Introduction to Quantitative Methods, Quiz 3

- 1. (20 points) If z is a complex number, prove that there exist an real number $r \ge 0$ and a complex number |w| = 1, such that z = rw. Are r, w always uniquely determined by z?.
- 2. (20 points) The distributive law says that for all real numbers c, a_1 and a_2 , we have $c(a_1 + a_2) = ca_1 + ca_2$. Use this law and mathematical induction to prove that, for all natural numbers n > 2, if $c, a_1, a_2, ..., a_n$ are real numbers, then

$$c(a_1 + \dots + a_n) = ca_1 + \dots + ca_n$$

- 3. (15 points) A field $(F, +, \times)$ is an ordered field together with a order < if the order satisfies the following properties for all $a, b, c \in F$.
 - if $a \leq b$ then $a + c \leq b + c$
 - if $0 \le a$ and $0 \le b$, then $0 \le ab$

Prove that there is no order < such that \mathbb{C} together with < is not a ordered field. (Hint: $x^2 \leq 0$ for all x in an ordered field)

- 4. (20 points) Let $z_1 \cdots z_n$ be complex numbers. Prove that $|z_1 \cdots z_n| = |z_1 \cdots z_n|$. (Hint: You can prove the case that n = 2 first, then extend it to any natural number n.)
- 5. Let $x, y \in \mathbb{C}^k = \{(z_1, \cdots, z_n)\}$ be two vectors in the complex space.
 - a. (20 points) The Cauchy-Schwarz inequality state that the following inequality holds:

$$|\langle x, y \rangle| \le |x| \, |y|$$

, where
$$\langle x, y \rangle = \sum_{i=1}^{k} x_i \bar{y_i}$$
 and $\bar{y_i}$ is the complex conjugate of y_i . Prove this inequality.

b. (20 points) State and prove the the triangle inequality:

1. (20 points) If z is a complex number, prove that there exist an real number $r \ge 0$ and a complex number |w| = 1, such that z = rw. Are r, w always uniquely determined by z?.

2. (20 points) The distributive law says that for all real numbers c, a_1 and a_2 , we have $c(a_1 + a_2) =$
$ca_1 + ca_2$. Use this law and mathematical induction to prove that, for all natural numbers $n > 2$,
if c, a_1, a_2, \dots, a_n are real numbers, then
$c(a_1 + \dots + a_n) = ca_1 + \dots + ca_n$
Proof: Ma Roma it has inductioned the MZ. 7
Proot: We prove it by inductions on n72
· For the base case n=2, it is implied by the distributive law.
· For the inductive step, we assume that for any real numbers a,, an
and real number C, $C(a_1 + \cdots + a_n) = Ca_1 + \cdots + Ca_n$
Consider any real numbers a,, ant, we have
short uny call halfbors if failes, so have
$\Box \left(\begin{array}{c} Q_1 + \cdots + \\ Q_{n+1} \end{array} \right) = \Box \left(\begin{array}{c} \left(a_1 + \cdots + a_n \right) + \\ Q_{n+1} \end{array} \right)$
$= C (a_1 + \cdots + a_n) + C a_{n+1} (distributive a_w)$
= Can + Can + Can + Can + (induction hypothesis)
Therefore $C(a_1+\cdots+a_n) = Ca_1+\cdots+Ca_n$ for all $n \ge 2$.

- 3. (15 points) A field $(F, +, \times)$ is an *ordered field* together with a order < if the order satisfies the following properties for all $a, b, c \in F$.
 - if $a \leq b$ then $a + c \leq b + c$
 - if $0 \le a$ and $0 \le b$, then $0 \le ab$

Prove that there is no order < such that \mathbb{C} together with < is not a ordered field. (Hint: $x^2 \stackrel{\flat}{o} 0$ for all x in an ordered field)

Proof: If
$$(F, +, x)$$
 together with a field is an ordered field,
we daim that $x^2 z_0$ holds for all $x \in F$
(pt) For any $a, b \in F$, if $0 \le a \circ \le b$, then $0 \le ab \cdots (#)$
Since $<$ is an order, one of the inequalities $0(x, 0=x, 07x holds)$.
(1) If $0 = x$, then $x^2 = 0$
(2) If $0 \le x$, then $0 \le x^2$ by choosing $a = b = x$ in $(*)$
(3) If $0 = x$, then $0 \le x^2$ by choosing $a = b = x$ in $(*)$

If there exist an order 7 such that C together with 7 is an ordered field. We have $=1=\frac{i^2}{20}$, contradict with $1=1^2 > 0$. So there does not exist such order.

4. (20 points) Let $z_1 \cdots z_n$ be complex numbers. Prove that $|z_1 \cdots z_n| = |z_1| \cdots |z_n|$. (Hint: You can prove the case that n = 2 first, then extend it to any natural number n.)

5. Let $x, y \in \mathbb{C}^k = \{(z_1, \cdots, z_n)\}$ be two vectors in the complex space.

a. (20 points) The Cauchy-Schwarz inequality state that the following inequality holds:

 $|\langle x,y\rangle|\leq |x|\,|y|$

where $\langle x, y \rangle = \sum_{i=1}^{k} x_i \bar{y}_i$ and \bar{y}_i is the complex conjugate of y_i . Prove this inequality. b. (20 points) State and prove the the *triangle inequality*:

Proof: _(Ω.) For all $t \in (0, we have$ $<math>\nabla \leq ||x - ty||^2$ $= \langle x-ty, x-ty \rangle$ = <X,X)- +<y,X)- 元<x,y)+他1(9,y) Choose t= (x,y) then the inequality become $D \leq (x, x) - \frac{(x, y)^2}{(y, y)}$ -> (x,y) < (x) (y) (b.) The triangle inequality is $|x_{ty}| \leq |x| + |9|$. Proof: Let <x, y> = x, y = , z, x, y; We have $\left| \chi_{ty} \right|^{2} = (\chi_{ty}) \cdot (\overline{\chi} + \overline{y})$ = $(X \cdot \overline{x} + x \cdot \overline{y} + \overline{x} \cdot y + \overline{y} \cdot \overline{y})$ = |x|²+ (9)²H ² Re(<x,y>) ≤ |x|²+ 2 | <x,y> (Re(2) ≤ [2] for all Z) く (X|²7 (9)²+ コルーター (Cauchy inequality in 5.(a)) = (1x1+(9)) Alternative proof of (a): Since 1x+191, 1×1, 141, 20, we have 1x+191 4 1×1411 for all complex numbers x, y. Alternatively, consider AB = J, AC = x By Pythugorean Theorem, $|\overrightarrow{Ac}| = |\overrightarrow{AD}| + |\overrightarrow{CD}|^2$ (pf) le+ AD = k.g. $\overrightarrow{Ac} \cdot \overrightarrow{AB} = (\overrightarrow{AD} + \overrightarrow{Pc}) \cdot \overrightarrow{AB} \qquad \text{So} \left[\overrightarrow{Ac} \mid \overrightarrow{2} \right] |\overrightarrow{AD} \mid \overrightarrow{2} \qquad \overrightarrow{3} \qquad \overrightarrow{3} \qquad \overrightarrow{3} = \overrightarrow{AD} \cdot \overrightarrow{AB} + o \quad (::\overline{oc} \perp \overrightarrow{B}) \underbrace{Claim}_{q} : \overrightarrow{AD} = \frac{\langle \overrightarrow{1}, \overrightarrow{3} \rangle}{\langle \overrightarrow{3}, \overrightarrow{3} \rangle} \cdot \overrightarrow{y} \qquad \text{Then} \left[|\overrightarrow{Ac}| \mid \overrightarrow{2} \right] |\overrightarrow{AD} \mid \overrightarrow{2} = \frac{|\langle \overrightarrow{x}, \overrightarrow{y} \rangle|}{\langle \overrightarrow{3}, \overrightarrow{3} \rangle}$ $\Rightarrow \overrightarrow{x} \cdot \overrightarrow{y} = (\overrightarrow{k} \cdot \overrightarrow{y}) \cdot \overrightarrow{3} \Rightarrow \overrightarrow{k} = \frac{\langle \overrightarrow{x}, \overrightarrow{y} \rangle}{\langle \overrightarrow{3}, \overrightarrow{7} \rangle_{u}} \qquad (\overrightarrow{z}, \overrightarrow{x} \rangle) \qquad (\overrightarrow{z}, \overrightarrow{x} \rangle) \qquad (\overrightarrow{z}, \overrightarrow{x} \rangle) \qquad (\overrightarrow{z}, \overrightarrow{x} \rangle) \qquad (\overrightarrow{z}, \overrightarrow{z} \rangle)$ D