Introduction to Quantitative Methods, Quiz 3

- 1. (20 points) If z is a complex number, prove that there exist an real number $r \ge 0$ and a complex number |w| = 1, such that z = rw. Are r, w always uniquely determined by z?.
- 2. (20 points) The distributive law says that for all real numbers c, a_1 and a_2 , we have $c(a_1 + a_2) = ca_1 + ca_2$. Use this law and mathematical induction to prove that, for all natural numbers n > 2, if $c, a_1, a_2, ..., a_n$ are real numbers, then

$$c(a_1 + \dots + a_n) = ca_1 + \dots + ca_n$$

- 3. (15 points) A field $(F, +, \times)$ is an ordered field together with a order < if the order satisfies the following properties for all $a, b, c \in F$.
 - if $a \leq b$ then $a + c \leq b + c$
 - if $0 \le a$ and $0 \le b$, then $0 \le ab$

Prove that there is no order < such that \mathbb{C} together with < is not an ordered field. (Hint: $x^2 \ge 0$ for all x in an ordered field)

- 4. (20 points) Let $z_1 \cdots z_n$ be complex numbers. Prove that $|z_1 \cdots z_n| = |z_1||z_2| \cdots |z_n|$. (Hint: You can prove the case that n = 2 first, then extend it to any natural number n.)
- 5. Let $x, y \in \mathbb{C}^k = \{(z_1, \cdots, z_n)\}$ be two vectors in the complex space.
 - a. (20 points) The Cauchy-Schwarz inequality state that the following inequality holds:

$$|\langle x, y \rangle| \le |x| \, |y|$$

where $\langle x, y \rangle = \sum_{i=1}^{k} x_i \bar{y}_i$ and \bar{y}_i is the complex conjugate of y_i . Prove this inequality.

b. (20 points) State and prove the the triangle inequality: