1. (20 points) State the Heine-Borel theorem.
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2. Let K be a compact subset of R", x is a point in R™.

(a) (10 points) Let A be the set {z € R: z = d(z,y) for some y € K}, where d(x,y) is the
Euclidean distance in R™. Prove that A is a compact subset of R.

(b) (10 points) Show that there exist y* € K such that d(z,y*) < d(x,y) for all y € K.
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3. (20 points) Let X, ,cg be a collection of connected sets such that
is connected.
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4. (20 points) Two sets A and B in a metric space are called separated if ANB = BNA=0. AsetS
in a metric space is called totally disconnected if for any distinct x,y € S, there exist separated sets
A and B such that x € A, y € Band AU B = S. Prove that the Cantor set is totally disconnected

in R.
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5. (a) (10 points) Let S be a non-empty connected of R. If there are two distinct real numbers a and
b in S such that a < b, prove that for any a < ¢ < b we have c € S

(b) (10 points) Use 5.a to show that any open connected subset S of R is an open interval (a, b)
where a,b € RU {—o00,00}. Here (—o0,b) = {z € R: < b} and (a,0) = {x € R: z > a}

5.(0) If there exist C € (a,b) Sucth that C& E

Lot P: (0,0 NS B= (NS
we L’\(h\/@, AQ% — S - A O\chl B Ore nDY\—Qm?t/\
beconse A EA and LEE |

Gine  Ae D) BELER) Ko d [ ore Seproted

g“mce S % (onnesteq ,Sud\ C does nvt exist,

. We have C E S, .(ﬁoy al] accC<h
(b) Let G=infS oand b=suSs  we cim that S=(4,))
We wort. to Show That x€(0,b) we have x ¢ ¢,

Since x<CSap S, there exist YES  sudh that A<Y

Since X 2 WmfS | there exict 2ES  Sach tht X»%

Then  2(x¢ew ond We have x €S by, $.0)
Therefore  (@,5) €S, S is oneof (@b) [a), (8,b] [eb]

S s open =/ S = (a,b)



