Introduction to Experimetrics and Power Analysis (實驗計量與統計檢定力分析)

Joseph Tao-yi Wang (王道一) Experimetrics Lecture 1 (實驗計量第一講)

2023/10/12

Experimetrics: Power Analysis

Outline: The Replication Size Trinity

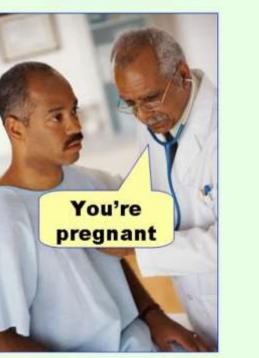
- 1. Sample Size n : # of observations/subjects
- 2. Effect Size: How big is the true result
- 3. Power $(1-\beta)$: How likely will your test show significance if there is truly an effect

Experimetrics: Power Analysis

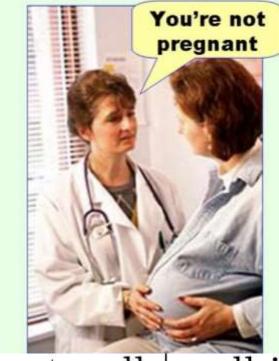
Why Do We Care About This?

- Editor's Preface (<u>JEEA 2015</u>):
 - A necessary (but not sufficient) condition for publishing a replication study or null result
 - will be the presentation of power calculations.
- ▶ Test Resolution: Pr(confirm | infected patient)
 - In 2020, Taiwan requires 3 consecutive negatives to discharge for COVID-19, since even PCR has insufficient power (around 70%)...
- But what about structural estimation?

Treatment Test:


- Null $(H_0: \theta = \theta_0)$ Hypothesis No Effect!
- Alternative ($H_1: \theta = \theta_1$) Hypothesis Effective!
- Effect Size $(\theta_1 \theta_0)$: True size of effect
- Alternative Hypothesis can be **Directional**:
 - One-sided Alternative One-tailed test
 - Usually comes from prior beliefs based on theory
 - Two-sided Alternative Two-tailed test

- Two Stages of the Treatment Test:
 - 1. Compute Test Statistic of sample size n
 - 2. Compare Test Statistic with null distribution
- Rejection Region = Tail of null distribution
 - of a Size $\alpha = \Pr(\text{reject null} \mid \text{null is true})$
 - Critical Value: Rejection region starting point
- p-value = $\Pr(|T| \ge T_{CV}|$ null is true)
 - ▶ p < 0.05 vs. p < 0.01/0.001 (strength of evidence)
 - Evidence vs. Strong/Overwhelming Evidence


Type 1 Error: $\alpha = \Pr(\text{reject null} \mid \text{null is true})$

Type I error (false positive)

But what is Power?

Type II error (false negative)

Type 2 Error: $\beta = \Pr(\text{accept null} \mid \text{null is false})$

2023/10/12

Experimetrics: Power Analysis

- ► Type 1 Error: $\alpha = \Pr(\text{reject null} \mid \text{null is true})$
- ► Type 2 Error: β = Pr(accept null | null is false)
- Power(π): $1 \beta = Pr(reject null | null is false)$
 - 1. True effect size $\theta_1 \theta_0$ (and one/two-tailed)
 - 2. Sample size n
 - 3. Size of the test α
- Trade-off: The higher α/n , the higher is π
 - 1. Power Analysis: Compute power $\pi = 1 \beta$, or
 - 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$

Choosing the Value of α

- How big can we allow Type 1 Error
- To convict a crime suspect,
 - Null Hypothesis: Not Guilty
 - Alternative Hypothesis: Guilty
 - Type 1: $\alpha = \Pr(\text{convict} \mid \text{innocent suspect})$
 - ► Type 2: $\beta = Pr(acquit | guilty suspect))$
- Type 1 Error more serious than Type 2 Error
 - Choose very low α at the expense of power:

 $1 - \beta = \Pr(\text{convict} \mid \text{guilty suspect}))$

Choosing the Value of α

- How big can we allow Type 1 Error
- ▶ To test for COVID-19,
 - Null Hypothesis: Healthy
 - Alternative Hypothesis: Infected by COVID-19
 - ▶ Type 1: $\alpha = \Pr(\text{confirm} \mid \text{healthy patient})$
 - ▶ Type 2: β = Pr(discharge | infected patient)
- Type 2 Error more serious than Type 1 Error
 - Choose a higher α so get higher power:
 - $1 \beta = \Pr(\text{confirm} \mid \text{infected patient})$

Choosing the Value of α

- Type 1 $\alpha = \Pr(\text{confirm} \mid \text{healthy patient})$
- Type 2 $\beta = \Pr(\text{discharge} \mid \text{infected patient})$
- Both errors not fatal in Experimental False Positive **True Positive** 疾 Economics, 真陽性 偽陽性 病 Convention is: 病人沒有生病 病人直的牛病, 檢驗也確實為陽性 但檢驗結果為陽性 篩 $\alpha = 0.05$ 劎 False Negative True Negative $\pi = 1 - \beta = 0.80$ 結果 偽陰性 真陰性 $\beta = 0.20$ 人直的牛病

檢驗結果卻為陰

檢驗也確實為陰性

2023/10/12

Treatment Testing Toolkit

- One-sample t-test
 - ▶ Does WTP = £3 (= retail value of coffee mug)?
- Two-sample t-test (with equal variance)
 - If passes variance ratio test
 - Can be done using OLS!
- Two-sample t-test (with unequal variance)
 - If fails variance ratio test
 - Skewness-kurtosis test
- Need CLT: Okay if sufficiently large $n~(\geq 30?)$

<u>Treatment Testing Toolkit</u>

- What if we do not have CLT/large n?
 - Use non-parametric tests instead!
- Mann-Whitney Test (aka ranksum test)
 - Between-subject non-parametric treatment test
- Kolmogorov-Smirnov (KS) Test
- Epps-Singleton Test (discrete KS test)
 - Tests comparing entire distributions

Treatment Testing: WTP - WTA Gap

- What if we have within-subject data?
- Can use within-subject tests!
 - But, watch out for order effect...
- Paired t-test (assume CLT)
- Wilcoxon Signed Rank Test
 - Within-subject non-parametric treatment test
 - Assume symmetric distribution around median
 - (regarding paired difference). Without it, use:
- Paired-sample sign test

<u>Treatment Testing: WTP - WTA Gap</u>

- Isoni et al. (AER 2011)
 - ▶ Replicate Plott and Zeiler (AER 2007), which
 - ▶ Replicate Kahneman et al. (JPE 1990) (KKT)
- Measure WTP and/or WTA
 - Becker–DeGroot–Marschak (BDM) mechanism
 - ▶ 2nd price auction against (randomizing) computer
- Treatment Test:
 - Does WTP or WTA = £3 (= retail value of the coffee mug)?

Power Analysis: Theory

- 1. Power Analysis: Find test power $\pi = 1 \beta$, or
- 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$
- One-sample t-test
 - ▶ Rarely used in experimental economics, but...
 - ▶ Isoni et al. (2011) test WTP of coffee mug = $\pounds 3$
- Y: Continuous outcome measure with mean μ
 - ▶ Null Hypothesis: $H_0: \mu = \mu_0$
 - Alternative Hypothesis: $H_1: \mu = \mu_1 > \mu_0$
- Collect data of sample size n

Power Analysis: Theory

- 1. What is the power of this test?
- 2. How big should sample size n be?
- ▶ Test Size $\alpha = 0.05 = \Pr(\text{reject null} \mid \text{null is true})$
- Type 2 $\beta = 0.20 = \Pr(\text{accept null} \mid \text{null is false})$
- Power $\pi = 1 \beta = 0.80$
- $\overline{y} = \text{sample mean}$ $s^2 = \text{sample variance}$ One-sample t-test • Test Statistic: $t = \frac{y - \mu_0}{s/\sqrt{n}} \sim t(n-1)$

• Reject if $t > t_{n-1,\alpha}$ ($t > z_{\alpha}$ for large n)

Power Analysis: Power of the Test

$$\pi = \Pr(t > z_{\alpha} | \mu = \mu_{1}) = \Pr\left(\frac{\overline{y} - \mu_{0}}{s/\sqrt{n}} > z_{\alpha} | \mu = \mu_{1}\right)$$

$$= \Pr\left(\overline{y} > \mu_{0} + z_{\alpha}(s/\sqrt{n}) | \mu = \mu_{1}\right)$$

$$= \Pr\left(\frac{\overline{y} - \mu_{1}}{s/\sqrt{n}} > \frac{\mu_{0} + z_{\alpha}(s/\sqrt{n}) - \mu_{1}}{s/\sqrt{n}} | \mu = \mu_{1}\right)$$

$$= \Phi\left(\frac{12 - 10 - 1.645(5/\sqrt{30})}{5/\sqrt{30}}\right)$$

$$= \frac{0.71}{n = 30, \ \alpha = 0.05}$$

What *n* is required to get $\pi = 0.80$?

Power Analysis: How Big Should *n* Be?
Power
$$\pi = 1 - \beta = \Phi\left(\frac{\mu_1 - \mu_0 - z_\alpha(s/\sqrt{n})}{s/\sqrt{n}}\right)$$

 $\Rightarrow z_\beta = \frac{\mu_1 - \mu_0 - z_\alpha(s/\sqrt{n})}{s/\sqrt{n}}$
 $\Rightarrow z_\beta + z_\alpha = \frac{\mu_1 - \mu_0}{s/\sqrt{n}}$
 $\Rightarrow z_\beta + z_\alpha = \frac{\mu_1 - \mu_0}{s/\sqrt{n}}$
 $\Rightarrow n = \frac{s^2(z_\alpha + z_\beta)^2}{(\mu_1 - \mu_0)^2} = \frac{5^2(1.645 + 0.842)^2}{(12 - 10)^2}$
 $\Rightarrow So we need $n \ge 39$
 $\Rightarrow a = \frac{38.66}{\mu_1 - \mu_0}$$

2023/10/12

Experimetrics: Power Analysis

Power Analysis: Power in STATA

• What is the power for sample size n = 30?

STATA command for power calculation

2023/10/12

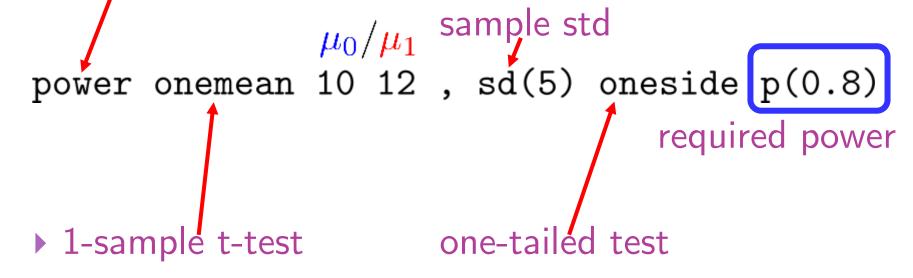
Experimetrics: Power Analysis

Power Analysis: Power Results in STATA

• What is the power for sample size n = 30?

power onemean 10 12, sd(5) n(30) oneside

STATA Estimated power for a one-sample mean test t test Results: Ho: m = mO versus Ha: m > mOStudy parameters: alpha = 0.0500 30 N = Slightly different delta = 0.4000m0 = 10.0000since STATA did 12,0000 ma = sd = 5.0000 not use normal approximation... Estimated power: 0.6895power


Wang

2023/10/12

Power Analysis: Sample Size in STATA

• What is the sample size to get power $\pi = 0.80$?

STATA command for power calculation

Experimetrics: Power Analysis

Power Analysis: Sample Size Result/Stata

• What is the sample size to get power $\pi = 0.80$?

power onemean 10 12 , sd(5) oneside p(0.8)

STATA Results: Performing iteration ...

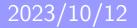
Estimated sample size for a one-sample mean test t test Ho: m = m0 versus Ha: m > m0

Study parameters:

alpha =	0.0500
power =	0.8000
delta =	0.4000
mO =	10.0000
ma =	12.0000
sd =	5.0000

Estimated sample size:

Slightly larger *n* since STATA did not use normal approximation...

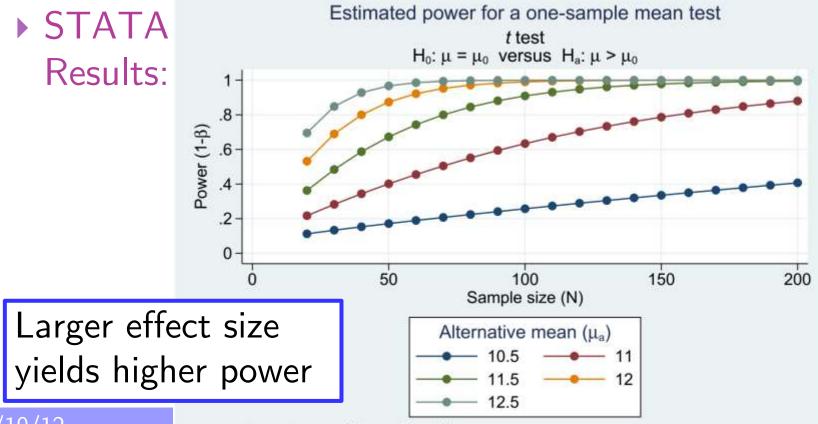

io-yi Wang

2023/10/12

41

Power Analysis: Graph Power in STATA

Plot power against sample size with graph STATA command for power calculation $\mu_0/\mu_1 \in [10.5, 12.5]$ power onemean 10 (10.5(0.5)12.5), sd(5) n(20(10)200) oneside graph sample std; n=20-200one-tailed test ▶ 1-sample t-test



Experimetrics: Power Analysis

Power Analysis: Graph Power in STATA

Plot power against sample size with graph

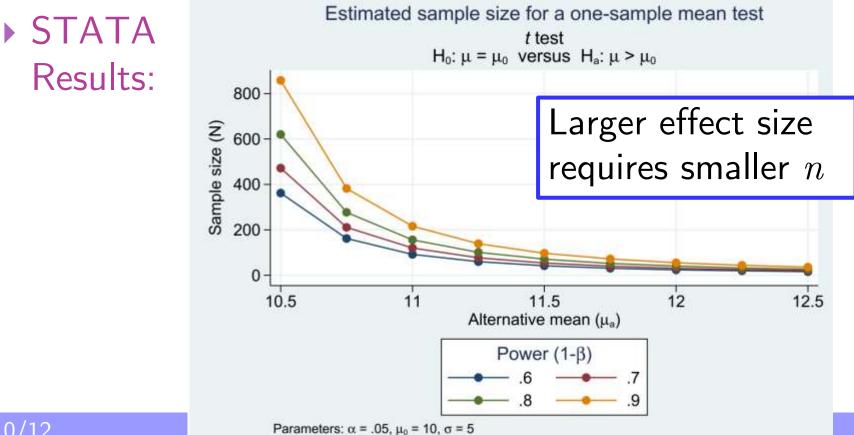
power onemean 10 (10.5(0.5)12.5), sd(5) n(20(10)200) oneside graph

2023/10/12

Parameters: $\alpha = .05$, $\mu_0 = 10$, $\sigma = 5$

Power Analysis: Graph Sample Size/Stata

Plot sample size against effect size STATA command for power calculation $\mu_0/\mu_1 \in [10.5, 12.5]$ power onemean 10 (10.5(0.25)12.5), sd(5) p(0.6(0.1)0.9) oneside graph sample std; power=0.6-0.9 one-tailed test 1-sample t-test



Experimetrics: Power Analysis

Power Analysis: Graph Sample Size/Stata

Plot sample size against effect size

power onemean 10 (10.5(0.25)12.5), sd(5) p(0.6(0.1)0.9) oneside graph

2023/10/12

Power Analysis: Two-sample t-test

- 1. Power Analysis: Find test power $\pi = 1 \beta$, or
- 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$
- Two-sample t-test
 - More common in experimental economics...
- μ_1 : Population mean of control group
- μ_2 : Population mean of treatment group
 - ▶ Null Hypothesis: $H_0: \mu_2 \mu_1 = 0$
 - Alternative Hypothesis: $H_1: \mu_2 \mu_1 = d$
- Collect data of sample size n_1 and n_2 Effect Size

Joseph Lao-yi

Power Analysis: Two-sample t-test

- ▶ Test Size $\alpha = 0.05$ $\overline{y}_1, \overline{y}_2 = \text{sample means}$
- Fype 2 $\beta = 0.20 = s_1^2, s_2^2 = \text{sample variances}$
- Power $\pi = 1 \beta = 0.80$

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$
 (pooled sample s.d.
for equal variance)

Test $t = \frac{\overline{y}_2 - \overline{y}_1}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$ Statistic:

Reject if $t > t_{n_1+n_2-2,\alpha} (t > z_{\alpha} \text{ for large } n)$

Experimetrics: Power Analysis

Power Analysis: Two-sample t-test

- ► Equal sample size $\overline{y}_1, \overline{y}_2$ = sample means $n_1 = n_2 = n$ s_1^2, s_2^2 = sample variances
- Pooled sample s.d. for equal variance is:

$$s_p = \sqrt{\frac{s_1^2 + s_2^2}{2}}$$

- Test $t = \frac{\overline{y}_2 \overline{y}_1}{s_p \sqrt{\frac{2}{n}}} \sim t(2n-2)$ Statistic: $s_p \sqrt{\frac{2}{n}}$
- Reject if $t > t_{2n-2,\alpha}$ ($t > z_{\alpha}$ for large n)

Power Analysis: Power of the Test

$$\pi = \Pr(t > z_{\alpha} | \mu_{2} - \mu_{1} = d)$$

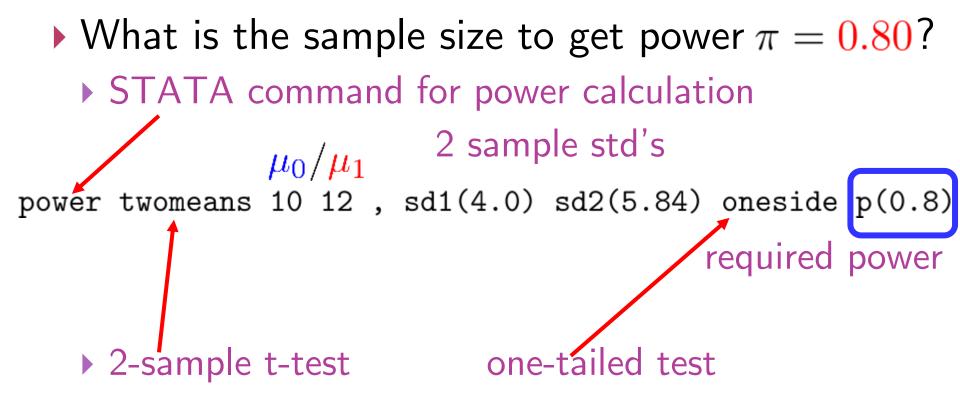
$$= \Pr\left(\frac{\overline{y}_{2} - \overline{y}_{1}}{s_{p}\sqrt{2/n}} > z_{\alpha} | \mu_{2} - \mu_{1} = d\right)$$

$$= \Pr\left(\overline{y}_{2} - \overline{y}_{1} > z_{\alpha}s_{p}\sqrt{2/n} | \mu_{2} - \mu_{1} = d\right)$$

$$= \Pr\left(\frac{\overline{y}_{2} - \overline{y}_{1} - d}{s_{p}\sqrt{2/n}} > \frac{z_{\alpha}s_{p}\sqrt{2/n} - d}{s_{p}\sqrt{2/n}} | \mu_{2} - \mu_{1} = d\right)$$

$$= \Phi\left(\frac{d - z_{\alpha}s_{p}\sqrt{2/n}}{s_{p}\sqrt{2/n}}\right)$$

2023/10/12


Experimetrics: Power Analysis

Power Analysis: How Big Should *n* Be?
Power
$$\pi = 1 - \beta = \Phi\left(\frac{d-z_{\alpha}s_p\sqrt{2/n}}{s_p\sqrt{2/n}}\right)$$

 $\Rightarrow z_{\beta} = \frac{d-z_{\alpha}s_p\sqrt{2/n}}{s_p\sqrt{2/n}}$
 $\stackrel{\alpha = 0.05, \beta = 0.20}{\underline{z_{\alpha} = 1.645, z_{\beta} = 0.842}}$
 $\Rightarrow z_{\beta} + z_{\alpha} = \frac{d}{s_p\sqrt{2/n}}$
 $\stackrel{s_1 = 4.0, s_2 = 5.84}{\underline{s_2}^2 = 5.0^2}$
 $\Rightarrow n = \frac{2s_p^2(z_{\alpha} + z_{\beta})^2}{d^2} = \frac{2(5^2)(1.645 + 0.842)^2}{2^2}$
So we need $n \ge 78$ $= \underline{77.32}$

2023/10/12

Experimetrics: Power Analysis

Power Analysis: Sample Size in Stata

Experimetrics: Power Analysis

Power Analysis: Sample Size Result/Stata

• What is the sample size to get power $\pi = 0.80$?

power twomeans 10 12, sd1(4.0) sd2(5.84) oneside p(0.8)

STATA **Results**:

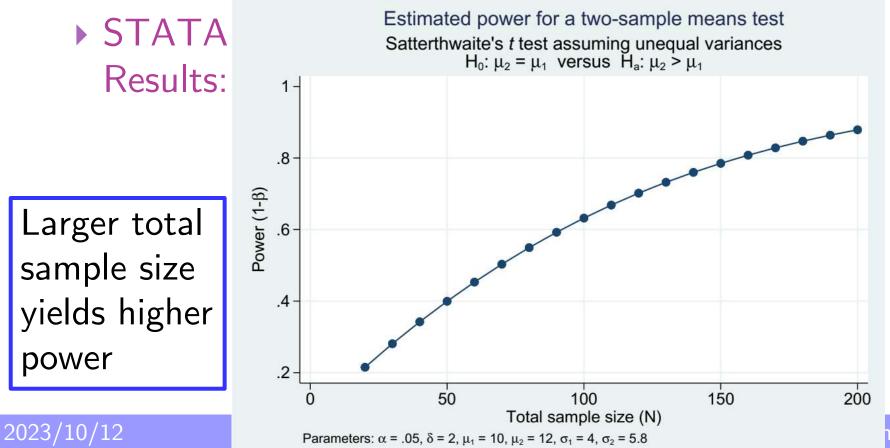
Performing iteration	
Estimated sample sizes for a two Satterthwaite's t test assuming Ho: m2 = m1 versus Ha: m2 > m3	unequal variances
Study parameters:	
alpha = 0.0500 power = 0.8000	
delta = 2.0000 m1 = 10.0000	Slightly larger n
m1 = 10.0000 m2 = 12.0000 sd1 = 4.0000	since STATA did
sd1 = 4.0000 sd2 = 5.8400	not use normal
Estimated sample sizes:	approximation
N = 158	
N per group = 79	ao-yi Wang

Wang

2023/10/12

Power Analysis: Graph Power in STATA

Plot power against sample size with graph STATA command for power calculation μ_0/μ_1 twomeans 10 12, sd1(4.0) sd2(5.84) n(20(10)200) oneside graph power sample std; n=20-200one-tailed test 2-sample t-test


2023/10/12

Experimetrics: Power Analysis

Power Analysis: Graph Power in STATA

Plot power against sample size with graph

power twomeans 10 12, sd1(4.0) sd2(5.84) n(20(10)200) oneside graph

Power Analysis: Paired Sample t-test

- 1. Power Analysis: Find test power $\pi = 1 \beta$, or
- 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$
- Paired Sample t-test
 - Observe subjects twice (with vs. w/o treatment)...
- ▶ μ_1 : Population mean without treatment
- μ_2 : Population mean with treatment
 - Null Hypothesis: $H_0: \mu_2 \mu_1 = 0$ from prior
 - Alternative Hypothesis: $H_1: \mu_2 \mu_1 = d$
- Collect data of sample size n (HW: Theory?!)

Effect Size

- What is the sample size to get power π = 0.80?
 STATA command for power calculation
 μ₀/μ₁

Experimetrics: Power Analysis

• What is the sample size to get power $\pi = 0.80$?

power pairedmeans 10 12 , sd1(4.0) sd2(5.84) corr(0) oneside

STATA Results: Performing iteration ... Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d > d0Study parameters: 10.0000 alpha = 0.0500 ma1 =power = 0.8000 ma2 =12.0000 delta = 0.2825 4.0000 sd1 = d0 =0.0000 5.8400 sd2 =da = 2.0000 0.0000 corr = sd d =7.0785 Same *n* per group as Estimated sample size: in two-sample t-test! 79 N =

2023/10/12

Experimetrics: Power Analysis

What if subjects' two responses are correlated? STATA command for power calculation μ_0/μ_1 2 sample std's power pairedmeans 10 12, sd1(4.0) sd2(5.84) corr(0.5) oneside 2 sample's correlation one-tailed test Paired Sample t-test

Experimetrics: Power Analysis

- What if subjects' two responses are correlated?
- power pairedmeans 10 12 , sd1(4.0) sd2(5.84) corr(0.5) oneside
 - STATA Results:

Performing iteration ...

Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d > d0

Study parameters:

What if corr. = 1?

h n=1 ok!

2023/10/12

alpha = 0.0500 ma1 =10,0000 power = 0.8000 12.0000 ma2 =delta = 0.3867 Paired data positively d0 =0.0000 2.0000 da = correlated (from same sd_d = 5.1716 subjects) require less nEstimated sample size: N = 43

Experimetrics: Power Analysis

- Paired Tests saves number of subjects!
 - Since the two responses are highly correlated
- But can cause Order Effect
 - ► AB and BA yield different results
- Crossover Design
 - Half AB vs. Half BA
 - Measures Order Effects (if any)
 - Can later control with order dummies, etc.

Real Example: WTP - WTA Gap

- Isoni et al. (AER 2011)
 - ▶ Replicate Plott and Zeiler (AER 2007), which
 - ▶ Replicate Kahneman et al. (JPE 1990) (KKT)
- Measure WTP and/or WTA
 - Becker–DeGroot–Marschak (BDM) mechanism
 - ▶ 2nd price auction against (randomizing) computer
- Treatment Test:
 - Does WTP or WTA = £3 (= retail value of the coffee mug)?

WTP - WTA Gap: Summary Statistics

Summary Statistics of N=100

summ v_mug

STATA Results:

Variable	Obs	Mean	Std. Dev.	Min	Max
v_mug	100	2.0415	1.571287	0	7.5

Is the population mean value of a mug = 3.0?

Experimetrics: Power Analysis

WTP - WTA Gap: One-sample t-test

• Test $H_0: \mu = 3.0$

ttest v_mug=3.0

STATA Results:

One-sample t	test					
Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
v_mug	100	2.0415	.1571287	1.571287	1.729723	2.353277
mean = m Ho: mean = 3	ean(v_mug) .0)		degrees	t = of freedom =	-6.1001 99
Ha: mean < 3.0 Pr(T < t) = 0.0000			Ha: mean != . T > t) = .		Ha: mea Pr(T > t)	n > 3.0 = 1.0000

2023/10/12

Experimetrics: Power Analysis

Power Analysis: One-sample t-test

What is the power of this test?

power onemean 3.0 2.04, n(100) sd(1.571)

Estimated power for a one-sample mean test t test Ho: m = mO versus Ha: m != mO Study parameters: alpha = 0.0500 M =100 delta = -0.6111Power = 1? m0 = 3.0000ma = 2.0400Not surprising sd = 1.5710if mean=2.04 Estimated power: & s.d.=1.571 power = 1.0000

2023/10/12

STATA

Results:

Experimetrics: Power Analysis

Power Analysis: One-sample t-test

What is the sample size to get power $\pi = 0.80$? power onemean 3.0 2.04, p(0.80) sd(1.571)

> Estimated sample size for a one-sample mean test t test Ho: m = mO versus Ha: m != mO Study parameters: alpha = 0.0500 power = 0.8000 delta = -0.61113.0000 mO =2.0400 ma = 1.5710 sd = Estimated sample size: n=24 is enough! 24 N =

2023/10/12

STATA

Results:

Experimetrics: Power Analysis

Power Analysis: Two-sample t-test

Is there sufficient power to test WTA vs. WTP? power twomeans 1.86 2.21 , n1(49) n2(51) sd1(1.29) sd2(1.80) oneside Estimated power for a two-sample means test STATA Satterthwaite's t test assuming unequal variances Ho: m2 = m1 versus Ha: m2 > m1**Results**: Study parameters: alpha = 0.0500 N =100 N1 =49 N2 =51 Power =▶ Power < 0.3!! N2/N1 =1.0408 Probability of delta = 0.3500 m1 = 1.8600 rejecting null m2 =2.2100 1.2900 sd1 = hypothesis 1.8000 sd2 =Estimated power:

2023/10/12

E

0.2973

Wang

Power Analysis: Two-sample t-test

- What is the sample size to get power $\pi = 0.80$?
- power twomeans 1.86 2.21 , sd1(1.29) sd2(1.80) oneside p(0.8)

STATA Results: Performing iteration ... Estimated sample sizes for a two-sample means test Satterthwaite's t test assuming unequal variances Ho: m2 = m1 versus Ha: m2 > m1Study parameters: alpha = 0.0500 power = 0.8000 Need really delta = 0.3500 m1 =1.8600 large n due to $m_{2} =$ 2.2100 sd1 = 1.2900 tiny effect size sd2 =1.8000 assumed Estimated sample sizes: 498 N = N per group = 249 io-yi Wang

2023/10/12

Power Analysis: Two-sample t-test

Plot power against sample size with graph power twomeans 1.86 2.21, sd1(1.29) sd2(1.80) oneside power(0.1(0.1)0.9) graph

STATA Estimated total sample size for a two-sample means test Satterthwaite's t test assuming unequal variances Results: $H_0: \mu_2 = \mu_1$ versus $H_a: \mu_2 > \mu_1$ 800 600 Fotal sample size (N) Larger total 400 sample size yields higher 200 power 0-.6 .8 0 Power (1-B) 2023/10/12 Parameters: $\alpha = .05$, $\delta = .35$, $\mu_1 = 1.9$, $\mu_2 = 2.2$, $\sigma_1 = 1.3$, $\sigma_2 = 1.8$

Power Analysis: Equality of Variance Test

• Test $H_0: \sigma_1^2 = \sigma_2^2$

sdtest v_mug, by(v_type)

► STATA	A Res	ults:		Significant	t differen	ce b/w
Variance rat	io test			var(WTP)	and var	(WTA)
Group	Obs	Mean	Std. Er	r. Std. Dev.	[95% Conf.	Interval]
WTA	51	1.862245 2.213725	.251567	91.29065391.796554		
5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.				1.571287	1.729723	2.353277
ratio = ; Ho: ratio = ;		/ sd(WTA)		degrees	f = of freedom =	0.5161 48, 50
Ha: ratio Pr(F < f) =	Sector and Automation Sector		Ha: ratio r(F < f)	= 1 = 0.0229	Ha: ra Pr(F > f)	tio > 1 = 0.9886

2023/10/12

Experimetrics: Power Analysis

Power Analysis: Equality of Variance Test

• What is the power of this test?

power twovariances 1.66 3.24, n1(49) n2(51)

 $1.29^2 = 1.66,$ STATA Estimated power for a two-sample variances test $1.80^2 = 3.24$ F test Results: Ho: v2 = v1 versus Ha: v2 != v1Study parameters: alpha = 0.0500 100 N =49 N1 =Larger sample N2 =51 N2/N1 = 1.0408needed to get delta = 1.9518 v1 = 1.6600desired power v2 = 3.2400of 0.8... Estimated power: 0.6402 ph Tao-yi Wang 2023/10/12 power =

Power Analysis: Equality of Variance Test

• What is the sample size to get power $\pi = 0.80$?

power twovariances 1.66 3.24, p(0.8)

 $\mathbf{1}9^2 = 1.66,$ STATA Performing iteration ... $30^2 = 3.24$ **Results**: Estimated sample sizes for a two-sample variances test F test Ho: v2 = v1 versus Ha: v2 != v1Study parameters: alpha = 0.0500 power = 0.8000 delta = 1.9518 v1 = 1.6600Need n = 73! $v_{2} =$ 3.2400 Estimated sample sizes:

146

73

o-vi Wang

N per group =

2023/10/12

WTP - WTA Gap: Paired Sample t-test

$H_0: WTA = WTP \text{ vs. } H_1: WTA > WTP$

ttest WTA=WTP

STATA Results:

Defined + test

1-sided p-value = 0.0096!

Paired t	test					
Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
WTA WTP	i an anna	2.5745 2.2415	.0961546 .1115095	.9615459 1.115095	2.383708 2.020241	2.765292 2.462759
diff	100	. 333	.1398705	1.398705	.0554666	.6105334
1973	n(diff) = mear n(diff) = 0	n(WTA - WTP)		degrees	t of freedom	2.0000
5440 100VAR	n(diff) < 0 z) = 0.9904		mean(diff) > t) =			(diff) > 0) = 0.0096

2023/10/12

Experimetrics: Power Analysis

Is there sufficient power to test WTA vs. WTP? power pairedmeans 2.57 2.24, sd1(0.96) sd2(1.11) corr(0) n(100) oneside

STATA Estimated power for a two-sample paired-means test Results: Paired t test Ho: d = d0 versus Ha: d < d0Study parameters: 2.5700 alpha = 0.0500 ma1 =ma2 = 2.2400N =100 delta = -0.2249sd1 = 0.9600d0 = 0.0000sd2 =1.1100 da = -0.33000.0000 corr = sd d = 1.4675 Almost 0.8, but not yet! Estimated power: 0.7219 power = Joseph Tao-yi Wang 2023/10/12 Experimetrics: Power Analysis

What is the sample size to get power $\pi = 0.80$? power pairedmeans 2.57 2.24 , sd1(0.96) sd2(1.11) corr(0) p(0.80) oneside

STATA Results: Performing iteration ... Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d < d0Study parameters: alpha = 0.0500 2.5700 ma1 =2.2400 power = 0.8000 ma2 =n = 124 is 0.9600 delta = -0.2249sd1 = d0 = 0.0000 sd2 = 1.1100 slightly da = -0.33000.0000 corr = $sd_d =$ 1.4675 above 100 Estimated sample size: 124 N =2023/10/12 -vi Wang

Is correlation truly 0?

corr WTA WTP

STATA Results:

(obs=100)			
	l	WTA	WTP
WTA	Ì	1.0000	
WTP	1	0.0987	1.0000

Should set correlation = +0.1...

Experimetrics: Power Analysis

What is the sample size to get power $\pi = 0.80$? power pairedmeans 2.57 2.24 , sd1(0.96) sd2(1.11) corr(0.10) p(0.80) oneside

112

Performing iteration ...

Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d < d0

Study parameters:

alpha =	0.0500
power =	0.8000
delta =	-0.2369
d0 =	0.0000
da =	-0.3300
sd d =	1.3930

Estimated sample size:

N =

ma1 = 2.5700
ma2 = 2.2400
sd1 = 0.9600
sd2 = 1.1100
corr = 0.1000

Only need n = 112!

Wang

2023/10/12

STATA

Results:

Acknowledgment

This presentation is based on

- Section 1.1-1.4 of the lecture notes on Experimetrics,
- prepared for a mini-course taught by Peter
 G. Moffatt (UEA) at National Taiwan
 University in Spring 2019

Experimetrics: Power Analysis