1. (20 points) State the Heine-Borel theorem. A subset K of R^{n} (or R) is compact 1 . it and only if ^K is closed and bounded.

- 2. Let K be a compact subset of \mathbb{R}^n , x is a point in \mathbb{R}^n .
	- (a) (10 points) Let A be the set $\{z \in \mathbb{R} : z = d(x, y) \text{ for some } y \in K\}$, where $d(x, y)$ is the Euclidean distance in R^n . Prove that A is a compact subset of R.
	- (b) (10 points) Show that there exist $y^* \in K$ such that $d(x, y^*) \leq d(x, y)$ for all $y \in K$.

 100 Proof 2. Let $\{U_{\alpha}\}$ be an open cover of A For each U_{α} , let W_{α} = $\{y \in \mathbb{R}^{n}: d(y, k) \in U_{\alpha}\}$ Check : Wa is open in IR" $Check: Wd is open in IP^h$
Then $\{W_d\}$ is an open cover of K Since K is compact, there exist a finite subcovet W_{α_1} ... W_{α_n} of $\{W_{\alpha}\}$: Then $U_{\alpha_1} \cdots U_{\alpha_N}$ is a finite subcover of 9Ua]. (b) Let $d = \inf_{y \in A} A = \inf_{y \in A} \{ d(y, x) : y \in K \}$ $d^{\infty} \in A$ since A is closed By definition of A, $\exists y^{\&0} \in k$ s.t. $d(y^{\&0}) \geq inf A$. Therefore, $d(y^2, x) \le d(y, x)$ for all $y \in K$. $\begin{array}{l} \n\sigma f \uparrow, \quad \exists y^8 \in K \text{ s.t. } d(y^9 x) = \inf \ \sigma f \uparrow, \quad \exists y^8 \in K \text{ s.t. } d(y^9 x) = \inf \ \frac{d(y^8 x)}{dx} \end{array}$

3. (20 points) Let $X_{\alpha\alpha\in S}$ be a collection of connected sets such that $\bigcap_{\alpha\in S} X_\alpha \neq \emptyset$, prove that $\bigcup_{\alpha\in S} X_\alpha$

3. We prove by contradiction
\nSuppose
$$
U_{des}X_{d}
$$
 is not connected,
\nthere exist non-empty separated sets A and B such that
\n $U_{deg}X_{d} = A \cup B$ and $\overline{A} \cap B = A \cap \overline{B} = \emptyset$
\nlet X be any element in $\Omega_{neg}X_{d}$, WLDG let X $\in A$.
\nFor any $\alpha \in S$, $X_{\alpha} = X_{\alpha} \cap (U_{deg}X_{\alpha}) = (X_{\alpha} \cap A) \cup (X_{\alpha} \cap B)$
\nSince $X_{\alpha} \cap A \subseteq A$ and $X_{\alpha} \cap B \subseteq B$, they are separated
\nNote that X_{α} is connected and $x \in X_{\alpha} \cap A$.
\nTherefore, $X_{\alpha} \cap B = \emptyset$ and $X_{\alpha} \subseteq A$ for all α .
\nThen $B = B \cap (U_{agg}X_{\alpha}) = U_{agg}(X_{\alpha} \cap B) = \emptyset$, a contradiction
\nHence $U_{agg}X_{\alpha}$ is connected.

4. (20 points) Two sets A and B in a metric space are called separated if $A \cap \overline{B} = B \cap \overline{A} = \emptyset$. A set S in a metric space is called *totally disconnected* if for any distinct $x, y \in S$, there exist separated sets A and B such that $x \in A$, $y \in B$ and $A \cup B = S$. Prove that the Cantor set is totally disconnected in $\mathbb R.$

The Cantor set is
$$
C = \bigcap_{n=1}^{\infty} k_n
$$
, where k_n is Union of
\nSome disjoint closed intervals with the same length 3ⁿ.
\nLet $x, y \in C$ and $x \neq y$. There exist n $\in \mathbb{N}$ such that $3^{-n} \leq |x-y|$
\nThen x, y are not in the same interval in k_n
\nSuppose $x \in [\frac{\alpha}{3^n}, \frac{\alpha n}{3^n}]$ and $y \in [\frac{8}{3^n}, \frac{8n}{3^n}]$
\nWe have $\alpha + 1 \neq 0$. Then the intervals $(-\infty, \frac{\alpha + 1}{3^n} + \frac{1}{6})$
\nand $(\frac{\alpha + 1}{3^n} + 2\epsilon, \infty)$ are separated sets
\nwhen $\epsilon \leq \frac{1}{3^{n+1}}$.
\nLet $A = (-\infty, \frac{\alpha + 1}{3^n} + \epsilon)$. $\bigcap S$ and $B = (\frac{\alpha + 1}{3^n} + 2\epsilon, \infty)$ $\bigcap S$
\n $\bigcap_{x \in \mathbb{N}} \emptyset$ desired separated sets.

- 5. (a) (10 points) Let S be a non-empty connected of $\mathbb R$. If there are two distinct real numbers a and b in S such that $a < b$, prove that for any $a < c < b$ we have $c \in S$
	- (b) (10 points) Use 5.a to show that any open connected subset S of $\mathbb R$ is an open interval (a, b) where $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$. Here $(-\infty, b) = \{x \in \mathbb{R} : x < b\}$ and $(a, \infty) = \{x \in \mathbb{R} : x > a\}$

5. (0) If there exist
$$
C \in (a,b)
$$
 such that $C \notin E$.
\nLet $A = (-\infty, C) \cap S$, $B = (C, \infty) \cap S$
\nwe have $A \cup B = S$. A and B are non-empty
\nbecause $A \in (0, \infty)$, $B \in (0, \infty)$, A and B are separated
\nSince S is connected, such C does not exist
\n, we have $C \in S$. for all $AC C \in b$.
\n(b) Let $A = inf S$ and $b = sup S$, we claim that $S = (a,b)$
\nWe want to show that $y \propto C(a,b)$ we have $x \in S$.
\nSince $X \le sup S$, there exist $y \in S$ such that $X \le y$
\nSince $X \le sup S$, there exist $y \in S$ such that $X \le y$
\nSince $X > inf S$, there exist $z \in S$ such that $X \le y$
\nThen $z \le x \le y$ and we have $x \in S$ by $s \le y$.
\nTherefore $(0, b) \in S$, S is one of $(0, b), [a, b), (a, b), [a, b]$.
\n S is open $\Rightarrow S = (a, b)$.