Estimation of Risk Aversion Parameters: Binary Lottery Choice 估計風險偏好: 二選一風險決策

Joseph Tao-yi Wang (王道一) Experimetrics Lecture 3 (實驗計量第三講)

Estimating Binary Lottery Choice

Thaler and Johnson (1990); Keasey and Moon (1996)

> You received an endowment, and now have a choice:

Which would you choose if your endowment is \$10?
Which would you choose if your endowment is \$1,000?

	W	N(y)	mean(y)
Apply Ripary Data Madale to Didu	0	50	.92
Apply Dinary Data Models to Risky	.5	50	.88
	1	50	.88
\blacktriangleright 1,050 subjects with wealth w_i	1.5	50	.84
	2	50	.84
Binary Outcome: Choose	2.5	50	.9
	2 5	50	.04
Safe $(y = 1)$, or Risky $(y = 0)$	5.5	50	.72
	4 5	50	.70
Simulated experiment data	4.5	50	.,
	5.5	50	74
House_money_sim.dta	5.5	50	.74
	6.5	50	.72
STATA: table w, contents(n y mean	y) 7	50	.5
	7.5	50	.64
> 92% choose safe at $w_i = \$0$	8	50	.5
	8.5	50	. 48
50% choose safe at $w = 10	9	50	.56
$i = \mathbf{v}_i$	9.5	50	.5
	10	50	.5
Estimating Binary Lottery Choice			

Probit Model for Choosing Safe Under Wealth Level w_i Model this as Probit: $Pr(y_i = 1|w_i) = \Phi(\beta_0 + \beta_1 w_i)$

where $\Phi(z) = \Pr(Z < z) = \int_{-\infty}^{z} \phi(z) dz$ is standard Normal cdf

And its pdf is
$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-z^2}{2}\right)$$

Likelihood:

$$L = \prod_{i=1}^{n} \left[\Phi(\beta_0 + \beta_1 w_i) \right]^{y_i} \left[1 - \Phi(\beta_0 + \beta_1 w_i) \right]^{1-y_i}$$

Probit Model for Choosing Safe Under Wealth Level w_i

- ► Log-Likelihood: (Easier for numerical maximization!) $\log L = \sum_{i=1}^{n} y_i \ln \left[\Phi(\beta_0 + \beta_1 w_i) \right] + (1 - y_i) \ln \left[1 - \Phi(\beta_0 + \beta_1 w_i) \right]$
- Since $\Phi(-z) = 1 \Phi(z)$,
 - ► Rewrite log-Likelihood with Safe $(yy_i = 1)$ & Risky $(yy_i = -1)$ log $L = \sum_{i=1}^{n} \ln \left[\Phi(yy_i \times (\beta_0 + \beta_1 w_i)) \right]$

• probit y w in STATA to perform MLE to find β_0, β_1

Probit Model for Choosing Safe Under Wealth Level w_i

STATA	F	probi	t y w							
Results:	Iteration Iteration	0: lo 1: lo	og likelih og likelih	ood = -634.4 ood = -584.9	4833 1375]
	Iteration	2: l	og likelih	ood = -584.	5851		1,0)50 \$	Subjects	i.
	Iteration Iteration	3: lo 4: lo	og likelih og likelih	ood = -584.5 ood = -584.5	8503 8503		of	1 Ro	ound ead	ch
	Probit re	gressio	n			Number o LR chi2(of obs	=	1,050 99.80	T
	Log likel	ihood =	-584.5850	3		Prob > c Pseudo R	chi2 R2	=	0.0000 0.0786	
Strong House N	/loney	у	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]	
Effect ($z = -9.7$	(U) 	w · ons	1409882 1.301654	.0145377 .0911155	-9.70 14.29	0.000	1694	816 071	1124948 1.480237	
2023/11/4										

Wald Test for the House Money Effect (Probit)

Wald Test for
$$\beta_1 = 0$$
: $W = \frac{\left(\hat{\beta}_1 - 0\right)^2}{\operatorname{Var}\left(\hat{\beta}_1\right)} \sim \chi^2(1)$

Strong House Money Effect: $W = (-9.70)^2 = 94.05$ $>> 3.84 = \chi^2_{1,0.05}$

Estimating Binary Lottery Choice

Joseph Tao-yi Wang

Prediction: Pr(Safe) for Each Wealth Level

Graph estimated probability:

$$\Phi(\beta_0 + \beta_1 w) = \Phi(1.302 - 0.141w)$$

STATA Command:

margins, at(w=(0(1)15)
marginsplot, ylabel(0(0.1)1) yline(0.5)

STATA Results:

2023/11/4

2023/11/4

Estimating Binary Lottery Choice

Joseph Tao-yi Wang

Conditional Marginal Effect at No Wealth (w = \$0)

2023/1

> Predict change in Pr(Safe) due to change in w (w = \$0)

margins, dydx(w) at(w=0)

► STATA	Conditional ma	arginal effec	cts		Number	of obs	=	1,050
Results:		014			Pr(Safe	e) drop	s by	/ 2.41%
	Expression dy/dx w.r.t.	Pr(y), prec W	lict()		when u	v rises	tron	ו \$0 to \$1
	at	W	=	0				
	<u>.</u>		Delta-method					
		dy/dx	Std. Err.	z	P> z	[95% (Conf.	Interval]
1/4	W	024109	.0013299	-18.13	0.000	02671	155	0215026

Conditional Marginal Effect at Higher Wealth (w = \$10)

> Predict change in Pr(Safe) due to change in w (w = \$10)

margins, dydx(w) at(w=10)

► STATA	Conditional ma Model VCE	arginal effect : OIM	ts		Number	of obs	=	1,050	
Results:	Expression dy/dx w.r.t. at	Pr(y), predi w w	ict() =	10	Pr(Safe as w ris (Steepe	e) drop ses froi er slope	os by m \$1 e in	′ 5.59% 10 to \$1 Figure)	1
		۲ dy/dx	Delta-method Std. Err.	Z	P> z	[95% (Conf.	Interval]	
./4	w	0559177	.0053804	-10.39	0.000	06646	31	0453723	

2023/1

Average Marginal Effect

Average predict change in Pr(Safe) due to change in w

margins, dydx(w) at(w=10)

STATA	Average margin Model VCE	nal effects : OIM			Number of	obs =	1,050
Results	Expression dy/dx w.r.t.	: Pr(y), pred: : w	Pr(Safe) drops by 4.44 on average as w rises b 1 across all observation				
		dy/dx	Delta-method Std. Err.	l z	P> z	[95% Conf.	Interval]
	W	0444259	.0039929	-11.13	0.000	0522518	0366
2023/11/4		Estimating B	inary Lottery	Choice		Joseph Tao-	vi Wang

Likelihood Ratio Test for House Money Effect (Probit) Wald Test for $\beta_1 = 0$: $W = \frac{(\hat{\beta}_1 - 0)^2}{Var(\hat{\beta}_1)} \sim \chi^2(1)$ Likelihood Ratio (LR) Test between:

• Unrestricted: $\log L_U = \sum \ln \left[\Phi(yy_i \times (\beta_0 + \beta_1 w_i))\right]$

i=1

• Restricted:
$$\log L_R = \sum_{i=1}^n \ln \left[\Phi(yy_i \times (\beta_0)) \right]$$

• LR for $\beta_1 = 0$: $LR = 2(\log L_U - \log L_R) \sim \chi^2(1)$

Unrestricted	l Probit pro	Mode bit y w	$\log L_U$:	$=\sum_{i=1}^{n}$	$\ln \left[\Phi(y \right]$	$y_i \times ($	β_0 +	$- eta_1 w_i))]$
Results:	Iteration 0:	log likeliho	pod = -634.	4833				
	Iteration 1: Iteration 2: Iteration 3: Iteration 4:	log likelind log likelind log likelind log likelind	bod = -584.9 bod = -584.5 bod = -584.5 bod = -584.5	5851 8503 8503		1,(of	0 <mark>50</mark>	Subjects ound each
$\log L_U = -58$	Probit regress 84.59 Log likelihood	ion = -584.5850 3	3		Number LR chi2 Prob > Pseudo	of obs (1) chi2 R2	= = =	1,050 99.80 0.0000 0.0786
	У	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
2023/11/4	w _cons	1409882 1.301654	.0145377 .0911155	-9.70 14.29	0.000 0.000	1694 1.123	816 071	1124948 1.480237

Restricted Probit Model

• Restricted:
$$\log L_R = \sum_{i=1}^n \ln \left[\Phi(yy_i \times (\beta_0)) \right]$$

► STATA	probi	it v						
Results:	Iteration 0: Iteration 1:	log likelih log likelih	$rac{-634.4}{rac{$	4833 4833		- 1,050	Subjects	ch
$\log L_R = -6$	Probit regress 34.48	sion	2		Number of LR chi2(0 Prob > ch Pseudo B2	obs =) = 12 =	1,050 -0.00	
	y	Coef.	Std. Err.	Z	P> z	 [95% Conf.	Interval]	
2023/11/4	_cons	.5464424	.0408516	13.38	0.000	.4663746	.6265101	

Likelihood Ratio Test for House Money Effect (Probit)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STATA	prob	oit y w		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Results:	Iteration 0:	log likelihood = -634.4833		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Iteration 2:	log likelihood = -584.5851	1,050	Subjects
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Iteration 3: Iteration 4:	log likelihood = -584.58503 log likelihood = -584.58503	of 1 F	Round each
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Probit regressi	on	Number of obs =	= 1,050
Log likelihood = -584.58503 $log L_R = -634.48$ y $LR = 2(log L_U - log L_R)$ $= 2(-584.59 + 634.48) = 99.8$ $\int_{1124948}^{W}$ $\gg \chi^2_{1,0.05} = 3.84$ Interval 1.480237	$\log L_U = -5$	84.59		LR chi2(1) = Prob > chi2 =	= 99.80 = 0.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Log likelihood	= -584.58503	Pseudo R2 =	- 0.0786
$\begin{array}{c c} & & y & = 2\left(-584.59 + 634.48\right) = 99.8 & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	$\log L_R = -$	634.48	$LR = 2(\log L_U - 1)$	$\operatorname{og} L_R$	
wcons $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		у	=2(-584.59+	634.48) = 99.8	. Interval]
2023/11/4	2023/11/4	w _cons	` >>>	> $\chi^2_{1,0.05} = 3.84$	1124948 1.480237

Likelihood Ratio Test for House Money Effect (Probit)

```
STATA Command: probit y w
```

```
probit y w
est store with_w
```

```
probit y
est store without_w
```

lrtest with_w without_w

STATA Results:

Likelihood-ratio test (Assumption: without_w nested in with_w)

```
LR chi2(1) = 99.80
Prob > chi2 = 0.0000
```


Estimating Binary Lottery Choice


```
Maximum Likelihood Estimation (MLE) of Probit
                                               * LOG-LIKELIHOOD EVALUATION PROGRAM "myprobit" STARTS HERE:
     Estimate probit with MLE
                                               program define myprobit
   Use binary lottery choice
                                               * SPECIFY NAME OF QUANTITY WHOSE SUM WE WISH TO MAXIMISE (logl)
                                               * AND ALSO PARAMETER NAMES (EMBODIED IN xb)
     of: house_money_sim.dta
                                               * PROVIDE LIST OF TEMPORARY VARIABLES (p ONLY)
                                               args logl xb
     STATA: myprobit.do
                                               tempvar p
   Use ml to maximize
                                               * GENERATE PROBABILITY OF CHOICE MADE BY EACH SUBJECT (p):
                                               quietly gen double 'p'=normal(yy*'xb')
    \log L =
                                               * TAKE NATURAL LOG OF p AND STORE THIS AS log1
      n
                                               quietly replace 'logl'=ln('p')
     \sum \left[ \ln \left[ \Phi(yy_i \times (\beta_0 + \beta_1 w_i)) \right] \right]
                                                END "myprobit" PROGRAM:
     i=1
                                     Estimating Binary Lottery Choice
                                                                            Joseph Tao-yi Wang
2023/11/4
```

To ignore errors if the following command is not applicable, can add at the beginning

- Maximize log1
- Over $xb = \beta_0 + \beta_1 w_i$
 - Iocal variables like other defined by

tempvar

2023/11/4

Such as 'p'_

* LOG-LIKELIHOOD EVALUATION PROGRAM "myp <mark>capture program drop myprobit</mark> program define myprobit

* SPECIFY NAME OF QUANTITY WHOSE SUM WE * AND ALSO PARAMETER NAMES (EMBODIED IN * DROVIDE LIST OF TEMPORARY WARTABLES ()

st PROVIDE LIST OF TEMPORARY VARIABLES (p

args logl xb tempvar p Estimating Binary Lottery Choice

Joseph Tao-yi Wang

- Unlike global variables like yy
- * GENERATE PROBABILITY OF CHOICE MADE BY Does not need single quotation marks like quietly gen double (p'=normal(yy*'xb') local variables 'p' or 'logl' * TAKE NATURAL LOG OF p AND STORE THIS A quietly replace 'logl'=ln('p') END "myprobit" PROGRAM: end2023/11/4 Estimating Binary Lottery Choice Joseph Tao-yi Wang

- ▶ The ml Routine uses the lf likelihood evaluator
 - Run on each row of the data set, unlike the d-family evaluator (which runs on each block of rows)

```
* READ DATA
use "house money_sim", clear
* GENERATE (INTEGER) yy FROM y:
gen int yy=2*y-1
* SPECIFY LIKELIHOOD EVALUATOR (lf), EVALUATION PROGRAM (myprobit),
* AND EXPLANATORY VARIABLE LIST.
* RUN MAXIMUM LIKELIHOOD PROCEDURE
ml model lf myprobit ( = w)
ml maximize
```

STATA initial: \log likelihood = -727.80454 Results: alternative: \log likelihood = -635.1321 log likelihood = -635.1321 rescale: \log likelihood = -635.1321 Iteration 0: \log likelihood = -584.84039 Iteration 1: Iteration 2: \log likelihood = -584.58503 \log likelihood = -584.58503 Iteration 3: Number of obs Wald chi2(1) = Log likelihood = -584.58503Prob > chi2 0.0000 = P>|z|[95% Conf. Interval] Std. Err. Coef. Z -9.70-.1409882.0145377 0.000 -.1694816 -.1124948W 1.301654 .0911155 14.29 0.000 1.123071 1.480237 _cons

Estimating Binary Lottery Choice

2023/11/4

Joseph Tao-yi Wang

1050

94.05

Same as Probit Model

STATA		prob	oit y	W						
Results:	Iteration Iteration	n 0: n 1:	log like log like	elihood elihood	= -634.4	4833 1375				
	Iteratio	n 2:	log like	elihood	= -584.	5851		1,0)50 \$	Subjects
	Iteration Iteration	n 3: n 4:	log like	elihood	= -584.5	8503 8503		of	1 Ro	ound eacl
	10010010		tog tik	2 CINOUU	50415					
	Probit r	egressi	Lon				Number o	of obs	=	1,050
							Prob > c	i) hi2	=	0.0000
	Log like	lihood	= -584.5	58503			Pseudo R	2	=	0.0786
Strong House N	/loney	У	Coe	ef. S	td. Err.	z	P> z	[95%	Conf.	Interval]
Effect ($z = -9.7$	70)	W	14098	382 -	0145377	-9.70	0.000	1694	816	1124948
	_	cons	1.3016	554 .	0911155	14.29	0.000	1.123	8071	1.480237
2023/11/4										

- Reduced form models simply attempt to explain the data
- Structural Models: Assume all individuals have the same utility function:

$$U(x) = \frac{x^{r}}{1-r}, \ r \neq 1$$
$$= \ln(x), \ r = 1$$

- Constant Relative Risk Aversion (CRRA): r = RRA
 Higher r = more risk averse
- Negative r = risk-seeking

- In Binary Lottery Choice, Expected Utility for choosing Safe and Risky are:
 - $EU(S) = \frac{(w+5)^{1-r}}{1-r}$ $EU(R) = 0.5\frac{(w)^{1-r}}{1-r} + 0.5\frac{(w+10)^{1-r}}{1-r}$
 - Choose Safe if $EU(S) EU(R) + \epsilon > 0$

Fechner Error Term: When computing EU difference, individuals make computational error $\epsilon \sim N\left(0, \sigma^2\right)$

$$\begin{aligned} \bullet \text{ Probability of Safe choice being made is:} \\ \Pr(S) &= \Pr[EU(S) - EU(R) + \epsilon > 0] \\ &= \Pr[\epsilon > EU(S) - EU(R)] \\ &= \Pr\left[\frac{\epsilon}{\sigma} > \frac{EU(S) - EU(R)}{\sigma}\right] \\ &= 1 - \Phi\left[\frac{EU(S) - EU(R)}{\sigma}\right] = \Phi\left[\frac{EU(S) - EU(R)}{\sigma}\right] \end{aligned}$$

Joseph Tao-yi Wang

Filling in EU (and using the yy trick), we obtain the log-likelihood function:

$$\log L = \sum_{i=1}^{n} \ln \Phi \left[yy_i \times \frac{\frac{(w_i+5)^{1-r}}{1-r} - \left(0.5\frac{(w_i)^{1-r}}{1-r} + 0.5\frac{(w_i+10)^{1-r}}{1-r}\right)}{\sigma} \right]$$

Choose r and σ to maximize logL
 Need to program this in STATA using the ml command

• Choose r and σ to maximize $\log L$

```
STATA command: args logl r sig
```

```
program drop structural
program structural
args logl r sig
tempvar eus eur diff p
quietly gen double 'eus'=(w+5)^(1-'r')/(1-'r')
quietly gen double 'eur'=0.5*w^(1-'r')/(1-'r')+0.5*(w+10)^(1-'r')/(1-'r')
quietly gen double 'diff'=('eus'-'eur')/'sig'
quietly gen double 'p'=normal(yy*'diff')
quietly replace 'logl'=ln('p')
end
```

STATA Results

initial	l: log]	likelihood = -	<inf> (could</inf>	d not be	evaluate	ed)				
feasibl	le: log	likelihood =	-601.45646							
rescale	e: log]	likelihood = -	601.45646							
rescale	e eq: lo	og likelihood	= -600.78259	9						
Iteration 0: log likelihood = -600.78259										
Iterati	lon 1:]	log likelihood	l = -595.2424	1						
Iterati	lon 2:]	log likelihood	l = -595.2279	97						
Iterati	lon 3:]	log likelihood	l = -595.2273	39	<i>r</i> =	= 0.2177				
Iterati	lon 4:]	log likelihood	l = -595.2273	39						
Number	of obs	= 1050			σ	= 0.3586				
Wald ch	ni2(0) =	= .			0 -	- 0.0000				
Log lik	celihood	1 = -595.22739) Prob > chi2	2 = .						
		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
-	_cons	.21765	.0976928	2.23	0.026	.0261757	.4091244			
		+								
sig										
-	_cons	.3585733	.1046733	3.43	0.001	.1534174	.5637292			

Estimating Binary Lottery Choice

Joseph Tao-yi Wang

The estimated (homogeneous) utility function is:

$$U(x) = \frac{x^{1-0.2177}}{1-0.2177} = \frac{x^{0.7823}}{0.7823}$$

With Fechner computation error $\epsilon \sim N(0, 0.3586^2)$

- Note that this estimation assumes every individual has the same risk preference
 - We can relax this assumption...

Now assume each subject has his/her own r for the CRRA utility function:

$$U(x) = \frac{x^{1-r}}{1-r}$$

- Assume r has population distribution $r \sim N(\mu, \sigma^2)$
- Subject respond to Multiple Price List (MPL) of Holt and Laury (2002)
 - Choose Safe or Risky lottery for each question

\blacktriangleright Indifferent between S and R at threshold risk attitude r^*

Problem	$\operatorname{Safe}(S)$	$\operatorname{Risky}(R)$	r^*
1	(0.1, \$2.00; 0.9, \$1.60)	(0.1, \$3.85; 0.9, \$0.10)	-1.72
2	(0.2, \$2.00; 0.8, \$1.60)	(0.2, \$3.85; 0.8, \$0.10)	-0.95
3	(0.3, \$2.00; 0.7, \$1.60)	(0.3, \$3.85; 0.7, \$0.10)	-0.49
4	(0.4, \$2.00; 0.6, \$1.60)	(0.4, \$3.85; 0.6, \$0.10)	-0.15
5	(0.5, \$2.00; 0.5, \$1.60)	(0.5, \$3.85; 0.5, \$0.10)	0.15
6	(0.6, \$2.00; 0.4, \$1.60)	(0.6, \$3.85; 0.4, \$0.10)	0.41
7	(0.7, \$2.00; 0.3, \$1.60)	(0.7, \$3.85; 0.3, \$0.10)	0.68
8	(0.8, \$2.00; 0.2, \$1.60)	(0.8, \$3.85; 0.2, \$0.10)	0.97
9	(0.9, \$2.00; 0.1, \$1.60)	(0.9, \$3.85; 0.1, \$0.10)	1.37
10	(1.0, \$2.00; 0.0, \$1.60)	(1.0, \$3.85; 0.0, \$0.10)	∞

Estimating Binary Lottery Choice

- Threshold risk attitude r* can be calculated with Excel in:
 risk aversion calculations.xlsx
- Each subject is only asked 1 of the 10 problems
 (Pseudo) data for 100 subjects: holtlaury_sim.dta
- Subject *i* asked choice problem with threshold r_i^*
- Safe Choice Dummy:
 - ► $y_i = 1$ if chose S
 - ▶ $y_i = 0$ if chose R

• Given
$$r_i \sim N(\mu, \sigma^2)$$
, we have:
 $\Pr(y_i = 1) = \Pr(r_i > r_i^*) = \Pr\left(z > \frac{r_i^* - \mu}{\sigma}\right)$
 $= \Pr\left(z < \frac{\mu - r_i^*}{\sigma}\right) = \Phi\left[\frac{\mu}{\sigma} + \left(-\frac{1}{\sigma}\right)r_i^*\right] = \Phi\left[\alpha + \beta r_i^*\right]$

 Can estimate a probit model: probit y rstar
 Then, apply delta method: nlcom (mu: -_b[_cons]/_b[rstar]) (sig: -1/_b[rstar])

STATA	probit :	y rstar					
Results	Iteration 0: 1	log likelihood	l = -68.99437 l = -32.75468	76 29			
	Iteration 2: 1	log likelihood	l = -31.89997	74			
	Iteration 3: 1	log likelihood	= -31.89664	13			
	Iteration 4: 1	log likelihood	= -31.89664	13			
	Probit regress	sion Number of	obs = 100				
	LR chi2(1) = 7	(4.20					
	Prob > chi2 =	0.0000	Decude DO	- 0 5277			
	rog likelinood	1 = -31.896643	PSeudo R2 -	= 0.5377			
	у	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
	rstar	-1.826082	.3481266	-5.25	0.000	-2.508398	-1.143767
	_cons	.7306556	.2264169	3.23	0.001	.2868867	1.174424
	Note: 10 failu	ires and 0 suc	cesses compl	Letely de	termined	 l.	
			.				

Estimating Binary Lottery Choice

S	ΓΑΤΑ Ξ	nlcor	n (mu:	b[_co	ns]/_b[1	rstar]) (si	g: -1/_b[rstar])
Re	esults	mu: - <u>-</u> sig: -	_b[_cons]/ -1/_b[rsta: 	_b[rstar] r] 					
	$\hat{\mu} = 0.4$	001	y	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	$\hat{\sigma} = 0.5$	476	mu sig	.400122 .5476205	.0978294 .104399	4.09 5.25	0.000	.2083799 .3430021	.5918641 .7522389

Hence, every subject has RRA coefficient drawn from: $r \sim N(0.4001, 0.5476^2)$

And calculate EU to make decision without error

Delta Method

2023/11/4

• (nlcom in STATA) used to obtain standard errors of $\hat{\mu}, \hat{\sigma}$ • More generally, consider reduced form estimates $\hat{\alpha}, \hat{\beta}$ Variance matrix is: $\hat{V}\begin{pmatrix} \hat{\beta} \\ \hat{\alpha} \end{pmatrix} = \begin{pmatrix} \operatorname{Var}(\hat{\beta}) & \operatorname{Cov}(\hat{\beta}, \hat{\alpha}) \\ \operatorname{Cov}(\hat{\alpha}, \hat{\beta}) & \operatorname{Var}(\hat{\alpha}) \end{pmatrix}$ After estimating probit, can see it in STATA: mat V=e(V) STATA symmetric V[2,2] mat list V у y: Results: rstar _cons

y:rstar .12119211 y:_cons -.04842685 .05126459

The Delta Method

• Can uncover structure parameters μ, σ from reduced form estimates of α , β through $\boldsymbol{\alpha} = \frac{\mu}{\sigma}, \boldsymbol{\beta} = -\frac{1}{\sigma} \Rightarrow \mu = -\frac{\boldsymbol{\alpha}}{\boldsymbol{\beta}}, \sigma = -\frac{1}{\boldsymbol{\beta}}$ • Estimate matrix $D = \begin{pmatrix} \frac{\partial \mu}{\partial \beta} & \frac{\partial \mu}{\partial \alpha} \\ \frac{\partial \sigma}{\partial \beta} & \frac{\partial \sigma}{\partial \alpha} \end{pmatrix} = \begin{pmatrix} \frac{\alpha}{\beta^2} & -\frac{1}{\beta} \\ \frac{1}{\beta^2} & 0 \end{pmatrix}$ • Use square root of diagonal in $\hat{V}\begin{pmatrix}\hat{\beta}\\\hat{\alpha}\end{pmatrix} = \hat{D}\begin{bmatrix}\hat{V}\begin{pmatrix}\hat{\beta}\\\hat{\alpha}\end{pmatrix}\end{bmatrix}\hat{D}'$

Interval Data

- Revisit Holt and Laury (2002)
- Still assume subjects have CRRA utility function:

$$U(x) = \frac{x^{1-r}}{1-r}$$

- But subject are asked each problem in order, revealing where in the list they switch
 - More precise information available regarding subject risk preference

Interval Data

▶ EU-maximizing subject has RRA *r* between 0.15 and 0.41

Problem	Safe(S)	Risky(R)	r^*
1	(0.1, \$2.00; 0.9, \$1.60)	(0.1, \$3.85; 0.9, \$0.10)	-1.72
2	(0.2, \$2.00; 0.8, \$1.60)	(0.2, \$3.85; 0.8, \$0.10)	-0.95
3	(0.3, \$2.00; 0.7, \$1.60)	(0.3, \$3.85; 0.7, \$0.10)	-0.49
4	(0.4, \$2.00; 0.6, \$1.60)	(0.4, \$3.85; 0.6, \$0.10)	-0.15
5	(0.5, \$2.00; 0.5, \$1.60)	(0.5, \$3.85; 0.5, \$0.10)	0.15
6	(0.6, \$2.00; 0.4, \$1.60)	(0.6, \$3.85; 0.4, \$0.10)	0.41
7	(0.7, \$2.00; 0.3, \$1.60)	(0.7, \$3.85; 0.3, \$0.10)	0.68
8	(0.8, \$2.00; 0.2, \$1.60)	(0.8, \$3.85; 0.2, \$0.10)	0.97
9	(0.9, \$2.00; 0.1, \$1.60)	(0.9, \$3.85; 0.1, \$0.10)	1.37
10	(1.0, \$2.00; 0.0, \$1.60)	(1.0, \$3.85; 0.0, \$0.10)	∞

Estimating Binary Lottery Choice

Interval Data: Interval Regression Model

- \blacktriangleright Estimate population r from subject-specific intervals
- (Pseudo) data for 100 subjects: interval_data_sim.dta For $r_i \sim N(\mu, \sigma^2)$, subject *i* with $l_i < r_i < h_i$ has

$$L_{i} = \Pr(l_{i} < r < h_{i}) = \Pr(r_{i} < h_{i}) - \Pr(r < l_{i})$$
$$= \Phi\left(\frac{u_{i} - \mu}{\sigma}\right) - \Phi\left(\frac{l_{i} - \mu}{\sigma}\right)$$
Hence, $\log L = \sum_{i=1}^{n} \log\left[\Phi\left(\frac{u_{i} - \mu}{\sigma}\right) - \Phi\left(\frac{l_{i} - \mu}{\sigma}\right)\right]$

Estimating Binary Lottery Choice

Interval Data: Interval Regression Model

• Interval Regression: Estimate likelihood-maximizing $\hat{\mu}, \hat{\sigma}$

STATA command: intreg rlower rupper

Result:

2023/11/4

```
Fitting constant-only model:
Iteration 0: log likelihood = -199.07231
Iteration 1: log likelihood = -198.96851
Iteration 2: log likelihood = -198.96849
Fitting full model:
Iteration 0: log likelihood = -198.96849
Iteration 1: log likelihood = -198.96849
Interval regression Number of obs = 100
LR chi2(0) = 0.00
Log likelihood = -198.96849 Prob > chi2 = .
               Coef. Std. Err. z P>|z| [95% Conf. Interval]
      _cons | .613146 .0597808 10.26 0.000 .4959777 .7303143
    /lnsigma | -.5323404 .0764651 -6.96 0.000 -.6822092 -.3824716
```

	Fitting consta	int-only model:							
nterval 1)at	Iteration 0: 1	og likelihood	= -199.0723	1					
	Iteration 1: 1	og likelihood	= -198.9685	1					
	Iteration 2: 1	og likelihood	= -198.9684	9					
► STATA	Fitting full m	Fitting full model:							
Doculto Iteration 0: log likelihood = -198.96849									
IVESUILS	Iteration 1: 1	og likelihood	= -198.9684	9					
	Interval regre	ession Number o	of obs = 100						
	LR chi2(0) = 0	0.00							
	Log likelihood	l = -198.96849	Prob > chi2	= .					
		2)							
$r \sim N$ (0.61	31, 0.587	$2^2)_{\text{Coef.}}$	Std. Err.	Z	P> z	[95% Conf.	Interval]		
	cons	.613146	.0597808	10.26	0.000	.4959777	.7303143		
	+								
	/lnsigma	5323404	.0764651	-6.96	0.000	6822092	3824716		
	+								
	sigma	.587229	.0449025			.505499	.6821733		
Observation summary: 0 left-censored observations									
	0 uncensored observations								
	6 right-censor	ed observation	ıs						
023/11/4	94 interval ob	servations							

Interval Data: Interval Regression Model

If risk attitude depends on age and gender:

- $r_i = \beta_0 + \beta_1 age_i + \beta_2 male_i + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2)$
- Explanatory variables $\vec{x}_i = (1 \quad age_i \quad male_i)'$
- Have coefficients $\vec{\beta} = (\beta_0 \ \beta_1 \ \beta_2)'$ $r_i = \vec{x_i}' \vec{\beta} + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2) \Rightarrow r_i \sim N\left(\vec{x_i}' \vec{\beta}, \sigma^2\right)$

Hence,

$$\log L = \sum_{i=1}^{n} \log \left[\Phi\left(\frac{u_i - \vec{x_i'}\vec{\beta}}{\sigma}\right) - \Phi\left(\frac{l_i - \vec{x_i'}\vec{\beta}}{\sigma}\right) \right]$$

Estimating Binary Lottery Choice

Interval Data: Interval Regression Model

STATA intreg rlower rupper age male

Result:

```
Fitting constant-only model:
Iteration 0: log likelihood = -199.07231
Iteration 1: log likelihood = -198.96851
Iteration 2: log likelihood = -198.96849
Fitting full model:
Iteration 0: log likelihood = -197.24143
Iteration 1: log likelihood = -197.17109
Iteration 2: log likelihood = -197.17108
Interval regression Number of obs = 100
LR chi2(2) = 3.59
Log likelihood = -197.17108 Prob > chi2 = 0.1657
            Coef. Std. Err. z P>|z| [95% Conf. Interval]
        age | .02213 .0196956 1.12 0.261 -.0164727 .0607327
       male | -.2165679 .1341118 -1.61 0.106 -.4794222 .0462864
      _cons | .1592841 .4565128 0.35 0.727 -.7354646 1.054033
```

2023/11/4

	Fitting consta	ant-only model	L:					
	Iteration 0: 1	log likelihood	1 = -199.072	231				
	Iteration 1: 1	log likelihood	1 = -198.968	351				
	Iteration 2: 1	log likelihood	1 = -198.968	349				
Interval Dat	Fitting full r	nodel:						
	Iteration 0: 1	log likelihood	d = -197.241	43				
Ν ΣΤΔΤΔ	Iteration 1: log likelihood = -197.17109							
V SIAIA	Iteration 2: log likelihood = -197.17108							
Result	Interval regression Number of obs = 100							
Result.	LR chi2(2) = 3	3.59						
	Log likelihood	h = -197.17108	3 Prob > chi	12 = 0.165	57			
		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]	
D		02213	0106056		0.261	- 0164727	0607327	
But none	age	- 2165679	13/1118	-1 61	0.201	- 4794222	0462864	
	mare	15008/1	.1341110	-1.01	0.100	- 7354646	1 05/023	
significant	_cons	.1592041	.4303120	0.35	0.727	/354040	1.054033	
Significant	/lnsigma	5507208	.0764747	-7.20	0.000	7006085	4008332	
	sigma	.5765341	.0440903			.4962832	.6697618	
			0.01					
$\hat{r}_{i} = 0.1$	159 ± 0.0	$)22aqe_i$	-0.21	7male	2_i	$\hat{\sigma} = 0.57$	7	
Ū					0 /			
023/11/4	o right-censo	rea observatio	ons					
	94 interval of	servations						

- Ask subject Certainty Equivalent (CE) for a lottery
 - Amount for sure indifferent with lottery
- Exact information of subject risk preference With the CRRA utility function: $U(x) = \frac{x^{1-r}}{1-r}$
- If (0.3, \$3.85; 0.7, \$0.10) has CE = 0.75, can find r

so: $0.3 \frac{(3.85)^{1-r}}{1-r} + 0.7 \frac{(0.1)^{1-r}}{1-r} = \frac{(0.75)^{1-r}}{1-r}$ > r = 0.41! (See risk aversion calculations.xlsx)

- To elicit subject CE with Incentive Compatibility (IC)
 - Provide incentives for truthful report
- Use Becker-DeGroot-Marschak (BDM) Mechanism
 - Becker et al. (1964)
 - 1. Report CE. Then, computer draw a random price
 - 2. If random price is higher than CE, earn random price
 - 3. If random price is lower than CE, play the lottery
- Why is it IC to report truthfully?

Simulated
 Data for
 N=100:

- Given population distribution $r \sim N(\mu, \sigma^2)$
 - Want to estimate $\hat{\mu}, \hat{\sigma}$

2023/11/4

• Density for observation r_i is

$$f(r_i;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(r_i-\mu)^2}{2\sigma^2}\right) = \frac{1}{\sigma}\phi\left(\frac{r_i-\mu}{\sigma}\right)$$

Hence, the sample log-likelihood function is:

$$\log L = \sum_{i=1}^{n} \ln \left[\frac{1}{\sigma} \phi \left(\frac{r_i - \mu}{\sigma} \right) \right]$$

- Choose r and σ to maximize $\log L$
 - STATA command: args lnl xb sig

```
program define exact
args lnf xb sig
tempvar y p
quietly gen double 'y'=$ML_y1
quietly gen double 'p'=(1/'sig')*normalden(('y'-'xb')/'sig')
quietly replace 'lnf'=ln('p')
end
ml model lf exact (r= ) ()
ml maximize
```

STATA Results

initi	al: log l	ikelihood = -	- <inf> (could</inf>	l not be	evaluate	d)					
feasi	feasible: log likelihood = -60.251905										
resca	rescale: log likelihood = -7.5739988										
resca	rescale eq: log likelihood = 3.1167494										
Itera	Iteration 0: log likelihood = 3.1167494										
Itera	Iteration 1: log likelihood = 3.2682025										
Itera	tion 2: 1	og likelihood	1 = 3.6372157	7	<u>. </u>	-0.1940					
Itera	tion 3: 1	og likelihood	1 = 3.637384		$\mu =$	- 0.1340	/				
Itera	tion 4: 1	og likelihood	1 = 3.637384		ľ						
Numbe	r of obs	= 100			<u>^</u>	0.0000					
Wald	chi2(0) =				$\sigma =$	= 0.2333					
Log l	ikelihood	= 3.637384 H	rob > chi2 =	= .			-				
	r	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]				
	+										
eq1		1040460	000007	F 74	0 000	0000140	1707770				
	_cons	.1340463	.0233327	5.74	0.000	.0883149	.1/9///6				
	+										
eqz	congl	0333075	0164987	14 14	0 000	2009905	2656644				
		.2000210	.0104307	17.14	0.000	.2003300	.2000044				

Estimating Binary Lottery Choice

Joseph Tao-yi Wang

Sample Mean and Sample Variance are MLE!

 \blacktriangleright This is exactly the sample mean and variance of r

STATA command: summ r

Variable	Obs	Mean	Std. Dev.	Min	Max
r	100	.1340463	.2345029	4884877	.6499107

- Except sample variance is divided by (n 1) instead of n
- Recall from your Econometrics class
 - Sample mean and sample variance maximizes likelihood!
 - But ML applies to other continuous data (even censored)

CE Closer to Risk Neutrality?

- $\hat{\mu}^{\text{MLE}} = 0.1340$ much closer to 0 than previous ones:
 - ▶ Homogeneous Agent Model: $\hat{r}^{\text{Homo}} = 0.2177$
 - Heterogeneous Agent Model: $\hat{\mu}^{\text{Hetero}} = 0.4001$
 - ▶ Interval Data: $\hat{\mu}^{\text{Interval}} = 0.6131$
- Subjects tend toward risk neutrality when asked CE
 As if they compute EV and report something near
- Explains: Prefer safer lottery in binary choice (P-bet)

But place higher valuation on riskier lottery (\$-bet) Preference Reversals!!

Acknowledgment

This presentation is based on

- ▶ Section 3.1, 3.3-10 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We thank 沈汶鋒, 陳詠駿、張學仁, 蘇靖勛、胡南圳 and 林欣素 for their in-class presentations and 沈汶鋒 for providing STATA screen shots

