Power Analysis with Monte Carlo 使用蒙地卡羅法 進行統計檢定力分析

Joseph Tao-yi Wang (王道一) Experimetrics Lecture 2 (實驗計量第二講)

Power Analysis for Another Test?

- STATA has the power command for pre-set tests, but what if I want to run another test?
 - Use Monte Carlo to perform power calculation!
- Can do Treatment vs. Control by comparing:
 - 1. 2 means: Two-sample t-test
 - 2. 2 medians: Mann-Whitney Test
 - 3. 2 distributions: Kolmogorov-Smirnov Test

• Which to use?

• The one with desired size and highest power!

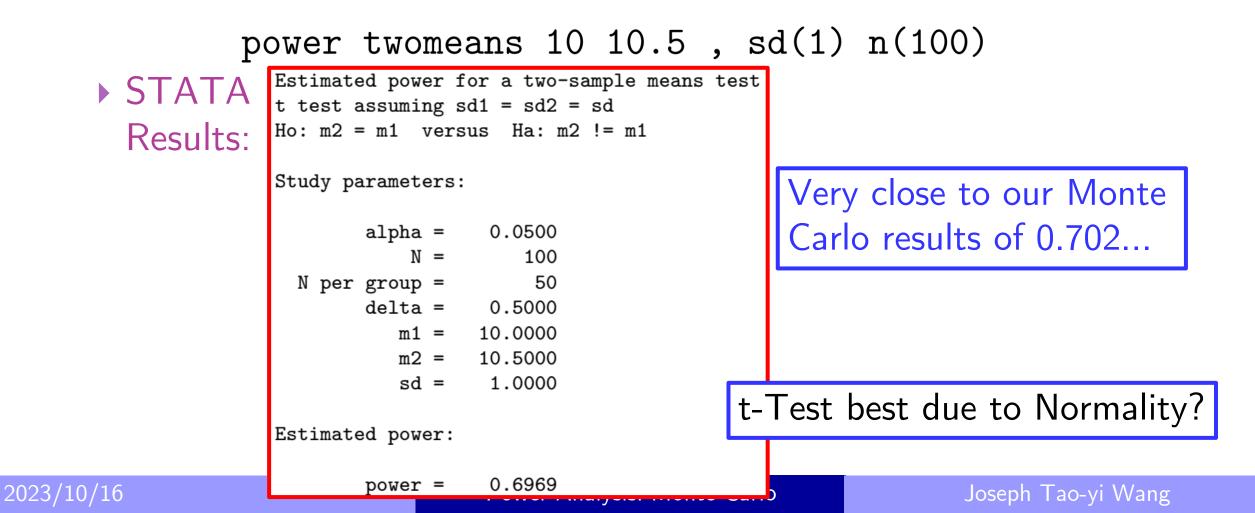
$$x_{i} = 10 + \underbrace{\delta \cdot d_{i}}_{\uparrow} + \epsilon_{i}, \ i = 1, \cdots, n = 100$$

$$\uparrow$$
[Treatment Effect] × [Treatment dummy]

• Control:
$$d_i = 0$$
 if $i \le \frac{n}{2} = 50$

- Treatment: $d_i = 1$ if $i > \frac{n}{2} = 50$
- From: $\epsilon_i \sim N(0,1), E(\epsilon_i) = 0, V(\epsilon_i) = 1$
- What is the size of each test?
 - ▶ % of resamples that "reject null | null is true"

- What is the size and power (at $\delta = 0.5$)?
 - > do-file_2.do: Monte Carlo procedure
- Results of 1,000 replications are:


		Size	Power	
All three	t-Test	0.052 ^u	0.702	High
unbiased (properly	M-W Test	0.053 ^u	0.683	to
(properly sized)	K-S Test	0.040 ^u	0.513	Low
·	u [.] Not signif	icantly differe	nt from 0.05	

- Same as power analysis of t-Test via STATA?
 - STATA command for power calculation

 μ_0/μ_1 power twomeans 10 10.5 , sd(1) n(100)
sample std; sample size
2-sample t-test

Same as power analysis of t-Test via STATA?

DGP w/ Non-Normally Distributed Errors

• Control:
$$d_i = 0$$
 if $i \le \frac{n}{2} = 50$

• Treatment:
$$d_i = 1$$
 if $i > \frac{n}{2} = 50$

- From 1: $\epsilon_i \sim \text{Uniform}[-2, 2], E(\epsilon_i) = 0$
- From 2: $\epsilon_i \sim \text{std } \chi^2(3) \text{ w/ } E(\epsilon_i) = 0, V(\epsilon_i) = 1$

What is the size and power (at $\delta = 0.5$)?

DGP w/ Non-Normally Distributed Errors

- What is the size and power (at $\delta = 0.5$)?
- From 1: $\epsilon_i \sim \text{Uniform}[-2, 2], E(\epsilon_i) = 0$
 - Symmetric errors: Not skewed

		Size	Power			
All three	t-Test	0.056 ^u	0.566	High		
unbiased (properly	M-W Test	0.056 ^u	0.526	to		
(properly sized)	K-S Test	0.039 ^u	0.306	Low		
W. Not significantly different from 0.05						

u: Not significantly different from 0.05

DGP w/ Non-Normally Distributed Errors

- What is the size and power (at $\delta = 0.5$)?
- ▶ Error 2: ε_i ~ std χ²(3) w/ E(ε_i) = 0, V(ε_i) = 1
 ▶ Skewed error

		Size	Power	
	t-Test	0.061 ^u	0.705	
M-W Test biased!	M-W Test	0.067	0.867	
	K-S Test	0.052 ^u	0.862	<-S test the best!

u: Not significantly different from 0.05

Homework for Section 2.1

 $x_i = 10 + \underbrace{\delta \cdot d_i}_{i} + \epsilon_i, \ i = 1, \cdots, n = 100$ [Treatment Effect] × [Treatment dummy] What if skewed opposite like Error 3: $-\epsilon_i \sim \text{std } \chi^2(3) \text{ w/ } E(\epsilon_i) = 0, V(\epsilon_i) = 1$ ▶ Hint: Is M-W test better than K-S test here? Can we try the Epps-Singleton test? ▶ Hint: See do-file_2a.do

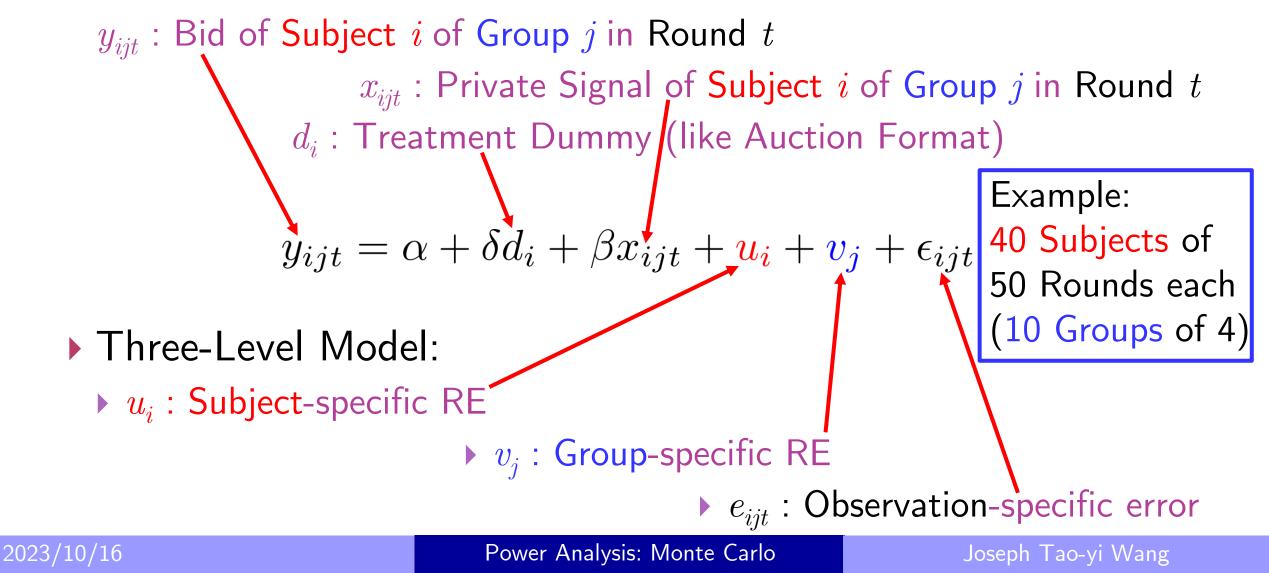
Treatment Testing w/ Multi-Level Data

- Experimental data dependent at multi-levels:
 - Same Subject (with repeated observations)
 - Same Group (in interactive experiments)
 - Same Session (with re-matching of groups)
- How serious is ignoring these clustering?
 - > do-file_2b.do: Use Monte Carlo to tell!
- Evaluate Treatment Effect with t-test for:
 - Between-Subject (Treat Half of the Subjects)
 - Within-Subject (Treat Half of the Tasks)

Evaluate Treatment Effect with t-test in:

- 1. OLS (no clustering)
- 2. OLS clustering at subject level
- 3. OLS clustering at group level
- 4. RE (no clustering)
- 5. RE clustering at subject level
- 6. RE clustering at group level
- 7. Multi-Level Model (subject RE and group RE)
- Which are correctly sized?
 - Among these, which has highest power?

Treatment Testing with Multi-Level Data


- Levels: Skrondal and Rabe-Hesketh (2004)
 - One-Level: *T* observations of a single subject
 - ► Two-Level: *T* observations for each of *N* subjects

- Example: 40 Subjects of 50 Rounds each (10 Groups of 4)
- Three-Level: T observations for each of N subjects in each of J groups:

$$y_{ijt} = \alpha + \delta d_i + \beta x_{ijt} + u_i + v_j + \epsilon_{ijt}$$

$$V(u_i) = \sigma_u, \quad V(v_j) = \sigma_v, \quad V(\epsilon_{ijt}) = \sigma_\epsilon$$

$$i = 1, \cdots, n, \quad j = 1, \cdots, J, \quad t = 1, \cdots, T$$

$$\bullet \text{ xtmixed for Subject RE + Group RE in STATA}$$

Example: Experimental Auction Data

RE: Special Case of Multi-Level Model

 y_{ijt} : Bid of Subject *i* of Group *j* in Round *t*

 x_{ijt} : Private Signal of Subject *i* of Group *j* in Round *t* d_i : Treatment Dummy (like Auction Format)

$$y_{ijt} = \alpha + \delta d_i + \beta x_{ijt} + u_i + \varkappa + \epsilon_{ijt}$$

Random Effect (RE) Model:
 u_i: Subject-specific RE

2023/10/16

Power Analysis: Monte Carlo

Joseph Tao-yi Wang

• e_{iit} : Observation-specific error

OLS: Special Case of RE Model

 y_{ijt} : Bid of Subject *i* of Group *j* in Round *t* x_{ijt} : Private Signal of Subject *i* of Group *j* in Round *t* d_i : Treatment Dummy (like Auction Format)

$$y_{ijt} = \alpha + \delta d_i + \beta x_{ijt} + \varkappa + \varkappa + \epsilon_{ijt}$$

Linear Regression (OLS) Model:

$$e_{ijt}$$
: Observation-specific error

Between-Subject vs. Within-Subject Treatment Effects

 $d_{i} : (Between-Subject) Treatment Dummy$ $d_{i} = 0 \text{ for Subject } i = 1-20$ $d_{i} = 1 \text{ for Subject } i = 21-40$ Mithin-Subject Treatment Dummy

$$y_{ijt} = \alpha + \delta d_{\underline{it}} + \beta x_{ijt} + u_i + v_j + \epsilon_{ijt}$$

$$\begin{array}{l} \mathbf{d}_{it} = 0 \text{ for Round } t = 1\text{-}25 \\ \mathbf{d}_{it} = 1 \text{ for Round } t = 26\text{-}50 \end{array} \quad \begin{array}{l} \text{Example:} \\ \text{40 Subjects of} \\ \text{50 Rounds each} \\ \text{50 Rounds each} \\ \text{(10 Groups of 4)} \end{array}$$

• e_{iit} : Observation-specific error

Multi-Level Models in STATA (Cluster at 1/2 Levels)

- ▶ 40 Subjects of 50 Rounds each (10 Groups of 4)
- egen i=seq(), f(1) b(50) (or egen i=seq(), from(1) by(50))
 - "from 1 by 50" means (1,...,1, 2,...,2, 3,...,3, 4,...,4, ...)
- begen i=seq(), f(1) t(50) (or egen i=seq(), from(1) to(50))
 - ▶ "from(1) to(50)" means (1,2,3,4,...,50, <u>1,2,...,50</u>, 1,2,...,50, ...)
- **STATA** Command:
 - OLS: Omitted (Review your Econometrics Class Notes!)
 - ▶ 1-Level: xtmixed y d x || i: Cluster at Subject i
 - > 2-Level: xtmixed y d x || j: || i:

Three-Level Model Using STATA (Clustered at 2 Levels) ► STATA xtmixed y d x || j: || i: Results: Performing EM optimization: Cluster at Group j and Subject iPerforming gradient-based optimization: Iteration 0: \log likelihood = -2959.3982 40 Subjects of \log likelihood = -2959.3978 Iteration 1: 50 Rounds each \log likelihood = -2959.3978 Iteration 2: (10 Groups of 4) Computing standard errors: 2,000 Number of obs Mixed-effects ML regression No. of Observations per Group Group Variable | Minimum Groups Average Maximum 10 200 200.0 200 40 50 50.0 50

	Log likelihoo	d = −2959.3978			Wald cl Prob >		155.37 0.0000	
Three-Level		d : Treatme	ent incre	eases bi				els)
► STATA	у	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]	
Results:	d x		.0454989 .0079035	3.26 12.09	0.001	.0590978 .0800749	.23745 .111056	
40 Subjects of	_cons		.247917	-0.50	0.616	6100867		
50 Rounds each		x : How val	ues affe	ect bids				
(10 Groups of 4) Random-effe	cts Parameters	Estim	ate Std	. Err.	[95% Conf	. Interval]	
Error STD for	j: Identity	G sd(_cons)	-+ .4820	359.29	92011	.1470391	1.580251	
Group <i>j</i> and Subject <i>i</i> and	i: Identity	ວິ <mark>ຟ</mark> sd(_cons)	-+ 1.193	918 .1	56372	.9236118	1.543333	
Residual e	ଟ୍	sd(Residual)	1.017	198 .010	62466	.9858481	1.049544	
	LR test vs. linear model: chi2(2) = 1737.24 Prob > c			Prob > ch:	i2 = 0.0000			
2023/10/16	Note: LR test is conservative and provided only for reference.							

Between-Subject 100 Monte Carlo Results ($\delta = 0.5$)						
Unbiased if cluster at group (not subject) level Size: $d=0$ Power: $\delta=0.5$						
OLS		0.46 🗙 🗙	-0.68-			
OLS clustering at s	ubject level	0.15 🗙	0.41			
OLS clustering at g	roup level	0.07 ^u	0.25			
RE (no clustering)		0.13 🗙	-0.41-			
RE clustering at su	bject level	0.15 🗙	0.41			
RE clustering at gro	oup level	0.07 ^u	0.25			
Multi-Level (subjec ⁻	t and group level)	0.08 ^u	0.27			
u: Not significantly different from 0.05 Multi-Level highest (but low						
2023/10/16Power Analysis: Monte CarloJoseph Tao-yi Wang						

W	ithin-Subject 100 Monte	Carlo Re	esults (δ	= 0.05)
	All 7 unbiased (with 100 rep			Power: $\delta = 0.05$
	OLS		0.02 ^u	-0.07 -
	OLS clustering at subject leve	el	0.09 ^u	0.31
	OLS clustering at group level		0.09 ^u	0.33
	RE (no clustering)		0.05 ^u	0.31
	RE clustering at subject level		0.09 ^u	0.31
	RE clustering at group level		0.08 ^u	0.33
	Multi-Level (subject and grou	ıp level)	0.05 ^u	0.31
	u: Not significantly different	t from 0.05	No Clus	ter = Low Power
2023	/10/16 Power Ana	alysis: Monte Carlo		Joseph Tao-yi Wang

Conclusion

Between-Subject:

- Size: Cluster at Highest Level possible
- Power: Multi-Level model is best
- Between-Subject:
 - Size: All models able to detect small treatment
 - Power: All but OLS is good
- ► HW: What if we make group effect = 0.1 instead of 1?
 - Is size good now?

gen y=0.5+delta*d+0.1*x+u+0.1v+e

What about power?

Increase n and T of Between-Subject Multi-Level Model

- Multi-Level best with n=40 Subjects of T=50 Rounds each
- How to increase power of Multi-Level with n and T?
 - > do-file_2c.do: Monte Carlo procedure
 - ▶ Typo: "'" in wrong place for STATA command gen d=i/2
- Double or Triple n and/or T for:
 - \blacktriangleright Between-Subject at $\delta=0.5$
 - \blacktriangleright Within-Subject at $\delta=0.05$

Increase n and T of Between-Subject Multi-Level Model

- Double or Triple *n* and/or *T* for:
 - \blacktriangleright Between-Subject at $\delta=0.5$

	Multi-Level	T = 50	T = 100	T = 150
Modest	<i>n</i> = 40	0.24	0.26	0.28
Modest Gains (n > T)	<i>n</i> = 80	0.25	0.36	0.35
(n > T)	n = 120	0.39	0.38	0.35

Power Analysis: Monte Carlo

Joseph Tao-yi Wang

Increase n and T of Between-Subject Multi-Level Model

- Double or Triple n and/or T for:
 - \blacktriangleright Within-Subject at $\delta=0.05$

	Multi-Level	T = 50	T = 100	T = 150	
Steep	<i>n</i> = 40	0.20	0.47	0.75	Power close to 1
Gains!!	n = 80	0.44	0.71	0.91	if increase
(T > n)	n = 120	0.67	0.81	0.97	both n , T

Acknowledgment

This presentation is based on

- Section 2.1-2.3 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We would like to thank 何雨忻 for his in-class presentation