Estimation of Risk Aversion Parameters: Analyzing Ultimatum Game Data 估計風險偏好: 分析最後通牒談判實驗結果

Joseph Tao-yi Wang (王道一) Experimetrics Lecture 4 (實驗計量第四講)

Analyzing Ultimatum Game Data

<u>Ultimatum Game Data</u>

- ▶ 200 subjects splitting a pie of \$100
 - Play ultimatum game twice with different opponents
 - Be Proposer and Respondent each once
- Simulated Experiment Data: ug_sim.dta
 - ▶ Proposer *i* Offer: *y*
 - ▶ Respondent *j* Reaction: *d* (=1 if Accept; =0 if Reject)
 - > male_i: Gender dummy for Proposer i to be male
 - \blacktriangleright male_j: Gender dummy for Respondent j to be male

- Mean value of d conditional on different values of y
 - Want to jitter? Try: lowess d y jitter(5) msize(3)

Probit Model for Choosing Accept

- Model this as Probit: $Pr(d = 1|y) = \Phi(\beta_0 + \beta_1 y)$
 - where $\Phi(z) = \Pr(Z < z) = \int_{-\infty}^{z} \phi(z) dz$ is standard Normal cdf
 - This is because:
- Propensity to accept: d* = \beta_0 + \beta_1 y + \epsilon, \epsilon < N(0, 1)
 Accept if great than 0: d = 1 \overline d* = \beta_0 + \beta_1 y + \epsilon > 0 \overline \epsilon > -\beta_0 - \beta_1 y
 So, $\Pr(d = 1) = \Pr(\epsilon > -\beta_0 - \beta_1 y) = \Phi(\beta_0 + \beta_1 y)$

Probit Model for Choosing Accept

2023/11/5

STATA	pro	bit d y						
Results:	Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Iteration 5:	log likelih log likelih log likelih log likelih log likelih	ood = -113.5 ood = -70.23 ood = -66.80 ood = -66.73 ood = -66.73 ood = -66.73	5237 0335 6698 8058 8049 8049				
Probability Pr(d = 1)	Probit regress $(u) = \Phi(u)$	sion -3.855	+0.14	4η	Numbe LR ch Prob Pseud	r of obs i2(1) > chi2 o B2	= =	200 93.63 0.0000 0.4123
	d	Coef.	Std. Err.	 z	P> z	 [95%	Conf.	Interval]
	y _cons	.1439157 -3.855266	.0212804 .631443	6.76 -6.11	0.000	.1022 -5.092	2069 2872	.1856244 -2.617661

Analyzing Ultimatum Game Data

Joseph Tao-yi Wang

Predict Minimum Acceptable Offer (MAO)

With Propensity to Accept $d^* = \beta_0 + \beta_1 y + \epsilon$

Can Calculate Minimum Acceptable Offer (MAO):

2 255

▶ Indifferent Between Accept/Reject if $\hat{d}^* = \hat{\beta}_0 + \hat{\beta}_1 y = 0$ $\hat{\hat{Q}}$

 $-b[_cons]/_b[y]$

Coef.

26.78837

Std. Err.

.9268278

So,
$$y^{MAO} = -\frac{\beta_1}{\hat{\beta}_0} = -\frac{5.855}{0.144} = \underline{26.79}$$

STATA: nlcom MAO: -_b[_cons]/_b[y]

MAO:

d

MAO |

Accept if > 26.8!

[95% Conf. Interval]

28.60492

► Get s.e./Cl
via Delta
Method

2023/11/5

Analyzing Ultimatum Game Data

Joseph Tao-yi Wang

24.97182

P>|z|

0.000

z

28.90

Strategy Method vs. Direct Response

- \blacktriangleright In addition to ask Proposer to make offer y
- Solnick (2001) and others ask responders to state
 - MAO (Minimum Acceptable Offer) y^{MAO}
- ▶ Then play out the decision:
 - Accept if $y \ge y^{MAO}$
 - \blacktriangleright Reject if $y < y^{MAO}$
- ▶ Is stating your true MAO incentive compatible? Yes!

► MAO = entire strategy (more informative than "<u>Accept 50</u>")

Ultimatum Game Data: Strategy Method

- ▶ 200 subjects splitting a pie of 100
 - Play ultimatum game twice with different opponents
 - Be Proposer and Respondent each once
- Simulated Strategy Method Data: ug_sm_sim.dta
 - ▶ Proposer *i* Offer: *y*
 - ▶ Respondent j MAO: y^{MAO}
 - male_i: Gender dummy for Proposer i to be male
 - \blacktriangleright male_j: Gender dummy for Respondent j to be male
 - Outcome: $d (=1 \text{ if } y \ge y^{MAO}; = 0 \text{ f } y < y^{MAO})$

Confidence Interval of MAO

▶ 95% Confidence Interval in STATA: ci means MAO (ci MAO)

► STATA	Variable	Obs	Mean	Std. Err.	[95% Conf.	Interval]
Results:	MAO	200	31.375	.6666664	<mark>30.06036</mark>	32.68964

- Narrower than direct response: (24.97, 28.60)
 - ▶ But 5 units higher (31.4 vs. 26.8), to:
 - Signal Toughness (Eckel and Grossman, 2001)
 - Hypothetical (Cold)
 - So more rejections: tab d

Test of Gender Effects

- ▶ Gender as a treatment in Ultimatum game: ug_sim.dta
- Conduct regression analysis

 $y_i = \beta_0 + \beta_1 \texttt{male_i} + \beta_2 \texttt{male_j} + \beta_3 \texttt{m_to_f} + \epsilon_i$

- > STATA: regress y male_i male_j m_to_f > With dummies:
- male_i: Gender dummy for Proposer i to be male
- \blacktriangleright male_j: Gender dummy for Respondent j to be male

m_to_f: Dummy for male proposing to female responder gen m_to_f=male_i*(1-male_j)

Test of Gender Effects

> STATA regress y male_i male_j m_to_f

Results:	Source	SS	df	MS		Number of ob	s = 200
Malo offor \$4.5	Model Residual	+ 976.185392 18901.4946	3 3 196	325.395131 96.436197		F(3, 196 Prob > F R-squared	5) = 3.37 = 0.0195 = 0.0491
less $(z = -2.40)$	Z Total	+ 19877.68	199	99.8878392		Adj R-square Root MSE	d = 0.0346 = 9.8202
Offer male \$3.7	4 r	Coef.	Std. Ei	r. z	P> z	[95% Conf.	Interval]
more ($z = -1.81$) male_i male_j	-4.519608 3.744608	1.88509 2.07408	99 -2.40 31 1.81	0.017 0.073	-8.23729 3457722	8019261 7.834988
Male offer	m_to_f _cons	2.381863 35.275	2.8027 1.55270	75 0.85 09 22.72	0.396 0.000	-3.145557 32.21284	7.909282 38.33716
more $(z = 0.85)$	Chiva	Iry Effect	t: Ecl	kel and	Gross	sman (20	01)

Analyzing Ultimatum Game Data

Do Male Responders Reject Offers More Often?

STATA	prob	it d y :	male_j	ſ			1	_
Results: Male reject	Iteration 0: lo Iteration 1: lo Iteration 2: lo	og likelihood og likelihood og likelihood	= -113.552 = -68.3737 = -64.1879	237 743 937	for same	w muc accep	h mo tance	ore e
same offer more than	Iteration 3: 10 Iteration 4: 10 Iteration 5: 10	og likelihood og likelihood og likelihood	= -64.1169 = -64.1169 = -64.1169	934 904 904	rate: U.S	98/U.		
female $(z = -2.24)$	Log likelihood	= -64.116904			LR ch Prob Pseud	i2(2) > chi2 o R2	= = =	98.87 0.0000 0.4354
	r	Coef.	Std. Err.	z	P> z	 [95%	Conf.	Interval]
	y male_j _cons	.1567836 5976406 -3.933341	.0231961 .2668131 .6589175	6.76 -2.24 -5.97	5 0.000 4 0.025 7 0.000	.11 -1.120 -5.224	132 585 796	.2022472 0746966 -2.641886

2023/11/5

Analyzing Ultimatum Game Data

Joseph Tao-yi Wang

Offer How Much More For Same Acceptance Rate?

STATA nlcom more_to_male: -_b[male_j]/_b[y]

Results: more_to_male: -_b[male_j]/_b[y]

- ▶ 95% Confidence Interval is very wide
- 0.598/0.157 = \$3.81 is very close to $\hat{eta_2} = \$3.74$
 - Estimated coefficient of male_j

Proposers rationally react to tough male responders

▶ By proposing \$3.74 more (compared to female responders)

Recall: Probit Model for Choosing Accept

Proposer Decision as Risky Choice

Rational Expectations: Know Acceptance probability is

$$\Pr(d = 1|y) = \Phi(-3.855 + 0.144y)$$

▶ What should proposers do? Roth et al. (AER 1991) propose:

- \blacktriangleright Offer 50: Get \$50 for sure (50-50 are 100% accepted) or
- Offer y = \$40: Get (100-y) = \$60 with uncertainty

Normalize pie size \$100 to 1: proposer decision.xlsx

▶
$$r = 0.4$$
 yield: $EU(y) = \Phi(-3.855 + 0.144y) \times \frac{\left(\frac{100-y}{100}\right)^{1-0.4}}{1-0.4}$

2023/11/5

Analyzing Ultimatum Game Data

Joseph Tao-yi Wang

Proposer Decision as Risky Choice

Toward a Mixture Model of Social Preference

- ▶ 18% (36 out of 200) of the proposer offer y = 50
 - Are all of them extremely risk averse?
- ▶ No! People can offer 50-50 because they think it is fair
 - Need a mixture model to analyze this (see next lecture):
 - ▶ 18% of the population motivated by fairness offer 50-50
 - ▶ 82% of the population motivated by self-interest
 - make risky choices according to their risk preferences
- ► Who are these equal-splitters/egalitarians?

Who Are These Equal-Splitters/Egalitarian?

► STATA gen egal=y==50	egal	Freq.	Percent	Cum.
Command: tab egal	0 1	164 36	82.00 18.00	82.00 100.00
V JTATA RESULS.	Total	+ 200	100.00)

Is Egalitarianism is Related to Gender? Use χ^2 test!

STATA Command: tab male_i egal , chi2

		egal			
► STATA Results:	male_i	0	1	Total	Female more
are egalitarian	+ 0 1	66 98	+- 25 11	91 109	likely to be egalitarian
11 of 109 male	+ Total	 164	+- 36	200	(p = 0.001)
are egalitarian		arson chi2(1) =	Pr = 0.001	soph Too vi Mong	
2023/11/3	Analyzing	g Ontimatum Game			seph rao-yr wang

Acknowledgment

This presentation is based on

- Section 3.2 and 3.11 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We would like to thank 陳詠駿、張學仁 and 林欣葇 for their in-class presentations