (-\infty, \frac{a+1}{3^n} + \beta)$   $(-\infty, \frac{a+1}{3^n} + \beta)$   $(-\infty, \frac{a+1}{3^n} + \beta)$   $(-\infty, \frac{a+1}{3^n} + \beta)$ .  
 $A$   $(-\infty, \frac{a+1}{3^n} + \beta)$   $(-\infty$ 

- 5. (a) (10 points) Let S be a non-empty connected of  $\mathbb{R}$ . If there are two distinct real numbers a and b in S such that a < b, prove that for any a < c < b we have  $c \in S$ 
  - (b) (10 points) Use 5.a to show that any open connected subset S of  $\mathbb{R}$  is an open interval (a, b) where  $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ . Here  $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$  and  $(a, \infty) = \{x \in \mathbb{R} : x > a\}$

5. (a) If there exist  $C \in (a,b)$  such that  $C \notin E$ Let  $A = (-\infty, c) \cap S$ ,  $B = (c, \infty) \cap S$ We have  $AUB = S \cdot A$  and B are non-empty because a EA and bEB, Since  $A \subseteq (-\infty, c)$ ,  $B \subseteq (c, \infty)$ , A and B are separated Since S is connected, such c does not exist , we have CES. for all acc<b. (b) Let  $a = \inf S$  and  $b = \sup S$ , we claim that S = (a, b)We want to show that Y XE(a,b) we have XES. Since x < sup S, there exist y ES such that X < y Since X>infS, there exist ZES such that X>Z Then Z(X(y and we have XES by S.19) Therefore  $(a,b) \subseteq S$ , S is one of (a,b), [a,b), (a,b), [a,b], [a,b]. S is open = S = (a,b).