Introduction to Quantitative Methods, Quiz 3

- 1. (20 points) If *z* is a complex number, prove that there exist an real number $r \geq 0$ and a complex number $|w| = 1$, such that $z = rw$. Are *r*, *w* always uniquely determined by *z* ?.
- 2. (20 points) The distributive law says that for all real numbers c, a_1 and a_2 , we have $c(a_1 + a_2)$ $ca_1 + ca_2$. Use this law and mathematical induction to prove that, for all natural numbers $n > 2$, if c, a_1, a_2, \ldots, a_n are real numbers, then

$$
c(a_1 + \dots + a_n) = ca_1 + \dots + ca_n
$$

- 3. (15 points) A field $(F, +, \times)$ is an *ordered field* together with a order \lt if the order satisfies the following properties for all $a, b, c \in F$.
	- if $a \leq b$ then $a + c \leq b + c$
	- if $0 \le a$ and $0 \le b$, then $0 \le ab$

Prove that there is no order \lt such that $\mathbb C$ together with \lt is not a ordered field. (Hint: $x^2 \leq 0$ for all x in an ordered field)

- 4. (20 points) Let $z_1 \cdots z_n$ be complex numbers. Prove that $|z_1 \cdots z_n| = |z_1 \cdots z_n|$. (Hint: You can prove the case that $n = 2$ first, then extend it to any natural number *n*.)
- 5. Let $x, y \in \mathbb{C}^k = \{(z_1, \dots, z_n)\}\)$ be two vectors in the complex space.
	- a. (20 points) The *Cauchy-Schwarz inequality* state that the following inequality holds:

$$
|\langle x, y \rangle| \le |x| \, |y|
$$

, where
$$
\langle x, y \rangle = \sum_{i=1}^{k} x_i \bar{y_i}
$$
 and $\bar{y_i}$ is the complex conjugate of y_i . Prove this inequality.

b. (20 points) State and prove the the *triangle inequality*:

1. (20 points) If z is a complex number, prove that there exist an real number $r \geq 0$ and a complex number $|w|=1$, such that $z=rw$. Are r, w always uniquely determined by z ?.

- 3. (15 points) A field $(F, +, \times)$ is an *ordered field* together with a order \lt if the order satisfies the following properties for all $a, b, c \in F$.
	- if $a\leq b$ then $a+c\leq b+c$
	- if $0 \le a$ and $0 \le b$, then $0 \le ab$

Prove that there is no order < such that $\mathbb C$ together with < is not a ordered field. (Hint: $x^2 \bullet 0$

For all x in an ordered field:

\n
$$
Proof:
$$
\n
$$
If (F, +, \times)
$$
\n
$$
To get her with a field is an ordered field,
$$
\n
$$
we \underline{\text{lain, that}} x^2,0 \text{ holds for all } X \in F
$$
\n
$$
(F) \text{For any } a, b \in F, \text{ if } O \subseteq a \text{ o} \subseteq b, \text{ then } O \subseteq a \text{ or} \times b
$$
\n
$$
Since c is an order, one of the inequalities O(X, 0=x, 0)x holds.
$$
\n
$$
(1) If o=x, then x^2 = 0
$$
\n
$$
(2) If O \subseteq X, then O \subseteq x^2 by choosing a=b=x in (\frac{1}{2})
$$
\n
$$
(3) If O \subseteq X, then O \subseteq x^2 by choosing a=b=x in (\frac{1}{2})
$$

If there exist an order I such that C together with I is an ordered
field. We have FIE i² 70, contradict with 1=1² 70. field. We have $=$ $\frac{1}{20}$, contradict with $=$ 1^2 So there does not exist such order.

4. (20 points) Let $z_1 \cdots z_n$ be complex numbers. Prove that $|z_1 \cdots z_n| = |z_1| \cdots |z_n|$. (Hint: You can prove the case that $n = 2$ first, then extend it to any natural number n.)

5. Let $x, y \in \mathbb{C}^k = \{(z_1, \dots, z_n)\}\$ be two vectors in the complex space.

a. (20 points) The *Cauchy-Schwarz inequality* state that the following inequality holds:

 $|\langle x,y\rangle| \leq |x| |y|$

where $\langle x, y \rangle = \sum_{i=1}^{n} x_i \bar{y}_i$ and \bar{y}_i is the complex conjugate of y_i . Prove this inequality. b. (20 points) State and prove the the *triangle inequality*:

 P_{root} : $(\alpha.)$ For all $t \in C$, we have $=$ $\langle x-ty, x-ty \rangle$ Choose $t = \frac{(x, y)}{(y, y)}$, then the inequality become $0 \leq (x, x) - \frac{(x, y)}{(x, x)}$ \Rightarrow 0 \leq $|x|^{2}(9)^{2} - |x, y_{2}|^{2}$ $|2| |x|$ > $|2(x, y)|$ \iff (b.) The triangle inequality is $|x+y| \le |x| + |y|$. P_{root} : Let $(X, y) = X \cdot \overline{y} = \frac{P}{2} x_i \overline{y}_i$ We have $| \chi_{\uparrow} y |^2$ = $(\chi_{\uparrow} y) \cdot (\overline{\chi_{\uparrow} y})$ $=$ $\frac{1}{2}$ $\frac{1}{2$ = |X|²+|Y|²# = <mark>Re(<x,y>)</mark>
< |x|²+ Y³+ <mark>2 | <x,'9></mark> | | <mark>Re(?) < |z|</mark> for a|| Z) ζ $(x^2$ $(0)^2$ + 2 |x|·|9| (Cauchy inequality in 5.(a)) $=$ $\frac{|\mathbf{x}| + |\mathbf{y}|^2}{2}$ A fer rative prout of $[a]$: Since $|x+y|$, $|x|$, $|y| \ge 0$, we have $|x+y| \le |x|$ $|y|$ for all complex numbers x, y . Alternatively, consider $\overrightarrow{AB} = \overrightarrow{y}$, $\overrightarrow{AC} = \overrightarrow{x}$ By Pythagorean Theorem, $|\vec{AC}|^2 = |\vec{AD}|^2 + |\vec{CD}|^2$ (p) $le + 4p = k \cdot 3$. AC. AB = $(AD + DC)$ AB
 $\frac{1}{x^2}$ $\frac{1}{y^6}$ = $AD \cdot AB + O$ (: $DC + AB$) $\frac{1}{x^3}$ (AB)
 $\frac{1}{x^5}$ $\frac{1}{y^6}$ = $AD \cdot AB + O$ (: $DC + AB$) $\frac{1}{x^6}$ (AB)
 $\Rightarrow \frac{1}{x^3}$ $\frac{1}{y^6}$ $\Rightarrow \frac{1}{(y^3, y^2)}$ $\Rightarrow \frac{1}{(y^2, y^2)}$ $\Rightarrow \frac{1$ \overline{D}