Introduction to Quantitative Methods, Quiz 3

. (20 points) If z is a complex number, prove that there exist an real number r > 0 and a complex
number |w| = 1, such that z = rw. Are r,w always uniquely determined by z 7.

. (20 points) The distributive law says that for all real numbers ¢, a; and az, we have c(a; + a2) =
cay + caz. Use this law and mathematical induction to prove that, for all natural numbers n > 2,
if ¢, a1, a9, ..., a, are real numbers, then

clar + -+ +ay) =cay + -+ cay,

. (15 points) A field (F,+, x) is an ordered field together with a order < if the order satisfies the
following properties for all a,b,c € F.

e ifa<bthena+c<b+c
e if0<aand0<b, then 0 < ab

Prove that there is no order < such that C together with < is not a ordered field. (Hint: 22 <0
for all z in an ordered field)

. (20 points) Let z; - - - z,, be complex numbers. Prove that |z;---z,| = |21+ 2,|. ( Hint: You can
prove the case that n = 2 first, then extend it to any natural number n.)

. Let 2,y € C* = {(21,--- ,2,)} be two vectors in the complex space.

a. (20 points) The Cauchy-Schwarz inequality state that the following inequality holds:

[z, 9)] < |=[|y]

k
, where (x,y) = Z x;7; and g; is the complex conjugate of y;. Prove this inequality.
i=1

b. (20 points) State and prove the the triangle inequality:



1. (20 points) If z is a complex number, prove that there exist an real number r > 0 and a complex
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2. (20 points) The distributive law says that for all real numbers ¢, a; and as, we have c(a; + a2) =

caj + cay. Use this law and mathematical induction to prove that, for all natural numbers n > 2,
if ¢, a1, a9, ..., a, are real numbers, then
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3. (15 points) A field (F,+, %) is an ordered field together with a order < if the order satisfies the
following properties for all a,b,c € F.

e ifa<bthena+c<b+ec

e if0<aand0<b,then 0<ab N
Prove that there is no order < such that C together with < is not a ordered field. (Hint: 2 ®0

for all z in an ordered field)
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4. (20 points) Let z; - - - 2, be complex numbers. Prove that |21 -+ - z,| = |21 Jzn|. ( Hint: You can
prove the case that n = 2 first, then extend it to any natural number n.)
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5. Let x,y € C¥ = {(21,---, z,)} be two vectors in the complex space.

a. (20 points) The Cauchy-Schwarz inequality state that the following inequality holds:

(@, 9)] < |2[ |y]

k

where (x,y) = Z x;7; and 9; is the complex conjugate of y;. Prove this inequality.
i=1

b. (20 points) State and prove the the ¢riangle inequality:
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