Introduction to Quantitative Methods, Final Exam 2

- 1. (10 points) Give the statement of the Heine-Borel theorem.
- 2. Define the discrete metric as

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

- (a) (5 points) Verify that the discrete metric is indeed a metric.
- (b) (5 points) Is \mathbb{N} compact with the discrete metric ?
- 3. (a) (10 points) Let d(x, y) be the Euclidean distance on \mathbb{R}^n . Prove that for any $y \in \mathbb{R}^n$, the function $f_y(x) = d(x, y)$ is continuous. You get 5 points if you prove the case when n = 1 and d(x, y) = |x y|.
 - (b) (10 points) Prove that the function $f(x) = x^2$ is **not** uniformly continuous on \mathbb{R} .
- 4. (a) (10 points) Let $\{x_n\}$ be a sequence in a metric space X. Prove that if $\{x_n\}$ converges, then $\{x_n\}$ is a Cauchy sequence.
 - (b) (10 points) Let $y_n = \frac{2n^2}{1+n^2}$ for all $n \in \mathbb{N}$. Prove that the limit of $\{y_n\}$ exists.
 - (c) (10 points) Let $x_1 = 4$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{4}{x_n} \right)$ for all $n \in \mathbb{N}$. Prove that the limit of $\{x_n\}$ exists. Hint: You can try to prove $|x_{n+1} - 2| \leq \frac{1}{2} |x_n - 2|$ first.
- 5. (a) (10 points) Let K be a compact set and F be a closed subset of K. Prove that F is compact.
 - (b) (10 points) Let X, Y be metric spaces, $f: X \to Y$ is a function. Prove that X is continuous if and only if for any open subset U of Y, the set $f^{-1}(U) = \{x \in X : f(x) \in U\}$ is open.
 - (c) (10 points). Let X, Y be metric spaces, $f: X \to Y$ is a bijective function and $f^{-1}: Y \to X$ is its inverse. Prove that if f is continuous and X is compact, then f^{-1} is continuous.