
Introduction to Quantitative Methods, Quiz 4

1. (30 points) Consider the following set

S = {x ∈ C : anx
n + · · ·+ a1x+ a0 = 0 for some integers an, · · · , a0 and an ̸= 0}

The set S is called the algebraic numbers. Prove that S is a countable set. (Hint: You can use the
fact that any polynomial f with degree n has at most n roots.)

2. (20 points) Give the definition of a metric space.

3. Let ∆n be the set {x = (x1, · · · , xn) ∈ Rn : x1 + · · · + xn = 1, xi ≥ 0 for all 1 ≤ i ≤ n}. Let
p = (p1, · · · , pn), q = (q1, · · · , qn) ∈ ∆d, the Hellinger distance between p and q is defined as

H(p, q) =
1√
2

Ã
n∑

i=1

(
√
pi −

√
qi)
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Answer the following problems.

a. (15 points) Let x = (x1, · · · , xn)be any point in ∆d, define the function f : ∆n → Rn as:

f(x) = (
√
x1, · · · ,

√
xn)

What is f(∆n), the image of f?

b. (15 points) Prove that (∆n) together with the distance function H is a metric space. You can
use the fact that the Euclidean metric is a metric on Rn without a proof.

4. Given two metric spaces (X, dX) and (Y, dY ), a distance function dX×Y on the Cartesian product
X × Y can be defined as

dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

for all x1, x2 ∈ X and y1, y2 ∈ Y .

a. (15 points)

Prove that dX×Y is a metric on X × Y

Remark. This metric is called the product metric.

b. (15 points) Let x = (x1, · · · , xn) ∈ Rn, y = (y1, · · · , yn) ∈ Rn, the ℓ1 distance between x and
y is defined as
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ℓ1(x, y) =
n∑

i=1

|xi − yi|

Use a. to prove that ℓ1 distance is a metric on Rn. (A proof without a. will get at most
10 points).



Step 1 : Prove that the set of "all polynomials degree
with integer coefficients" is countable.

ipts X is countable
.

& is countrible.
=> By induction that Th

*
= &* x & is countable

.

Construct an injection

2(*) = Gaux"+ anX"+... + 90
,
: &, anto) "

by anx" +... + Go 1- /Am
,

an+,
---

, Go

Then
, 1 * [x)) = 1 +) z [*))) -> ***

Step 2 : Prove the set of all polynomials with integer coefficients

is countable.

1Dt) &(x] = 0 TE(X]
,
[(*) is countable for all n.

4E/

=>[[x] is countable
·

Step 3 : S is countable.

1Dt) For any polynomial f(x)
,

St = EXEK : f(x) = 03 is the

set of roots of f.

13 + 1 = degf < 00 I finite
=> 3 = v St is countable

.fez[X] #
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we can define a distance function F on f(On) such that
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We prove 1
,
(x , %) = X: - Til is a metric space by

induction on n.

& Base case : 1
, (x , %) = Ix1-3 , 1 is a metic space on IR.
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