
Introduction to Quantitative Methods, Quiz 5

1. Give the definition of the following statements:

(a) (15 points) A set E ⊂ M is an open set.

(b) (15 points) A set F ⊂ M is an closed set.

2. Answer the following questions.

(a) (15 points) Prove that if E is open, then the set Ec, the complement of E, is closed.

(b) (15 points) Suppose X is an open set and Y is a closed subset of X. Prove that X \Y is open.

3. (20 points) Suppose S ⊂ R such that S has an upper bounded. Prove that the supremum of S is a
limit point or an element of S.

4. Answer the following questions.

(a) (20 points) Prove that the intersection of finite open sets is open.

(b) (10 points) Consider the intersection of countably many open intervals defined as follows:
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Is E an open set? Justify your answer.
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