# Dealing with Heterogeneity: Finite Mixture Models 處理群體異質性: 有限混入模型

#### Joseph Tao-yi Wang (王道一) EEBGT, Experimetrics Module 6



Heterogeneity: Finite Mixture Models

# Part I: Mixture of Two Normal Distributions 第一部分: 混入兩個常態分配

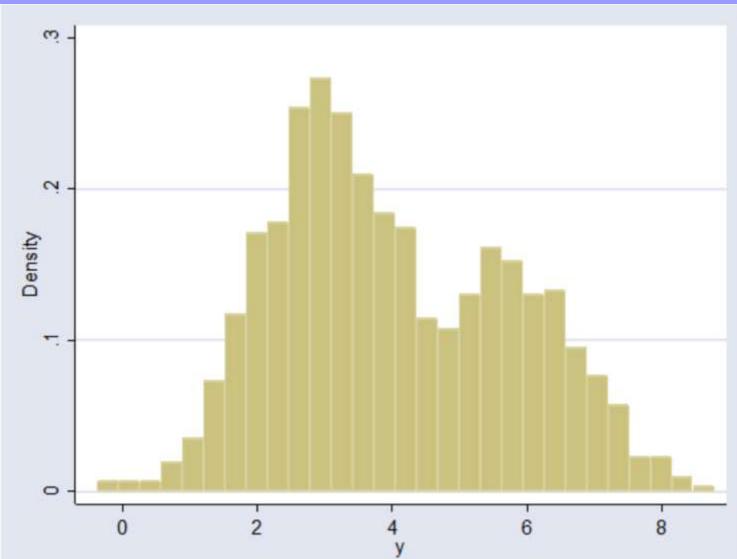
#### Joseph Tao-yi Wang (王道一) EEBGT, Experimetrics Module 6



Heterogeneity: Finite Mixture Models

# Mixture of Two Normal Distributions

- Data (N=1,000)
  mixture\_sim.dta
- STATA Command: hist y
- STATA Results:
  2 Types of Subjects?
  Mean at 3 and 6?



## Mixture of Two Normal Distributions

- Type 1: Mixing Proportion Pr(Type 1) = p
  - Choose  $y \sim N(\mu_1, \sigma_1^2)$  with  $f(y|\text{Type 1}) = \frac{1}{\sigma_1} \phi\left(\frac{y \mu_1}{\sigma_1}\right)$
- Type 2: Mixing Proportion Pr(Type 2) = (1 p)
  - Choose  $y \sim N(\mu_2, \sigma_2^2)$  with  $f(y|\text{Type } 2) = \frac{1}{\sigma_2}\phi\left(\frac{y-\mu_2}{\sigma_2}\right)$
- Marginal Density (Likelihood):

$$f(y;\underline{\mu_1,\sigma_1,\mu_2,\sigma_2,p}) = p \cdot \frac{1}{\sigma_1} \phi\left(\frac{y-\mu_1}{\sigma_1}\right) + (1-p) \cdot \frac{1}{\sigma_2} \phi\left(\frac{y-\mu_2}{\sigma_2}\right)$$

### Mixture of Two Normal Distributions

• Estimate  $\hat{\mu_1}, \hat{\sigma_1}, \hat{\mu_2}, \hat{\sigma_2}, \hat{p}$  to max. n

Sample log-Likelihood:  $\log L = \sum_{i=1} \ln f(y_i; \mu_1, \sigma_1, \mu_2, \sigma_2, p)$ (for  $y_1, y_2, \dots, y_n$ )

Calculate Posterior Probability:

$$\Pr(\text{Type 1}|y) = \frac{f(y|\text{Type 1})\Pr(\text{Type 1})}{f(y|\text{Type 1})\Pr(\text{Type 1}) + f(y|\text{Type 2})\Pr(\text{Type 2})}$$
$$= \frac{p \cdot \frac{1}{\sigma_1}\phi\left(\frac{y-\mu_1}{\sigma_1}\right)}{p \cdot \frac{1}{\sigma_1}\phi\left(\frac{y-\mu_1}{\sigma_1}\right) + (1-p) \cdot \frac{1}{\sigma_2}\phi\left(\frac{y-\mu_2}{\sigma_2}\right)}$$

Heterogeneity: Finite Mixture Models

Joseph Tao-yi Wang

# STATA Code: Components of Log-Likelihood

• mu1, mu2, sig1, sig2, p: 
$$\hat{\mu}_1, \hat{\sigma}_1, \hat{\mu}_2, \hat{\sigma}_2, \hat{p}$$
• f1:  $f(y|\text{Type 1}) = \frac{1}{\sigma_1} \phi\left(\frac{y-\mu_1}{\sigma_1}\right)$ 
• f2:  $f(y|\text{Type 2}) = \frac{1}{\sigma_2} \phi\left(\frac{y-\mu_2}{\sigma_2}\right)$ 
• log1:
 $\ln[f(y)] = \ln\left[p \cdot \frac{1}{\sigma_1} \phi\left(\frac{y-\mu_1}{\sigma_1}\right) + (1-p) \cdot \frac{1}{\sigma_2} \phi\left(\frac{y-\mu_2}{\sigma_2}\right)\right]$ 
• postp1:  $\Pr(\text{Type 1})$ 
• postp2:  $\Pr(\text{Type 2})$ 
2024/4/16

# STATA Code: Components of Log-Likelihood

program drop \_all

\* LIKELIHOOD EVALUATION PROGRAM STARTS HERE:

program define mixture

args logl mu1 sig1 mu2 sig2 p tempvar f1 f2

Global Variable: y Local Variable: 'mu1', 'sig1',...

\* GENERATE TYPE-CONDITIONAL DENSITIES: quietly gen double 'f1'=(1/'sig1')\*normalden((y-'mu1')/'sig1') quietly gen double 'f2'=(1/'sig2')\*normalden((y-'mu2')/'sig2')

\* COMBINE TYPE-CONDITIONAL DENSITIES WITH MIXING PROPORTIONS TO GENERATE MARGINAL DENSITY \* THIS IS THE FUNCTION THAT NEEDS TO BE MAXIMISED WHEN SUMMED OVER THE SAMPLE: quietly replace 'logl'=ln('p'\*'f1'+(1-'p')\*'f2')

```
* GENERATE THE POSTERIOR TYPE PROBABILITIES, AND MAKE THEM AVAILABLE OUTSIDE THE PROGRAM:
quietly replace postp1='p'*'f1'/('p'*'f1'+(1-'p')*'f2')
quietly replace postp2=(1-'p')*'f2'/('p'*'f1'+(1-'p')*'f2')
quietly putmata postp1, replace
```

```
program drop _all
* LIKELIHOOD EVALUATION PROGRAM STARTS HERE:
program define mixture
args logl mu1 sig1 mu2 sig2 p
tempvar f1 f2
```

```
* GENERATE TYPE-CONDITIONAL DENSITIES:
quietly gen double 'f1'=(1/'sig1')*normalden((y-'mu1')/'sig1')
quietly gen double 'f2'=(1/'sig2')*normalden((y-'mu2')/'sig2')
```

\* COMBINE TYPE-CONDITIONAL DENSITIES WITH MIXING PROPORTIONS TO GENERATE MARGINAL DENSITY \* THIS IS THE FUNCTION THAT NEEDS TO BE MAXIMISED WHEN SUMMED OVER THE SAMPLE: quietly replace 'logl'=ln('p'\*'f1'+(1-'p')\*'f2')

\* GENERATE THE POSTERIOR TYPE PROBABILITIES, AND MAKE THEM AVAILABLE OUTSIDE THE PROGRAM: quietly replace postp1='p'\*'f1'/('p'\*'f1'+(1-'p')\*'f2') quietly replace postp2=(1-'p')\*'f2'/('p'\*'f1'+(1-'p')\*'f2')

quietly putmata postp1, replace quietly putmata postp2, replace

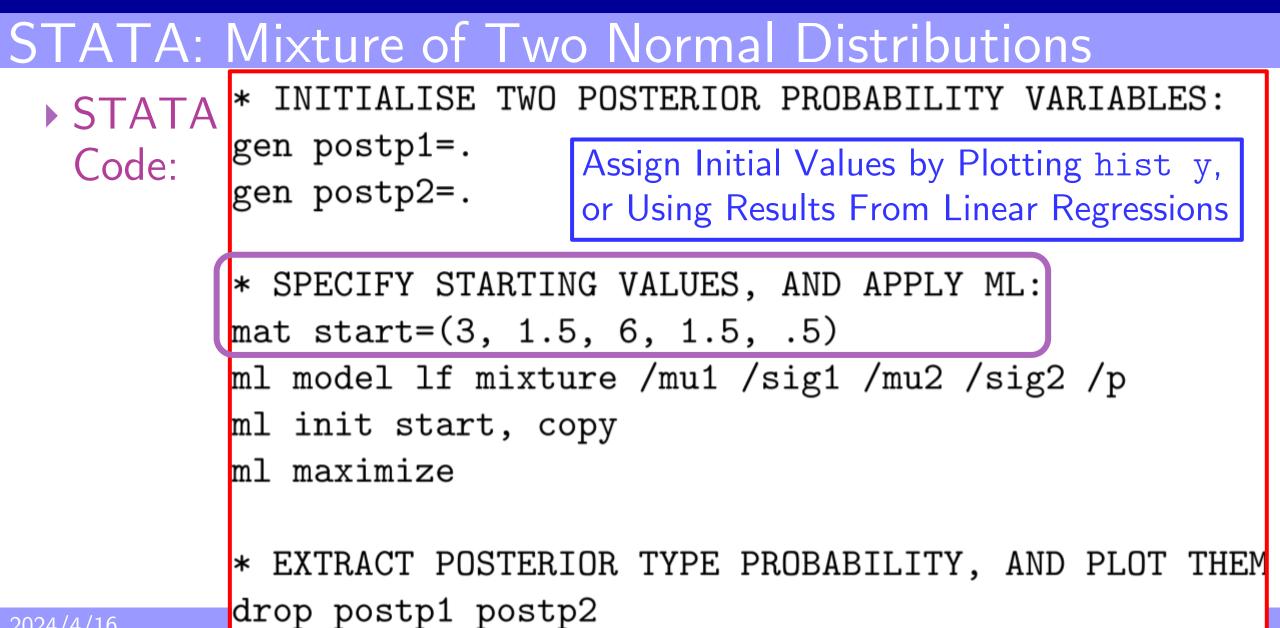
Save postp1, postp2 with STATA mata command putmata for later use

\* END OF LIKELIHOOD EVALUATION PROGRAM

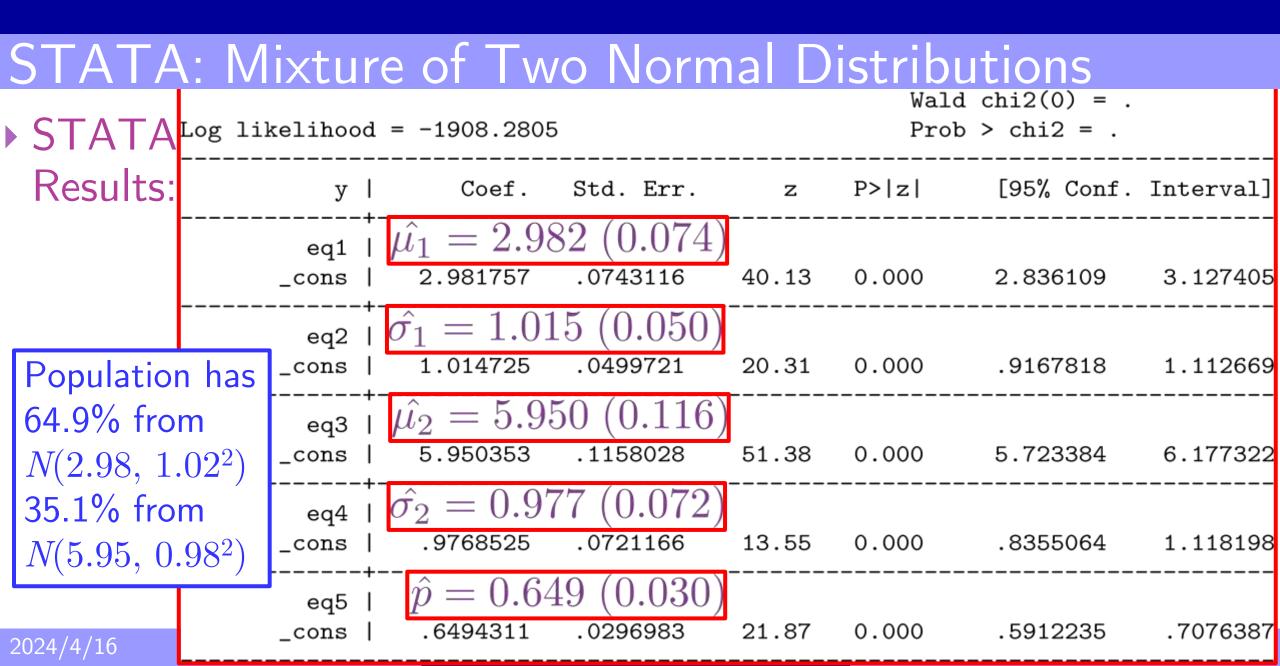
\* READ DATA:

end

use mixture\_sim, clear

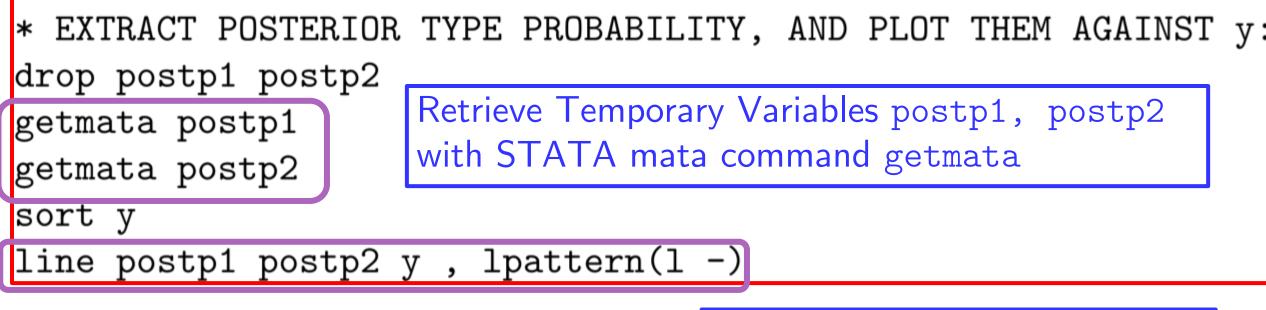


2024/4/16

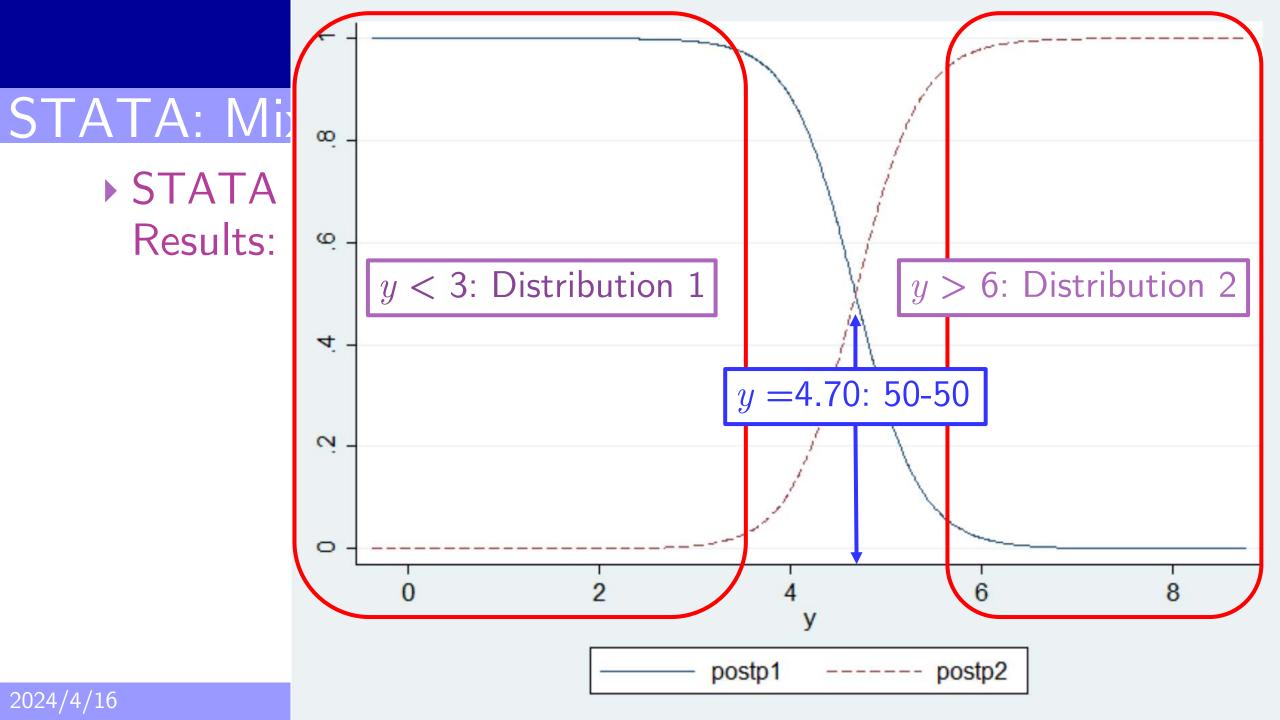


# STATA: Mixture of Two Normal Distributions

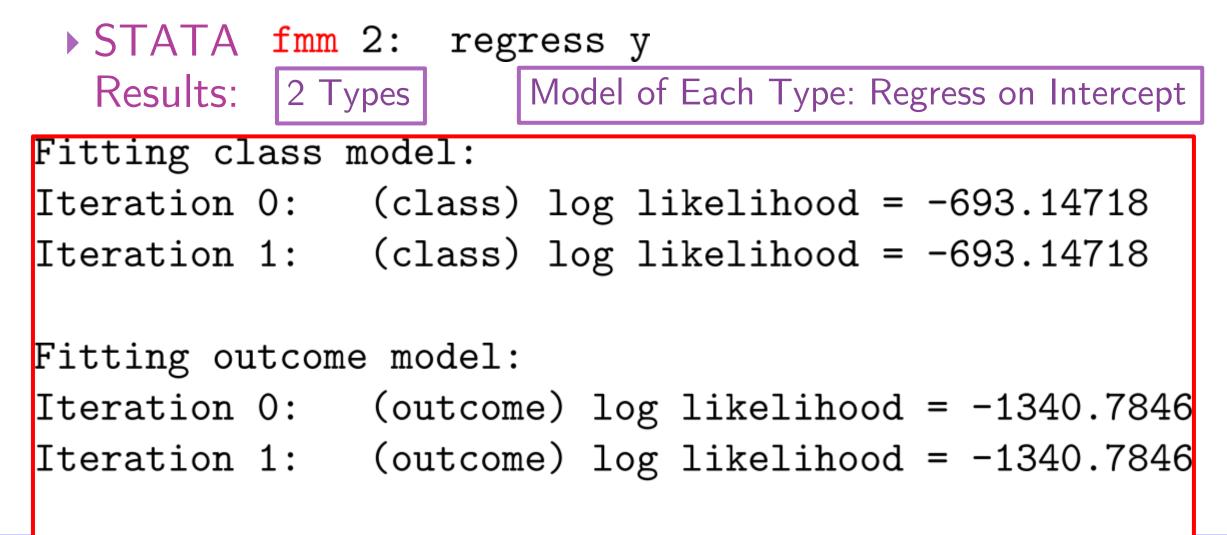
## STATA Code:



Plot Posterior Probability vs. y



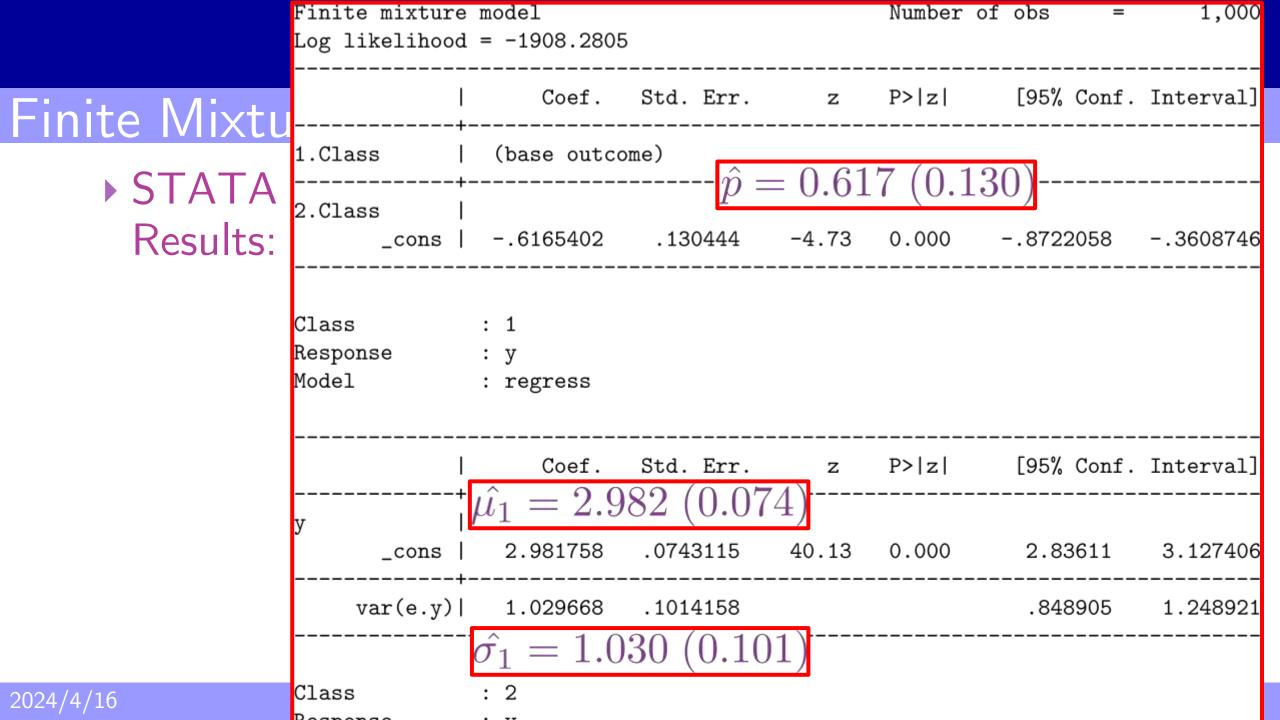
# Finite Mixture Model STATA Command: fmm

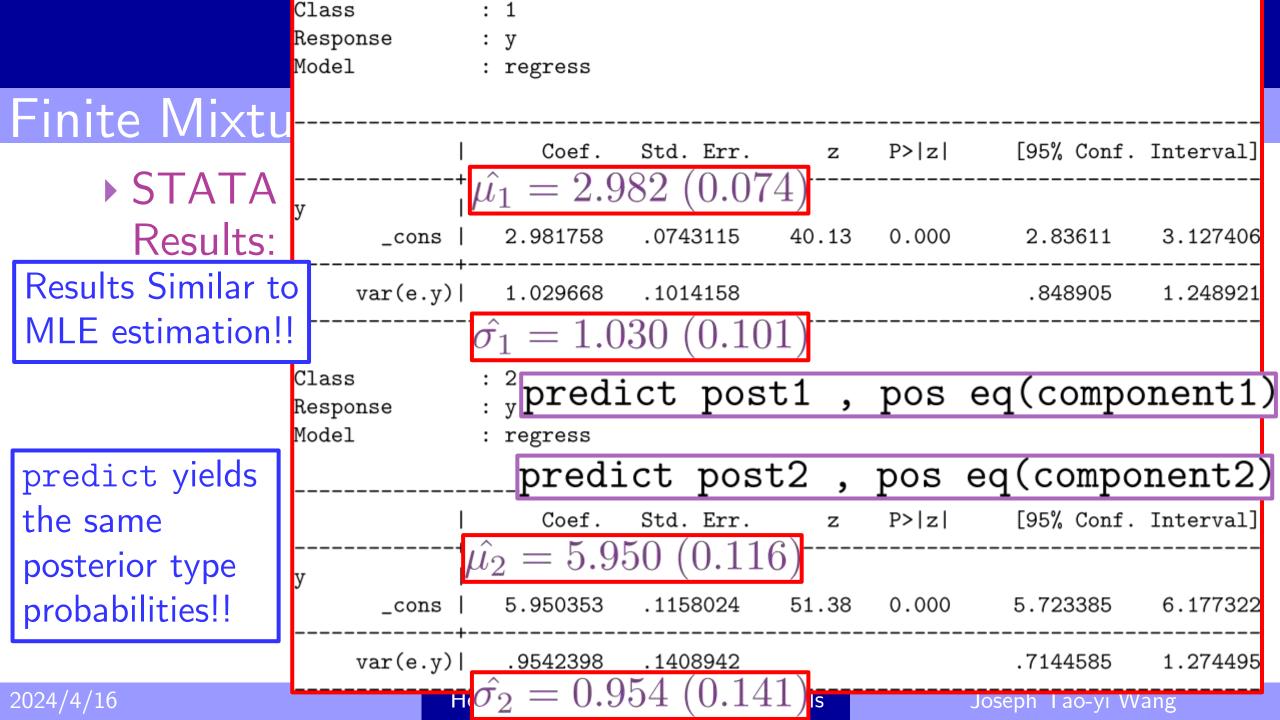


<sup>2024</sup>/Refining starting values:

|              | Refining s             | starti | ng va | alues | 3:         |   |        |         |
|--------------|------------------------|--------|-------|-------|------------|---|--------|---------|
|              | Iteration              | 0:     | (EM)  | log   | likelihood | = | -2114. | 989     |
| Finite Mixtı | Iteration              | 1:     | (EM)  | log   | likelihood | = | -2144. | 1684    |
| ► STATA      | Iteration              | 2:     | (EM)  | log   | likelihood | = | -2155. | 951     |
|              | Iteration              | 3:     | (EM)  | log   | likelihood | = | -2159. | 9264    |
| Results:     | Iteration<br>Iteration | 4:     | (EM)  | log   | likelihood | = | -2159. | 9464    |
|              | Iteration              | 5:     | (EM)  | log   | likelihood | = | -2157. | 8613    |
|              | Iteration              | 6:     | (EM)  | log   | likelihood | = | -2154. | 6472    |
|              | Iteration              | 7:     | (EM)  | log   | likelihood | = | -2150. | 8481    |
|              | Iteration              | 8:     | (EM)  | log   | likelihood | = | -2146. | 7758    |
|              | Iteration              | 9:     | (EM)  | log   | likelihood | = | -2142. | 6116    |
|              | Iteration              | 10:    | (EM)  | log   | likelihood | = | -2138. | 4622    |
|              | Iteration              | 11:    | (EM)  | log   | likelihood | = | -2134. | 3904    |
|              | Iteration              | 12:    | (EM)  | log   | likelihood | = | -2130. | 4335    |
| 2024/4/16    | Iteration              | 13:    | (EM)  | log   | likelihood | = | -2126. | 6137    |
|              |                        |        |       | -     |            |   | 0100   | ~ ^ ^ ^ |

|                   | Iteration 1 | 14:   | (EM)  | log   | likelihoo  | d =  | -2122   | .9441  |
|-------------------|-------------|-------|-------|-------|------------|------|---------|--------|
|                   | Iteration 2 | 15:   | (EM)  | log   | likelihoo  | d =  | -2119   | .432   |
| Finite Mixtu      | Iteration 2 | 16:   | (EM)  | log   | likelihoo  | d =  | -2116   | .0816  |
| STATA<br>Results: | Iteration 2 | 17:   | (EM)  | log   | likelihoo  | d =  | -2112   | .8942  |
|                   | Iteration 2 | 18:   | (EM)  | log   | likelihoo  | d =  | -2109   | .8699  |
|                   | Iteration 1 | 19:   | (EM)  | log   | likelihoo  | d =  | -2107   | .0071  |
|                   | Iteration 2 | 20:   | (EM)  | log   | likelihoo  | d =  | -2104   | . 3034 |
|                   | Note: EM al | lgori | thm : | reach | ned maximu | n it | ceratio | ons.   |
|                   |             |       |       |       |            |      |         |        |
|                   | Fitting ful | ll mo | del:  |       |            |      |         |        |
|                   | Iteration ( | ):    | log 1 | likel | ihood = -  | 1909 | 9.8137  |        |
|                   | Iteration 2 | 1:    | log 1 | likel | ihood = -  | 1908 | 3.4031  |        |
|                   | Iteration 2 | 2:    | log 1 | likel | ihood = -  | 1908 | 3.2811  |        |
|                   | Iteration 3 | 3:    | log 1 | likel | ihood = -  | 1908 | 3.2805  |        |
| 2024/4/16         | Iteration 4 | 4:    | log 1 | likel | ihood = -  | 1908 | 3.2805  |        |





# Part II: A Level-*k* Model For The Beauty Contest Game 第二部分: 選美預測賽局的多層次認知模型

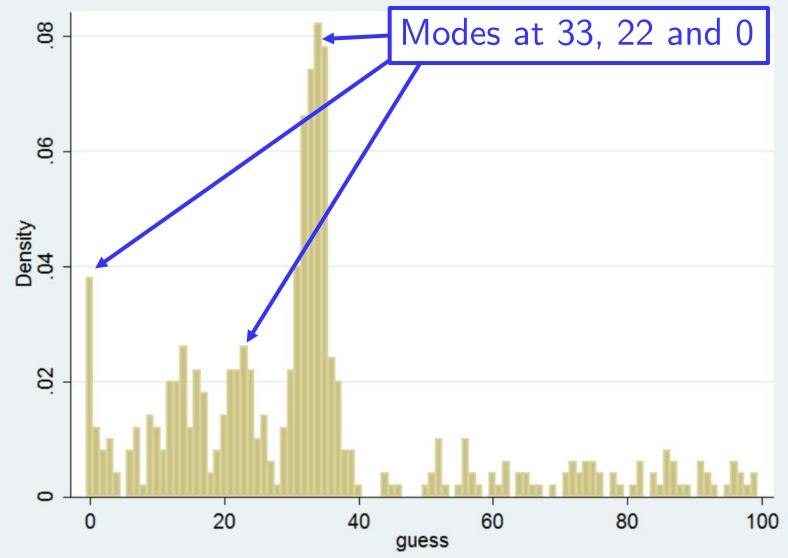
#### Joseph Tao-yi Wang (王道一) EEBGT, Experimetrics Module 6

Heterogeneity: Finite Mixture Models

### The *p*-Beauty Contest Game: Nagel (1995)

Het

- Choose a whole number in 0-100
- Number Closest to "p=2/3 of the Average" wins
  - Simulated Data of N=500 Players: beauty\_sim.dta



## <u>A Level-k Model For the Beauty Contest Game</u>

- Level-0 Reasoners Choose Randomly from Unif[0,100]
- Level-1 Believe Others are Level-0 and Choose 33
  Mean Guess = 50 and 50 x (2/3) = 33.333
- Level-2 Believe Others are Level-1 and Choose 22
  Mean Guess = 33 and 33 x (2/3) = 22
- Level-3 Believe Others are Level-2 and Choose 15
  - Mean Guess = 22 and  $22 \times (2/3) = 14.667$
- ▶ Level-4 Believe Others are Level-3 and Choose 10, etc.

# <u>A Level-k Model For the Beauty Contest Game</u>

- $\blacktriangleright$  If All Subjects Believe Others are Level- $K,\,K\to\infty$ 
  - ▶ All Guess 0 and Have Equal Chance to Win
- Same as Nash Equilibrium!
  - But real subjects do NOT play Nash (at least initially)
- ► To Estimate the Level-k Model:
  - Assume the Maximum Level = J
  - Let Level-J = naive-Nash (Choose Nash)
  - Let Level-0 choose randomly from uniform distribution

### Estimating the Level-k Model

- Level-*j* Chooses:  $y|_{\text{Type } j} = y_j^* + \epsilon, \ \epsilon \sim N(0, \sigma^2)$ 
  - Where  $y_i^* = \text{best guess of Type } j (j = 1, ..., J)$
- Conditional Density Functions:
  - Level-0:  $f(y|L_0) = 1/100, \ 0 \le y \le 100$

Level-j: 
$$f(y|L_j) = \frac{1}{\sigma} \phi\left(\frac{y - y_j^*}{\sigma}\right), \ 0 \le y \le 100 \ (j = 1, ..., J)$$

For  $y_i$ , i = 1,...,n:  $\log L = \sum_{i=1}^n \ln \left[ \frac{p_0}{100} + \sum_{j=1}^J p_j \frac{1}{\sigma} \phi \left( \frac{y_i - y_j^*}{\sigma} \right) \right]$ Mixture  $(p_0, p_1, ..., p_J)$ Sample Log-Likelihood: 2024/4/16 Joseph Tao-yi Wang

program define beauty\_mixture args lnf p1 p2 p3 p4 p5 sig tempvar f0 f1 f2 f3 f4 f5 l

quietly{

- J = 5
  - STATA: Maximized Log-Likelihood
- Best Guesses:
  - $y_1^* = 33.5$
  - $y_2^* = 22.4$
  - $y_3^* = 15.0$
  - $y_{4}^{*} = 10.1$

gen double 'f0'=0.01 gen double 'f1'=(1/'sig')\*normalden((y-33.5)/'sig') gen double 'f2'=(1/'sig')\*normalden((y-22.4)/'sig') gen double 'f3'=(1/'sig')\*normalden((y-15.0)/'sig') gen double 'f4'=(1/'sig')\*normalden((y-10.1)/'sig') gen double 'f5'=(1/'sig')\*normalden((y-0)/'sig')

gen double 'l'=(1-'p1'-'p2'-'p3'-'p4'-'p5')\*'f0' /// +'p1'\*'f1'+'p2'\*'f2'+'p3'\*'f3'+'p4'\*'f4'+'p5'\*'f5'

replace postp1='p1'\*'f1'/'l' replace postp2='p2'\*'f2'/'l' •  $y_5^* = 0$  (Naïve Nash) replace postp3='p3'\*'f3'/'1' replace postp4='p4'\*'f4'/'1' Heterogreplace postp5='p5'\*'f5'/'l'

replace 'lnf'=ln((1-'p1'-'p2'-'p3'-'p4'-'p5')\*'f0' /// +'p1'\*'f1'+'p2'\*'f2'+'p3'\*'f3'+'p4'\*'f4'+'p5'\*'f5')

/ putmata postp0, replace putmata postp1, replace putmata postp2, replace putmata postp3, replace putmata postp4, replace putmata postp5, replace

end

gen postp0=.

gen postp1=.

gen postp2=.

Heteroggen postp5=.

Best Guesses:

Estimating the Level

STATA: Maximized

Log-Likelihood

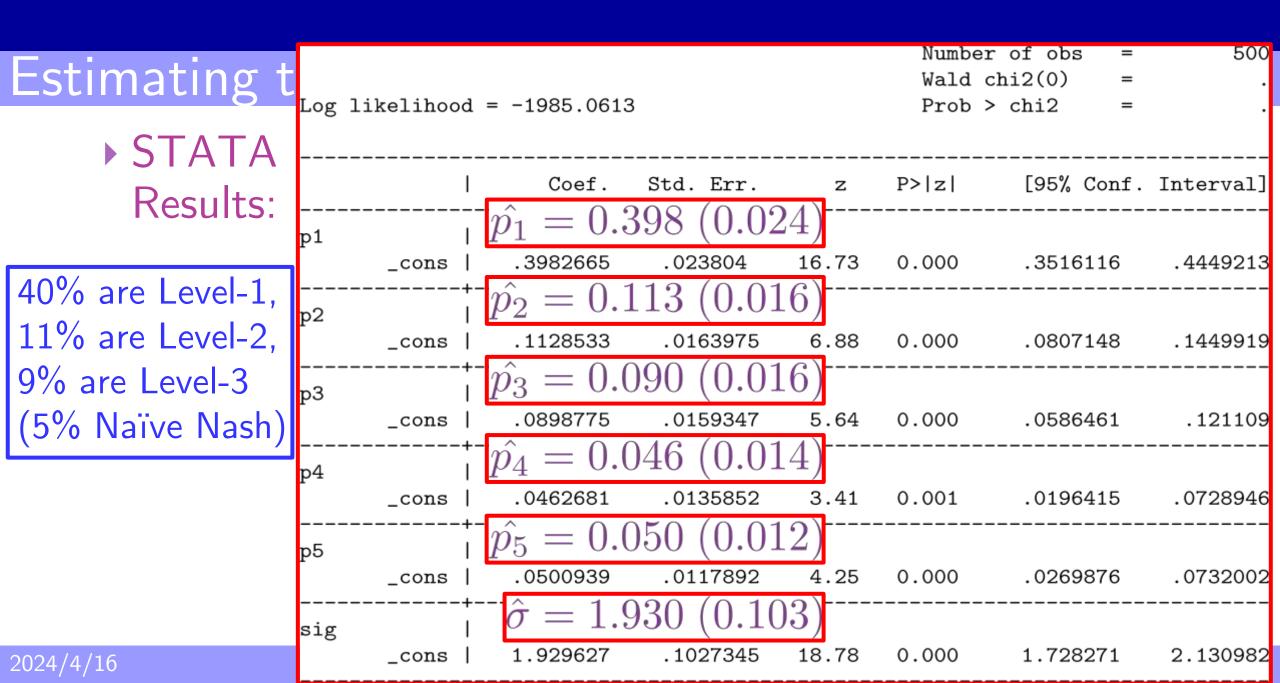
J = 5

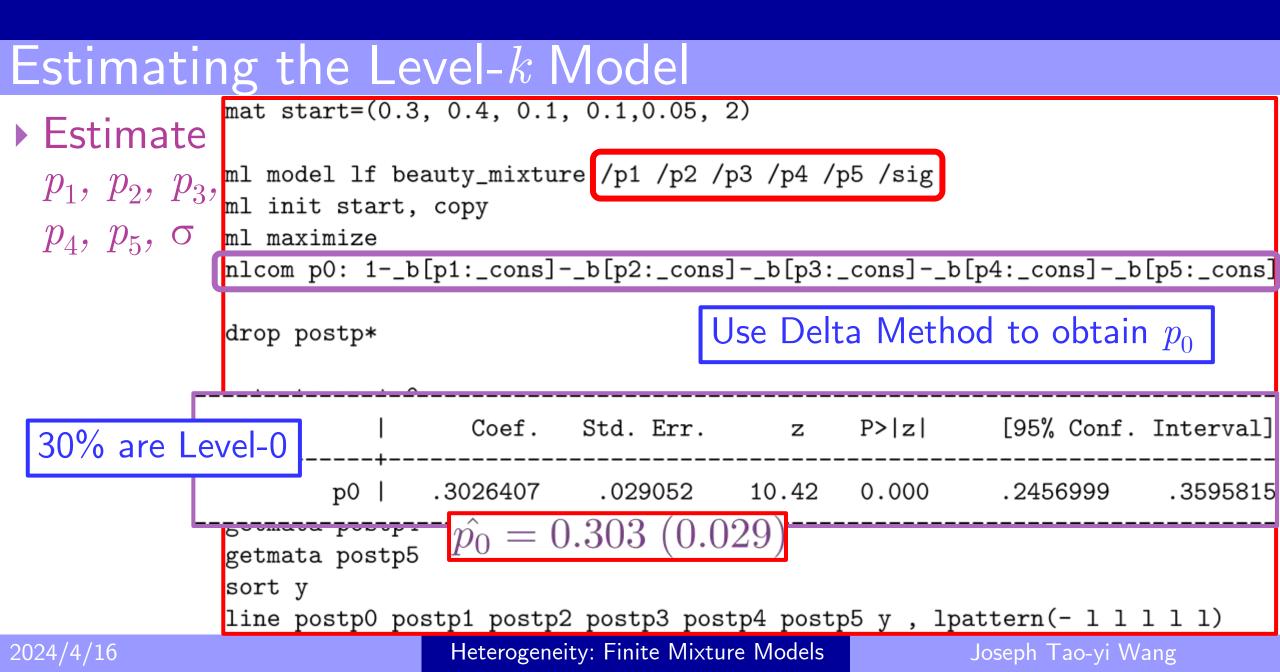
- $y_1^* = 33.5$
- $y_2^* = 22.4$
- $y_3^* = 15.0$
- ►  $y_4^* = 10.1$
- $y_5^* = 0$  (Naïve Nash)<sup>gen postp3=.</sup> gen postp4=.

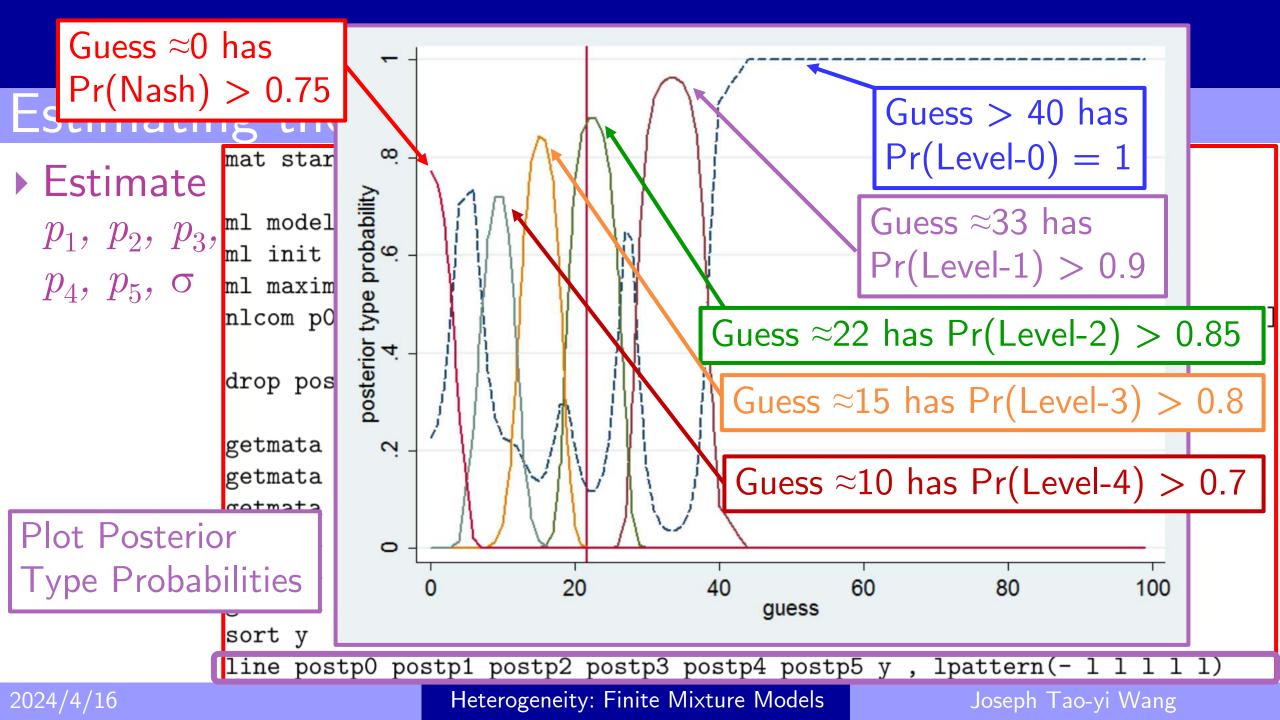
2024/4/16

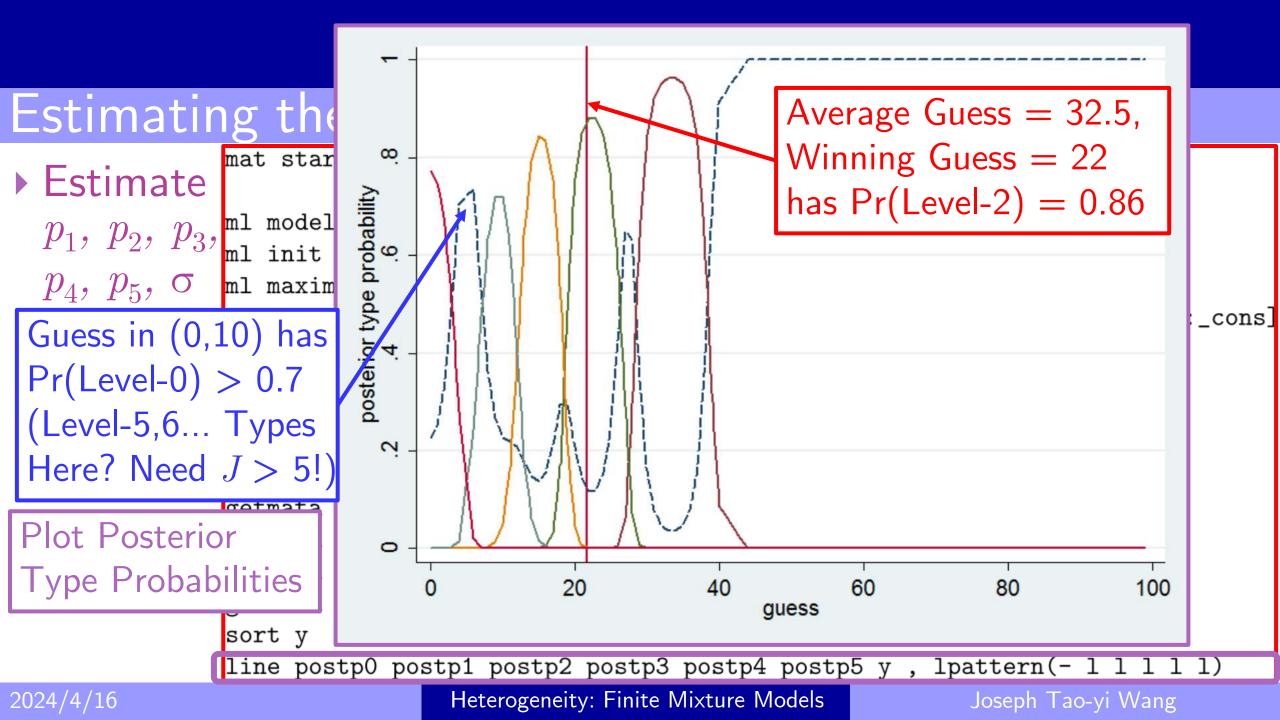
| Estimatir          | ng the Level- $k$ Model                                                                   |
|--------------------|-------------------------------------------------------------------------------------------|
| Estimate           | mat start=(0.3, 0.4, 0.1, 0.1,0.05, 2)                                                    |
|                    | ml model lf beauty_mixture /p1 /p2 /p3 /p4 /p5 /sig                                       |
| $p_4, p_5, \sigma$ | ml model lf beauty_mixture /p1 /p2 /p3 /p4 /p5 /sig<br>ml init start, copy<br>ml maximize |
|                    | nlcom p0: 1b[p1:_cons]b[p2:_cons]b[p3:_cons]b[p4:_cons]b[p5:_cons]                        |
|                    | drop postp*                                                                               |
|                    | getmata postp0                                                                            |
|                    | getmata postp1                                                                            |
|                    | getmata postp2                                                                            |
|                    | getmata postp3                                                                            |
|                    | getmata postp4                                                                            |
|                    | getmata postp5                                                                            |
|                    | sort y                                                                                    |
|                    | line postp0 postp1 postp2 postp3 postp4 postp5 y , lpattern(- l l l l l)                  |
| 000 A J A J 1 C    |                                                                                           |

Heterogeneity: Finite Mixture Models









# Part II-plus: The Cognitive Hierarchy Model 第二部分加碼: 認知階層模型

#### Joseph Tao-yi Wang (王道一) EEBGT, Experimetrics Module 6

# The Cognitive Hierarchy (CH) Model

- $\blacktriangleright$  Level-k model: Believe others exactly 1 level below themselves
- ▶ The Cognitive Hierarchy Model: Camerer (2003, 2004)
  - Population distribution over reasoning levels:  $Poisson(\tau)$

$$p(j) = \Pr(\text{Type} = j) = \left(\frac{e^{-\tau}\tau^{j}}{j!}\right), \ j = 0, 1, 2, \cdots$$

► Type k believes others are Type 0, 1, ..., (k-1) with (upper) Truncated Poisson( $\tau$ ):  $\left(\frac{e^{-\tau}\tau^{j}}{1-\tau}\right)$ 

$$p_k(j) = \Pr(\text{Type} = j|k) = \frac{(j!)}{\left(\sum_{m=0}^{k-1} \frac{e^{-\tau_{\tau^m}}}{m!}\right)}, \ j = 0, \cdots, k-1$$

### Cognitive Hierarchy Model of the Beauty Contest Game

- ▶ Type 1 Believe Others are Type 0 and Choose:
  - ▶  $b_1 = (2/3)[50] = 33.3$  as Type 0 Choose from Uniform[0,100]
- ▶ Type 2 Believe Others are Type 0 or 1 and Choose:
  - $igstarrow b_2 = (2/3)[50p_2(0) + b_1p_2(1)]$
- ▶ Type 3 Believe Others are Types 0, 1 or 2 and Choose:
  - $\mathbf{b}_3 = (2/3)[\mathbf{50}p_3(0) + \mathbf{b}_1p_3(1) + \mathbf{b}_2p_3(2)]$
- ▶ Type 4 Believe Others are Type 0, 1, 2 or 3 and Choose:
  - $\mathbf{b}_4 = (2/3) [\mathbf{50} p_4(0) + \mathbf{b}_1 p_4(1) + \mathbf{b}_2 p_4(2) + \mathbf{b}_3 p_4(3) ]$

## <u>Cognitive Hierarchy Model of the Beauty Contest Game</u>

- $\blacktriangleright$  Type K has accurate beliefs about the society as  $K \rightarrow \infty$ 
  - Not Nash (in general)!
  - Converges to SOPH if type distribution is indeed Poisson
- To Estimate the Cognitive Hierarchy Model:
  - Define Choice of each Type recursively
  - Assume Maximum Reasoning Levels = 4 for practical purposes
- Let Type 5 be Naïve Nash and Choose:  $b_5 = 0$ 
  - Let Level-0 choose randomly from uniform distribution
    - First let's simulate some CH data

\*generate the computational error variable gen e=sigma\*rnormal() Simulating CH Data \*generate the level-of-reasoning for each individual, **STATA:** Simulate \*setting the maximum level to 5 cog\_hier\_sim.dta gen level=rpoisson(tau) clear replace level=5 if level>5 set more off \*generate the first few Poisson Probabilities; set seed 9123456 \*p5 is one minus the sum of the others. set obs 500 scalar p0=exp(-tau) egen i=fill(1/2) scalar p1=p0\*tau/1 1. Error  $\sigma = 2$ \* set "true" parameter values for simul scalar p3-p2\*tau/3 2. Poisson  $\tau = 2$ scalar p4=p3\*tau/4 scalar tau=2.0 scalar sigma=2.0 scalar p5=1-p0-p1-p2-p3-p4 \*generate the computational error variable

inite Mixture Models

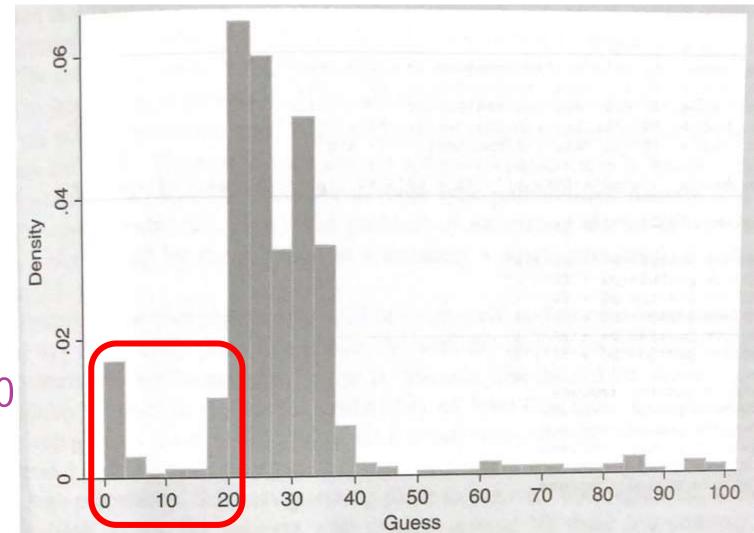
Joseph Tao-yi Wang

\* generate the "best guesses" for each level of reasoning;
\* Notethat type 5 is "naive Nash" with best-guess zero.

```
scalar/b0=50
Simulating CH Data
                               scalar b1=.67*b0
                               scalar b2=.67*(pl*b1+p0*b0)/ (p1+p0)
 STATA: Simulate
                               scalar b3=.67*(p2*b2+pl*b1+p0*b0)/ (p2+p1+p0)
    cog_hier_sim.dta
                               scalar b4=.67 (p3+b3+p2*b2+p1*b1+p0*b0)/ (p3+p2+p1+p0)
                               scalar b5=0
   • \sigma = 2. \tau = 2
                               * generate the guesses
 Type Predictions:
                               gen y=round((level==0)*100+uniform()+(level==1)*(blte) ///
   b_0 = 50
                                      +(level==2)+(b2+e)+(level==3)*(b3+e) ///
                                       +(level==4)*(b4+e)+(level==5)*abs(0+e),1)
   b_1 = [50] 	imes (2/3) = 33 hist y, bin(30) xtitle(guess)
   b_2 = [50p_2(0) + b_1p_2(1)] \times (2/3)
   ► b_3 = [50p_3(0) + b_1p_3(1) + b_2p_3(2)] \times (2/3); b_5 = 0 (Naïve Nash)
   b_4 = [50p_4(0) + b_1p_4(1) + b_2p_4(2) + b_3p_4(3)] \times (2/3)
```

### Simulated Data for the *p*-Beauty Contest Game

- Very few guessesbelow 20 (except 0)
  - Because most people have type = 0, 1, 2, 3
- Best guess converges
   to a lower bound
  - ▶ Here, lower bound = 20
  - Guesses < 20 can only be explain by type 0!



## Estimating the Cognitive Hierarchy Model

Fype  $j: y|_{\mathrm{Type}\;j} = b_j + \epsilon, \; \epsilon \sim N(0,\sigma^2), \; j=1,...,J=5$ 

Conditional Density Functions:

• Level-0:  $f(y|T_0) = 1/100, \ 0 \le y \le 100$ 

Level-j: 
$$f(y|T_j) = \frac{1}{\sigma}\phi\left(\frac{y-b_j}{\sigma}\right), \ 0 \le y \le 100 \quad (j=1,...,J)$$

Sample Log-Likelihood with Mixture p(0), p(1), ..., p(5):

For 
$$y_i$$
,  $i = 1,...,n$ :  
For  $\sigma$   $\log L = \sum_{i=1}^n \ln \left[ \frac{p(0)}{100} + \sum_{j=1}^J p(j) \frac{1}{\sigma} \phi\left(\frac{y_i - b_j}{\sigma}\right) \right]$   
 $p(k)$ : Poisson( $\tau$ )

program drop \_all

\*Log-likelihood evaluation program (ch) starts here

#### <u>Estimat</u>

```
program define cog_heir
args logl sig tau
tempvar f0 f1 f2 f3 f4 f5 l
tempname p0 p1 p2 p3 p4 p5 b0 b1 b2 b3 b4 b5
scalar 'p0'=exp(-'tau')
scalar 'p1'='p0'*'tau'/1
scalar 'p2'='p1'*'tau'/2
scalar 'p3'='p2'*'tau'/3
scalar 'p4'='p3'*'tau'/4
scalar 'p5'=1-'p0'-'p1'-'p2'-'p3'-'p4'
```

```
STATA Code to estimate:
```

```
1. computational
```

```
error parameter \sigma
```

```
2. Poisson mean \tau
```

```
scalar 'b0'=50
scalar 'b1'=.67*'b0'
scalar 'b2'=.67*('p1'*'b1'+'p0'*'b0')/('p1'+'p0')
scalar 'b3'=.67*('p2'*'b2'+'p1'*'b1'+'p0'*'b0')/('p2'+'p1'+'p0')
scalar 'b4'=.67*('p3'*'b3'+'p2'*'b2'+'p1'*'b1'+'p0'*'b0')/('p3'+'p2'+'p1'+'p0')
```

## Estimating CH

- **STATA** Code to estimate:
  - 1. computational error parameter  $\sigma$
  - 2. Poisson mean  $\tau$

quietly{

```
gen double 'f0'=0.01
gen double 'f1'=(1/'sig')*normalden((y-'b1')/'sig')
gen double 'f2'=(1/'sig')*normalden((y-'b2')/'sig')
gen double 'f3'=(1/'sig')*normalden((y-'b3')/'sig')
gen double 'f4'=(1/'sig')*normalden((y-'b4')/'sig')
gen double 'f5'=(1/'sig')*normalden((y-0)/'sig')
```

gen double 'l'='p0'\*'f0'+'p1'\*'f1'+'p2'\*'f2'+'p3'\*'f3'+'p4'\*'f4'+'p5'\*'f5'

replace postp0='p0'\*'f0'/'l'
replace postp1='p1'\*'f1'/'l'
replace postp2='p2'\*'f2'/'l'
replace postp3='p3'\*'f3'/'l'
replace postp4='p4'\*'f4'/'l'
replace postp5='p5'\*'f5'/'l'

putmata postp0, replace putmata postp1, replace putmata postp2, replace putmata postp3, replace putmata postp4, replace putmata postp5, replace

end

2024replace 'logl'=ln('l')

-yi Wang

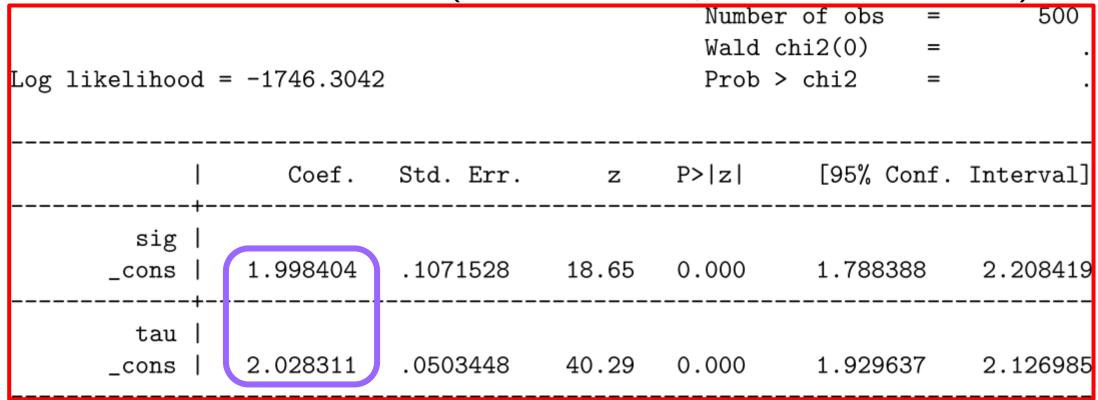
replace 'logl'=ln('l')

```
* create posterior prob variables, set starting values and call ML program (ch)
gen postp0=.getmata postp5
gen postp1=.
gen postp2=. sort y
gen postp3=.
gen postp4=.line postp0 postp1 postp2 postp3 postp4 postp5 y , lpattern(- 1 1 1 1 1) ///
gen postp5=.legend(off) xlabel(0(10)100) xtitle(guess) ytitle("posterior type probability")
mat start=( 2,2)
ml model lf cog_heir /sig /tau
ml init start, copy
                                            STATA Code to
ml maximize
                                              estimate:
drop postp*
                                               1. computational
getmata postp0
                                                  error parameter \sigma
getmata postp1
getmata postp2
                                              2. Poisson mean \tau
getmata postp3
getmata postp4
                                                                            Wang
```

getmata postp5

## Estimating the Cognitive Hierarchy Model

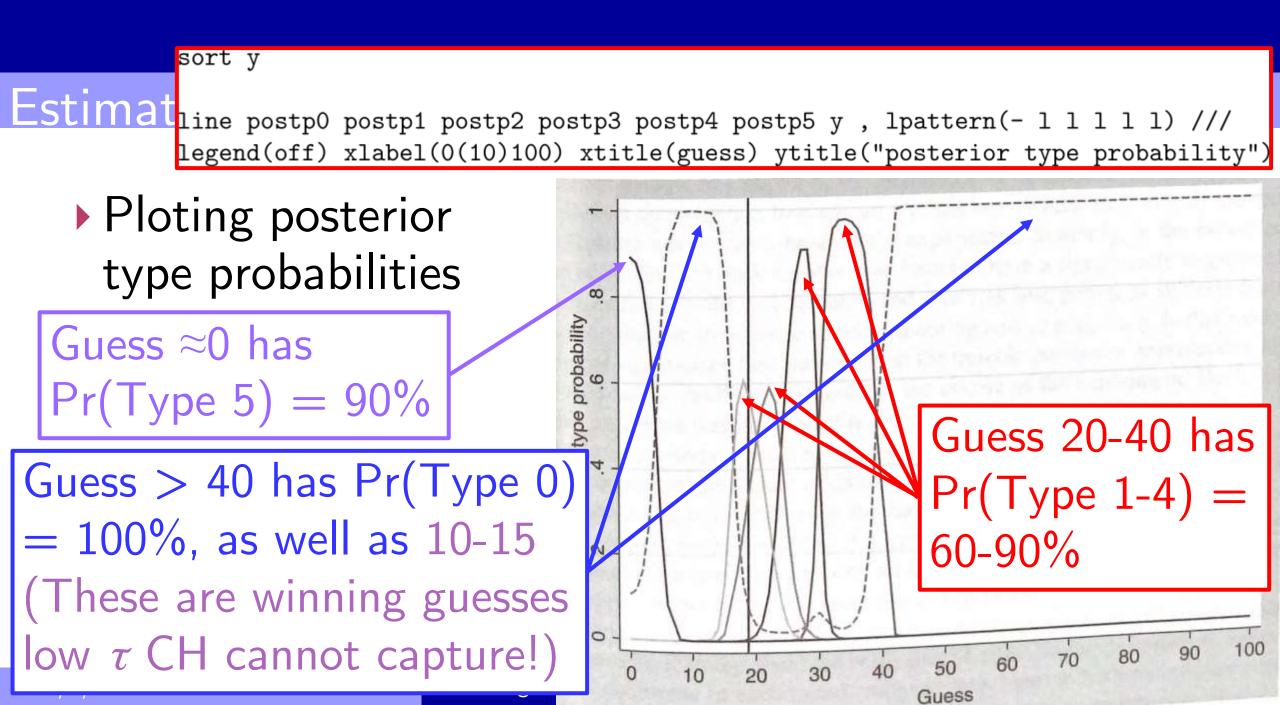
- Computational error parameter  $\sigma = 1.998$
- Poisson mean  $\tau = 2.028$  (instead of type probabilities)





Heterogeneity: Finite Mixture Models

Joseph Tao-yi Wang



## Part III: A Public Goods Game Experiment 第三部分: 公共財自願捐獻賽局實驗

### Joseph Tao-yi Wang (王道一) EEBGT, Experimetrics Module 6



Heterogeneity: Finite Mixture Models

## Public Goods Game Experiment

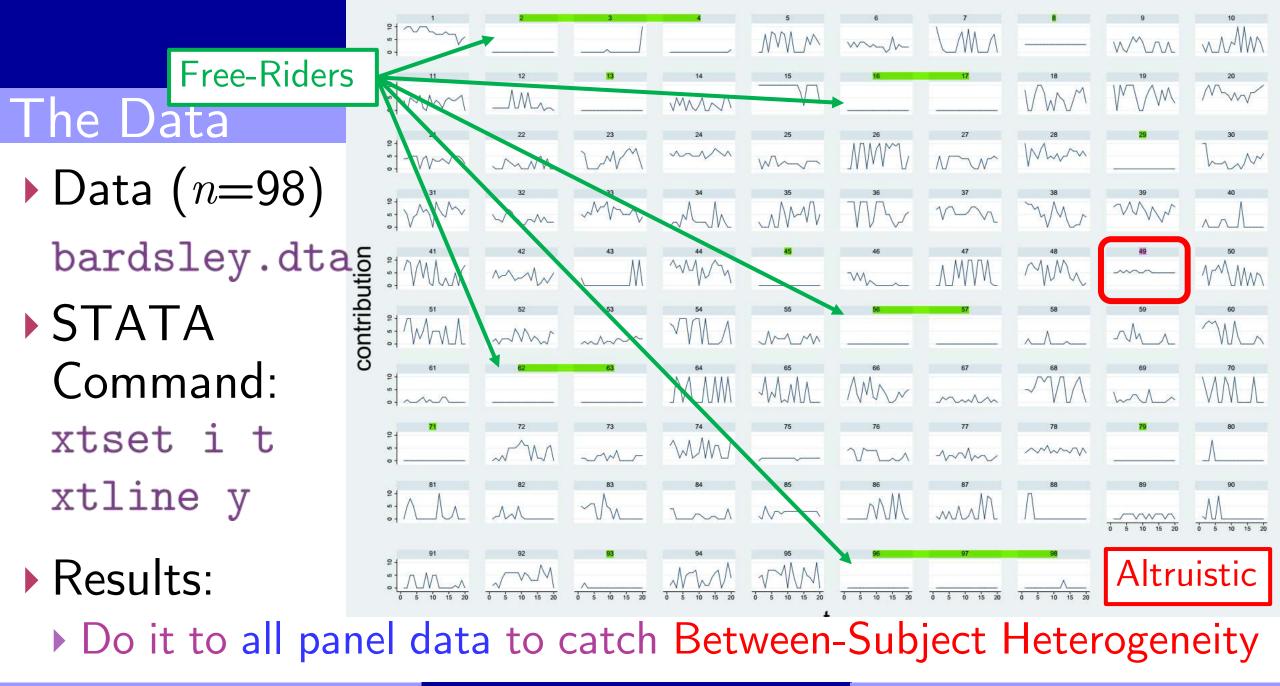
- ▶ n (= 7) Subjects per group with endowment  $e_i (= 10)$ 
  - Contribute to Public Account (or keep in Private Account)
  - MPCR = k/n : Public Account multiplied by k, but divided equally between all n members
- $\blacktriangleright$  Doubly Censored Data: Contribute between 0 and  $e_i$ 
  - Use Two-Limit Tobit Model (Nelson, 1976)
- Unique Nash Equilibrium: Zero Contribution
  - Experimental Data: Some positive contributions
  - Bardsley (2000): Uncover Motivations Behind Them

## Bardsley (2000): Why Contribution Decreases?

- 1. Learning to be Rational (learn incentive structure)
- 2. Social Learning (learn about others' behavior)
- Bardsley (2000): Conditional Information Lottery (CIL)
  - Play 1 Real Round mixed with 19 Fake Rounds against Computer, but only pay the real round
    - Subjects treat each round as real, but past rounds are not informative: They are fake if this round is real!
- Bardsley (2000): Take Turns to Contribute
  - See Previous Contributions Before Contributing

## Bardsley (2000): Take Turns to Contribute

- See Previous Contributions Before Contributing
- Use Mixture Model to Address Different Motivations:
- 1. Reciprocator (Depends on Previous Contributions)
  - Contributes if Median of Previous Contribution is High
- 2. Strategist (Depends on Position in Sequence)
  - Contributes to Induce Later Contributions
- 3. Free-Rider
  - Contributes 0 Regardless

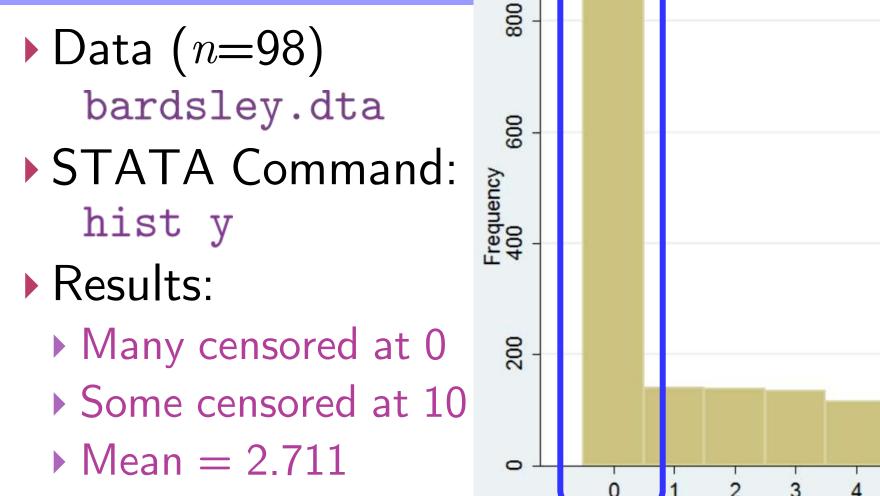


2024/4/16

Heterogeneity: Finite Mixture Models

Joseph Tao-yi Wang

## The Data



• Median = 1.0

2024/4/16

Heterogeneity: Finite Mixture Models

Joseph Tao-yi Wang

8

9

7

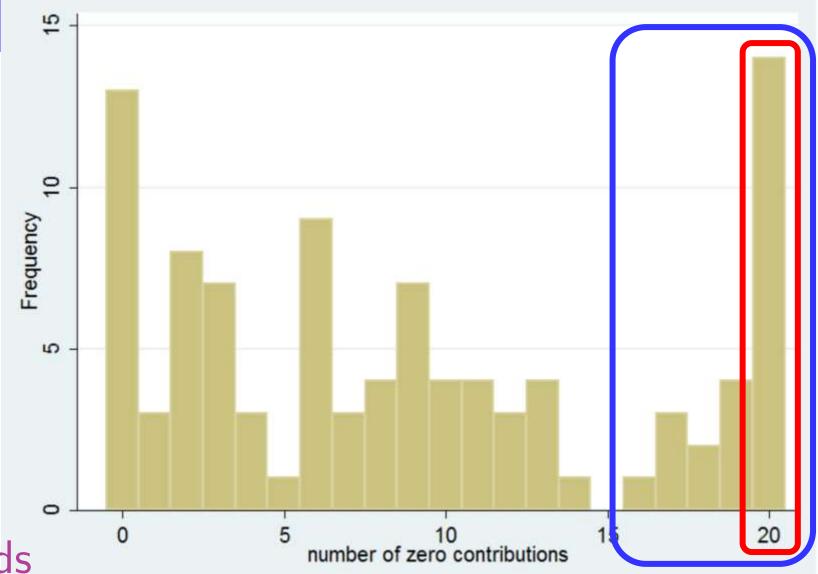
5

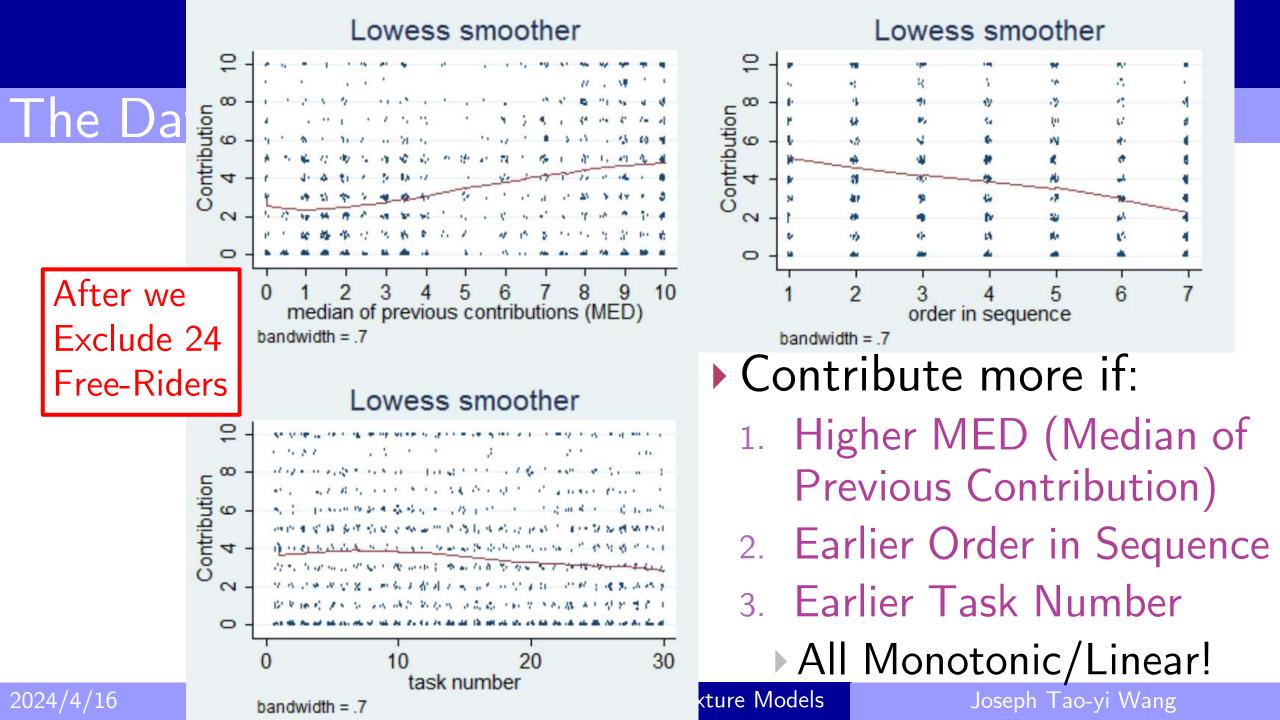
Contribution

6

## <u>The Data</u>

- Data (n=98) bardsley.dta
  STATA Command: hist y=0 ?
- Results:
  - Identify Free Riders
  - ▶ 14.3% always give 0
  - 24.5% mostly give 0 in 16 out of 20 rounds





## Finite Mixture 2-Limit Tobit Model with Tremble

- Bardsley and Moffatt (2007)
- $\blacktriangleright$  Observe n Subjects for T tasks
  - $\blacktriangleright$  Either Reciprocator, Strategist and Free-Rider for all T tasks
- Subject i contributes  $y_{it}$  in task t between 0 and 10
- 2-Limit Tobit Model for Reciprocator and Strategist:

 $y_{it} = \begin{cases} 0 & \text{if } y_{it}^* \leq 0 \quad (\text{Regime 1: No Contribution At All}) \\ y_{it}^* & \text{if } 0 < y_{it}^* < 10(\text{Regime 2: Contribute b/w 0-10}) \\ 10 & \text{if } y_{it}^* \geq 10 \quad (\text{Regime 3: Full Contribution of 10}) \\ \hline \text{Desired} \end{cases}$ 

## Finite Mixture 2-Limit Tobit Model with Tremble • Desired Contribution of Subjects i = 1 - n in tasks t = 1 - T are Reciprocator (rec) Median of Previous Contributions $y_{it}^* = \beta_{10} + \beta_{11}MED_{it} + \beta_{13}(TSK_{it} - 1) + \epsilon_{it,rec}$ >0 for Reciprocity <0: Learning $\epsilon_{it,rec} \sim N(0, \sigma_1^2)$ Desired Strategist (*str*) Decision Order Minus 1 Task Number (1-30) $y_{it}^* = \beta_{20} + \beta_{22}(ORD_{it} - 1) + \beta_{23}(TSK_{it} - 1) + \epsilon_{it,str}$ E(Contribution | <0 for Strategic Behavior $\epsilon_{it,str} \sim N(0, \sigma_2^2)$ Task 1, Order 1) Free-Rider (fr): None $y_{it} = 0$

Heterogeneity: Finite Mixture Models

## Finite Mixture 2-Limit Tobit Model with Tremble

- Prior Expectation of Others' Contribution
  - Set MED = 8.00 if ORD = 1 (trial-and-error to max. log-L)
- Mistakes (Moffatt and Peters, 2001): Tremble  $\omega$ 
  - Decreasing magnitude over time  $\omega_{it} = \omega_0 \exp \left[\omega_1 (TSK_{it} 1)\right]$
  - $\blacktriangleright$  Initial tremble probability  $\omega_0~$  vs. rate of decay  $\omega_1 < 0$
- Regime 1 (y = 0)
- Regime 2 (0 < y < 10)
- Regime 3 (y = 10)

## Finite Mixture 2-Limit Tobit Model with Tremble

## Regime 1 (y = 0): Tremble: 0-10 with Equal Chance

 $\Pr(y_{it} = 0 | i = \operatorname{rec}) = \frac{1}{(1 - \omega_{it})} \Phi\left(\frac{-\beta_{10} - \beta_{11}MED_{it} - \beta_{13}(TSK_{it} - 1)}{\sigma_1}\right) + \frac{\omega_{it}}{11}$   $\Pr(y_{it} = 0 | i = \operatorname{str}) =$ 

$$(1 - \omega_{it})\Phi\left(\frac{-\beta_{20} - \beta_{22}(ORD_{it} - 1) - \beta_{23}(TSK_{it} - 1)}{\sigma_2}\right) + \frac{\omega_{it}}{11}$$

$$\Pr(y_{it} = 0 | i = \text{fr}) = 1 - \frac{10\omega_i}{11}$$

# Finite Mixture 2-Limit Tobit Model with Tremble • Regime 2 (0 < y < 10): Tremble: Uniform[-0.5, 10.5] $f(y_{it}|i = \text{rec}) =$ $(1-\omega_{it})\frac{1}{\sigma_1}\Phi\left(\frac{y_{it}-\beta_{10}-\beta_{11}MED_{it}-\beta_{13}(TSK_{it}-1)}{\sigma_1}\right)+\frac{\omega_{it}}{11}$ • $f(y_{it}|i = \operatorname{str}) =$ $(1 - \omega_{it})\frac{1}{\sigma_2}\Phi\left(\frac{y_{it} - \beta_{20} - \beta_{22}(ORD_{it} - 1) - \beta_{23}(TSK_{it} - 1)}{\sigma_2}\right) + \frac{\omega_{it}}{11}$

• 
$$f(y_{it}|i=\mathrm{fr}) = \frac{\omega_{it}}{11}$$

Heterogeneity: Finite Mixture Models

Joseph Tao-yi Wang

## Finite Mixture 2-Limit Tobit Model with Tremble

► Regime 3 
$$(y = 10)$$
:  
►  $\Pr(y_{it} = 10|i = \operatorname{rec}) =$   
 $(1 - \omega_{it}) \left[ 1 - \Phi \left( \frac{10 - \beta_{10} - \beta_{11}MED_{it} - \beta_{13}(TSK_{it} - 1)}{\sigma_1} \right) \right] + \frac{\omega_{it}}{11}$   
►  $\Pr(y_{it} = 10|i = \operatorname{str}) =$ 

$$(1 - \omega_{it}) \left[ 1 - \Phi \left( \frac{10 - \beta_{20} - \beta_{22}(ORD_{it} - 1) - \beta_{23}(TSK_{it} - 1)}{\sigma_2} \right) \right] + \frac{\omega_{it}}{11}$$
  
 
$$\triangleright \Pr(y_{it} = 10 | i = \text{fr}) = \frac{\omega_{it}}{11}$$

Heterogeneity: Finite Mixture Models

## Finite Mixture 2-Limit Tobit Model with Tremble

## Likelihood Function is L<sub>i</sub>

$$= p_{\rm rec} \prod_{t=1}^{T} \Pr(y_{it} = 0|\text{rec})^{I_{y_{it}=0}} f(y_{it}|\text{rec})^{I_{0$$

 $\hat{\beta}_{10}, \ldots, \hat{\beta}_{23}, \hat{\sigma}_1, \hat{\sigma}_2; \hat{\omega}_0, \hat{\omega}_1; \hat{p}_{rect}, \hat{p}_{str}, \hat{p}_{fr} \text{ maximize} \log L = \sum \log(L_i)$ □(Sample Log-Likelihood) i=12024/4/16

Heterogeneity: Finite Mixture Models

Joseph Tao-yi Wang

## STATA Code: Components of Log-Likelihood

- p1\_1,p2\_1,p3\_1:Pr(y = 0|rec), Pr(y = 0|str), Pr(y = 0|fr)
  p1\_2,p2\_2,p3\_2:f(y|rec), f(y|str), f(y|fr), 0 < y < 10</li>
- ▶ p1\_3,p2\_3,p3\_3:Pr(y = 10 | rec), Pr(y = 10 | str), Pr(y = 10 | fr)
- ▶ p1:

$$\Pr(y_{it} = 0 | \operatorname{rec})^{I_{y_{it}}=0} f(y_{it} | \operatorname{rec})^{I_0 < y_{it} < 10} \Pr(y_{it} = 10 | \operatorname{rec})^{I_{y_{it}}=10}$$
p2:

$$\Pr(y_{it} = 0 | \text{str})^{I_{y_{it}}=0} f(y_{it} | \text{str})^{I_0 < y_{it} < 10} \Pr(y_{it} = 10 | \text{str})^{I_{y_{it}}=10}$$
  
• p3:

$$\Pr(y_{it} = 0|\mathrm{fr})^{I_{y_{it}}=0} f(y_{it}|\mathrm{fr})^{I_{0 < y_{it} < 10}} \Pr(y_{it} = 10|\mathrm{fr})^{I_{y_{it}}=10}$$

## STATA Code: Components of Log-Likelihood

# $\prod_{t=1}^{t} \Pr(y_{it} = 0|\operatorname{rec})^{I_{y_{it}}=0} f(y_{it}|\operatorname{rec})^{I_{0 < y_{it} < 10}} \Pr(y_{it} = 10|\operatorname{rec})^{I_{y_{it}}=10}$

# ▶ pp2:<sub>T</sub> $\prod_{t=1}^{T} \Pr(y_{it} = 0 | \operatorname{str})^{I_{y_{it}=0}} f(y_{it} | \operatorname{str})^{I_{0 < y_{it} < 10}} \Pr(y_{it} = 10 | \operatorname{str})^{I_{y_{it}=10}}$

▶ pp3:<sub>T</sub>  $\prod_{t=1}^{T} \Pr(y_{it} = 0 | \text{fr})^{I_{y_{it}=0}} f(y_{it} | \text{fr})^{I_0 < y_{it} < 10} \Pr(y_{it} = 10 | \text{fr})^{I_{y_{it}=10}}$ 

## STATA Code: Components of Log-Likelihood

- theta1:  $\beta_{10}, \beta_{11}, \beta_{13}$
- ▶ theta2:  $\beta_{20}, \beta_{22}, \beta_{23}$
- imes sig1, sig2, w0, w1, w:  $\sigma_1, \sigma_2, \omega_0, \omega_1, \omega$
- $p_{rec}, p_{str}, p_{fr}: p_{rect}, p_{str}, p_{fr}$
- $pp,lnpp:L_i, LogL = \sum_{i=1}^n \log(L_i)$
- $\textbf{postp1:} \Pr(i = \operatorname{rec}|y_{i1}, \dots, y_{iT})$
- ▶ postp2:  $\Pr(i = \operatorname{str}|y_{i1}, \ldots, y_{iT})$
- ▶ postp3:  $Pr(i = fr|y_{i1}, \ldots, y_{iT})$

\* ESTIMATION OF MIXTURE MODEL FOR BARDSLEY DATA

prog drop \_all

\* LIKELIHOOD EVALUATION PROGRAM STARTS HERE:

program define pg\_mixture args todo b lnpp tempvar p1\_1 p2\_1 p3\_1 p1\_2 p2\_2 p3\_2 p1\_3 p2\_3 p3\_3 p1 p2 p3 pp1 pp2 pp3 pp w

tempname theta1 theta2 sig1 sig2 w0 w1 p\_rec p\_str

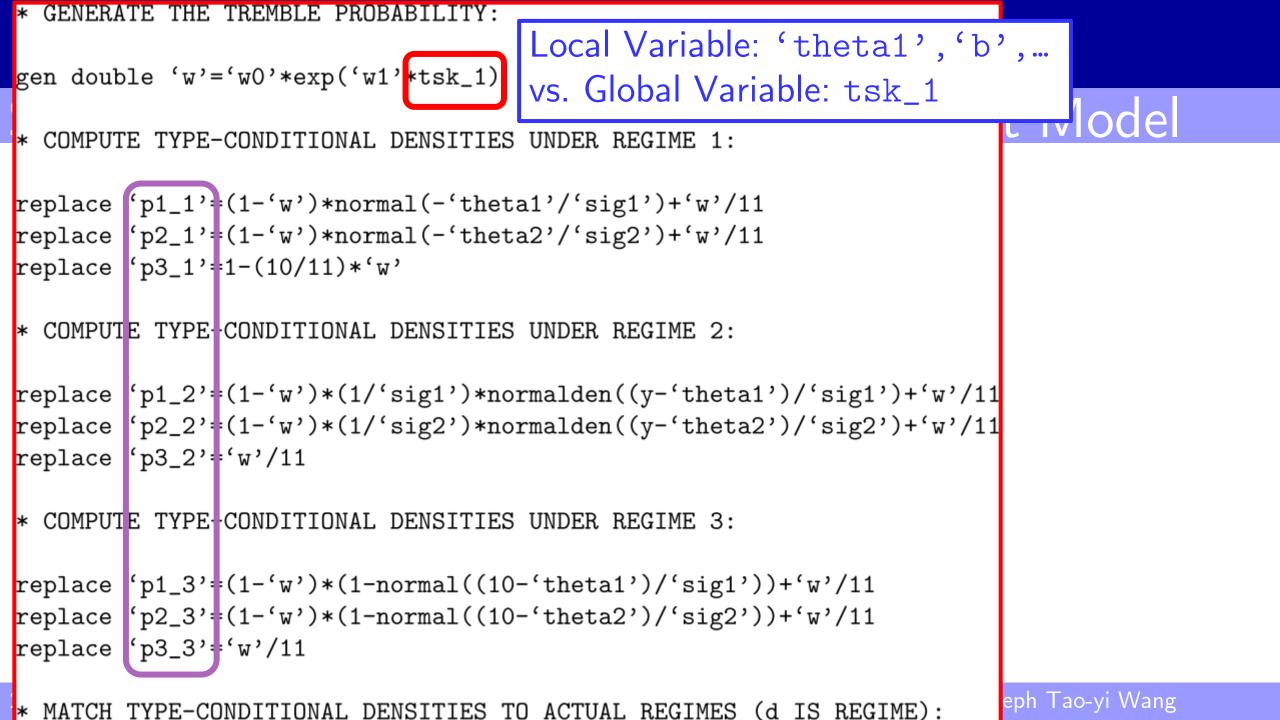
\* ASSIGN PARAMETER NAMES TO THE ELEMENTS OF THE PARAMETER VECTOR b:

mleval 'theta1' = 'b' eq(1)
mleval 'theta2' = 'b' eq(2)
mleval 'sig1' = 'b', eq(3) scalar
mleval 'sig2'='b', eq(4) scalar
mleval 'w0'='b', eq(5) scalar
mleval 'w1'='b', eq(6) scalar
mleval 'p\_rec'='b', eq(7) scalar
mleval 'p\_str'='b', eq(8) scalar

Local Variable: 'theta1', 'b',... vs. Global Variable: tsk\_1 (below)

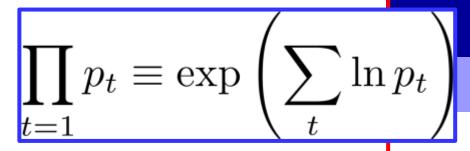


| mieval 'p_rec'='b', $e_{I}(7)$ sca            | alar                   |             |                    |
|-----------------------------------------------|------------------------|-------------|--------------------|
| <pre>mleval 'p_str'='b', eq(8) sca</pre>      | alar                   |             |                    |
|                                               |                        |             |                    |
| quietly{                                      |                        | 2_l imi     | t Tobit Model      |
| * INITIALISE THE p* VARIABLES                 | S WITH MISSING VALUES. |             |                    |
| $\star$ INTITALISE IIIE $P^{\star}$ VARIADEEC | S WITH MISSING VALUES. |             |                    |
| gen double 'p1_1'=.                           |                        |             |                    |
| gen double 'p2_1'=.                           |                        |             |                    |
| gen double 'p3_1'=.                           |                        |             |                    |
| gen double 'p1_2'=.                           |                        |             |                    |
| gen double 'p2_2'=.                           |                        |             |                    |
| gen double 'p3_2'=.                           |                        |             |                    |
| gen double 'p1_3'=.                           |                        |             |                    |
| gen double 'p2_3'=.                           | Local Variable: 't     | hetal',     | 'b',               |
| gen double 'p3_3'=.                           | vs. Global Variabl     | e: tsk 1    | (below)            |
| gen double 'p1'=.                             |                        |             |                    |
| gen double 'p2'=.                             |                        |             |                    |
| gen double 'p3'=.                             |                        |             |                    |
| gen double 'pp1'=.                            |                        |             |                    |
| gen double 'pp2'=.                            |                        |             |                    |
| gen double 'pp3'=.                            |                        |             |                    |
| gen double 'pp'=.                             |                        | ture Models | Joseph Tao-yi Wang |



\* MATCH TYPE-CONDITIONAL DENSITIES TO ACTUAL REGIMES (d IS REGIME):

replace 'p1' = (d==1)\*'p1\_1'+(d==2)\*'p1\_2'+(d==3)\*'p1\_3'
replace 'p2' = (d==1)\*'p2\_1'+(d==2)\*'p2\_2'+(d==3)\*'p2\_3'
replace 'p3' = (d==1)\*'p3\_1'+(d==2)\*'p3\_2'+(d==3)\*'p3\_3'



\* FIND PRODUCT OF TYPE-CONDITIONAL DENSITIES FOR EACH SUBJECT:

| by | i: | replace | <pre>'pp1'=exp(sum(ln(max('p1',</pre> | 1e-12) | ))) |
|----|----|---------|---------------------------------------|--------|-----|
| -  |    |         | <pre>'pp2'=exp(sum(ln(max('p2',</pre> |        |     |
| by | i: | replace | <pre>'pp3'=exp(sum(ln(max('p3',</pre> | 1e-12) | ))) |

Sum  $\ln(p_1)$  instead of product

Use "1e-12" if close to 0 to avoid negative infinity at ln(0)

\* COMBINE TYPE-CONDITIONAL DENSITIES TO OBTAIN MARGINAL DENSITY FOR EACH SUBJECT \* (ONLY REQUIRED IN FINAL ROW FOR EACH SUBJECT):

replace 'pp'= p\_rec'\*'pp1'+'p\_str'\*'pp2'+(1-'p\_rec'-'p\_str')\*'pp3'
replace 'pp'= if last~=1

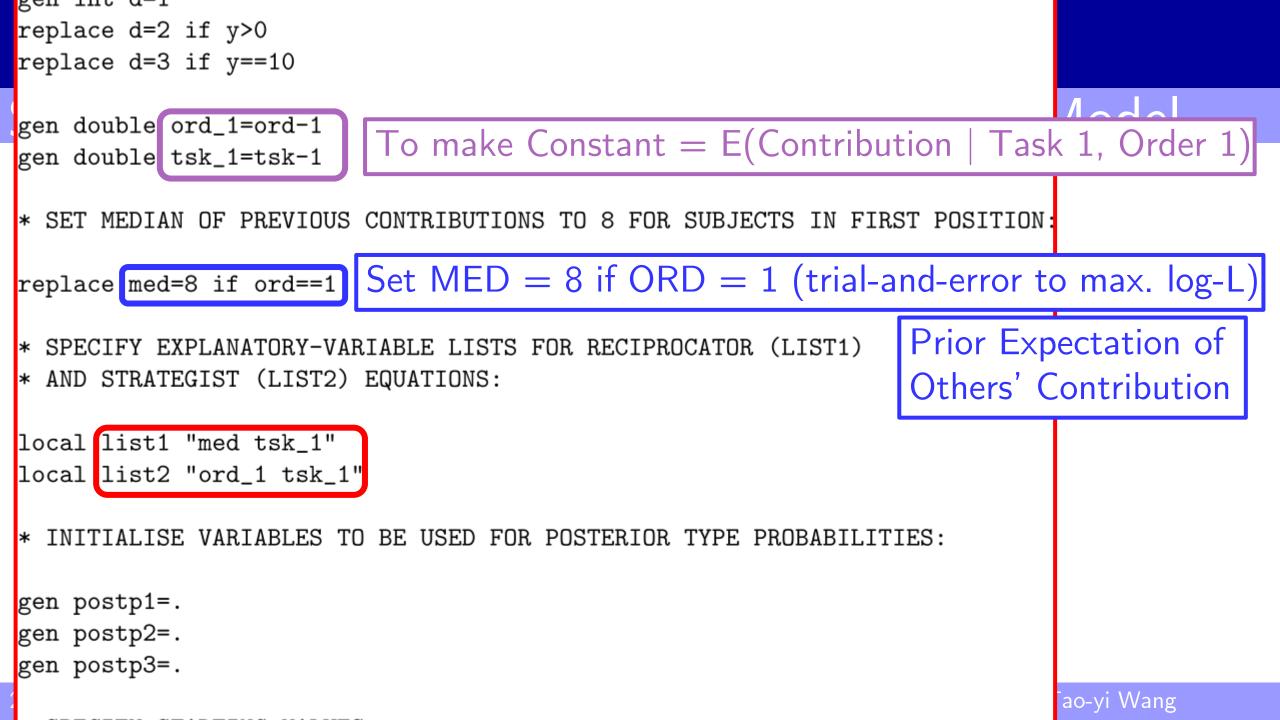
\* SPECIFY (LOG-LIKELIHOOD) FUNCTION WHOSE SUM OVER SUBJECTS IS TO BE MAXIMISED

```
mlsum 'lnpp'=_n('pp') if last==1
```

\* GENERATE POSTERIOR TYPE PROBABILITIES, AND MAKE THESE AVAILABLE OUTSIDE THE PROGRAM

\* GENERATE POSTERIOR TYPE PROBABILITIES, AND MAKE THESE AVAILABLE OUTSIDE THE PROGRAM

```
replace postp1='p_rec'*'pp1'/'pp'
replace postp2='p_str'*'pp2'/'pp'
replace postp3=(1-'p_rec'-'p_str')*'pp3'/'pp'
putmata postp1, replace
putmata postp2, replace
putmata postp3, replace
end
* END OF LOG-LIKELIHOOD EVALUATION PROGRAM
clear
set more off
* READ DATA
                       Data: bardsley.dta
use 'bardsley'
by i: gen last=_n==_N
gen int d=1
```



#### \* SPECIFY STARTING VALUES:

mat start=(0.57,-0.10,6.1,-0.93,-0.05,5.2,3.3,3.7,0.11,-0.05,0.26,0.49)

\* SPECIFY LIKELIHOOD EVALUATOR, PROGRAM, AND PARAMETER NAMES:

ml model d0 pg\_mixture (='list1') (='list2') /sig1 /sig2 /w0 /w1 /p1 /p2

<sup>ml init start, copy</sup> Cannot use lf since mixture model has non-linear log-L

Use D-Family: d0 requires only log-L

\* USE ML COMMAND TO MAXIMISE LOG-LIKELIHOOD, AND STORE RESULTS AS "WITH\_TREMBLE"

ml max, trace search(norescale)
est store with\_tremble

\* COMPUTE THIRD MIXING PROPORTION USING DELTA METHOD:

nlcom p3: 1-[p1]\_b[\_cons]-[p2]\_b[\_cons]

#### Derive p3 using the Delta Method!

(d1/d2 requires analytical derivatives of log-L)

\* EXTRACT POSTERIOR TYPE PROBABILITIES AND PLOT THEM AGAINST \* NUMBER OF ZERO CONTRIBUTIONS:

drop postp1 postp2 postp3

|                                       |         |                |                |           |         | Numbe | er of obs = | 1960      |
|---------------------------------------|---------|----------------|----------------|-----------|---------|-------|-------------|-----------|
| Finite Mixtu                          |         |                |                |           |         |       | chi2(2) =   | 108.07    |
|                                       | og like | elihood        | l = -3267.6884 | 1         |         |       | > chi2 =    | 0.0000    |
|                                       | 06 III  | 0111000        | 0201.000       | -         |         | 1100  | 0112        | 0.0000    |
| ► STATA                               |         |                |                |           |         |       |             |           |
|                                       |         | 1              | Coef.          | Std. Err. | z       | P> z  | [95% Conf   | Interval] |
| Results:                              |         | י<br>+         |                |           |         |       |             |           |
| e                                     | q1      |                |                |           |         |       |             |           |
|                                       |         | med            | .598677        | .0611812  | 9.79    | 0.000 | .4787641    | .7185899  |
| $\beta_{11} = 0.599 \ (0.06)$         | ) ( L   | tsk_1          | 0961739        | .0202229  | -4.76   | 0.000 | 13581       | 0565379   |
| $\hat{\beta}_{13} = -0.096 \ (0.0)$   |         | _cons          | 4.004374       | .4541832  | 8.82    | 0.000 | 3.114192    | 4.894557  |
| $p_{13} = -0.030$ (0.0                | 020)    | +              | ô              |           | 4 [ 4 ] |       |             |           |
| eq2                                   |         | $\beta_{10} =$ | 4.004(0.       | 454)      |         |       |             |           |
| $\hat{\beta}_{} = 0.064 (0.0)$        | 000)    | ord_1          | 9644643        | .0823741  | -11.71  | 0.000 | -1.125915   | 803014    |
| $\hat{\beta}_{22} = -0.964 \ (0.00)$  | UOZ) 1  | tsk_1          | 0516766        | .017189   | -3.01   | 0.003 | 0853664     | 0179867   |
| $\hat{\beta}_{23} = -0.052 \ (0.0)$   | (17) -  | _cons          | 5.299353       | .3828498  | 13.84   | 0.000 | 4.548981    | 6.049724  |
|                                       |         | +              | · Â —          | 5.299(0.  | 383)    |       |             |           |
| s                                     | ig1     |                | P20 =          | 0.200 (0. | 505)    |       |             |           |
| $\hat{\sigma}_1 = 3.442 \ (0.1)$      | (67)    | _cons          | 3.442241       | .1674649  | 20.56   | 0.000 | 3.114016    | 3.770466  |
| s                                     | ig2     |                |                |           |         |       |             |           |
| $_{20}\hat{\sigma}_2 = 3.706 \ (0.1)$ |         | _cons          | 3.705603       | .1611296  | 23.00   | 0.000 | 3.389794    | 4.021411  |

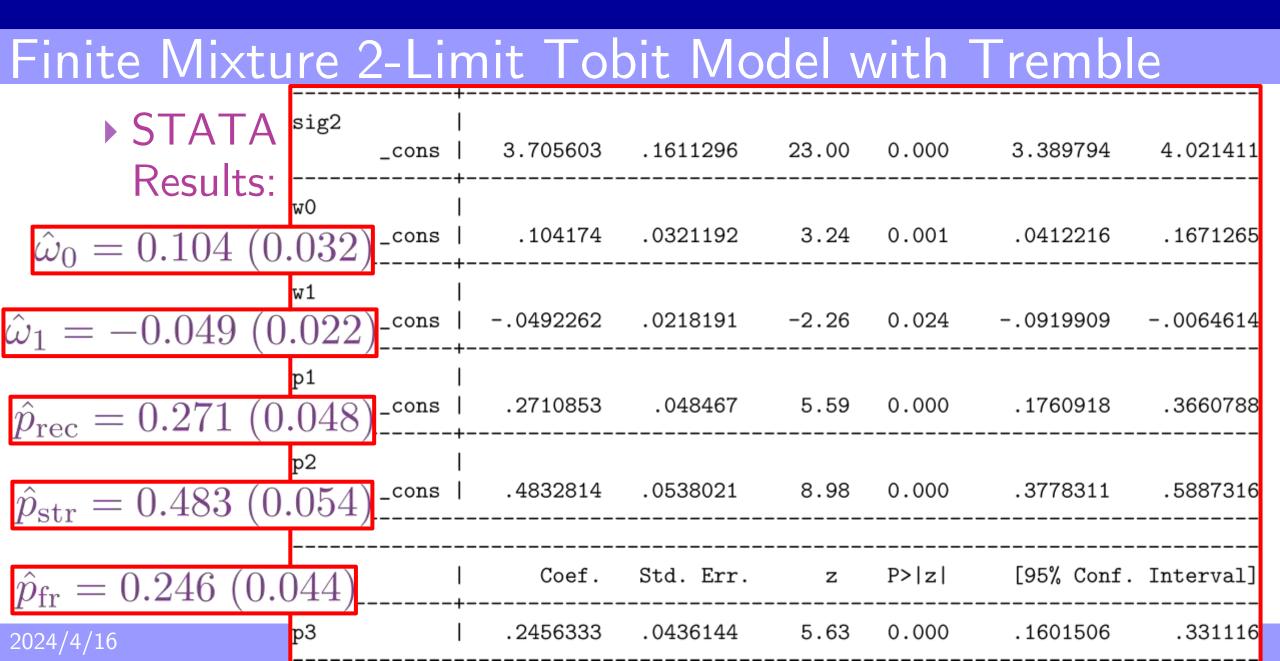
## Finite Mixture 2-Limit Tobit Model with Tremble

Reciprocator (rec)
$$y_{it}^* = \beta_{10} + \beta_{11}MED_{it} + \beta_{13}(TSK_{it} - 1) + \epsilon_{it,rec}$$

$$E(y^*|MED, TSK) = 4.004 + 0.599MED - 0.096(TSK - 1)$$
Strategist (str)
$$>0 \& <1 \text{ for Biased Reciprocity} \quad <0: \text{ Learning}$$

$$y_{it}^* = \beta_{20} + \beta_{22}(ORD_{it} - 1) + \beta_{23}(TSK_{it} - 1) + \epsilon_{it,str}$$

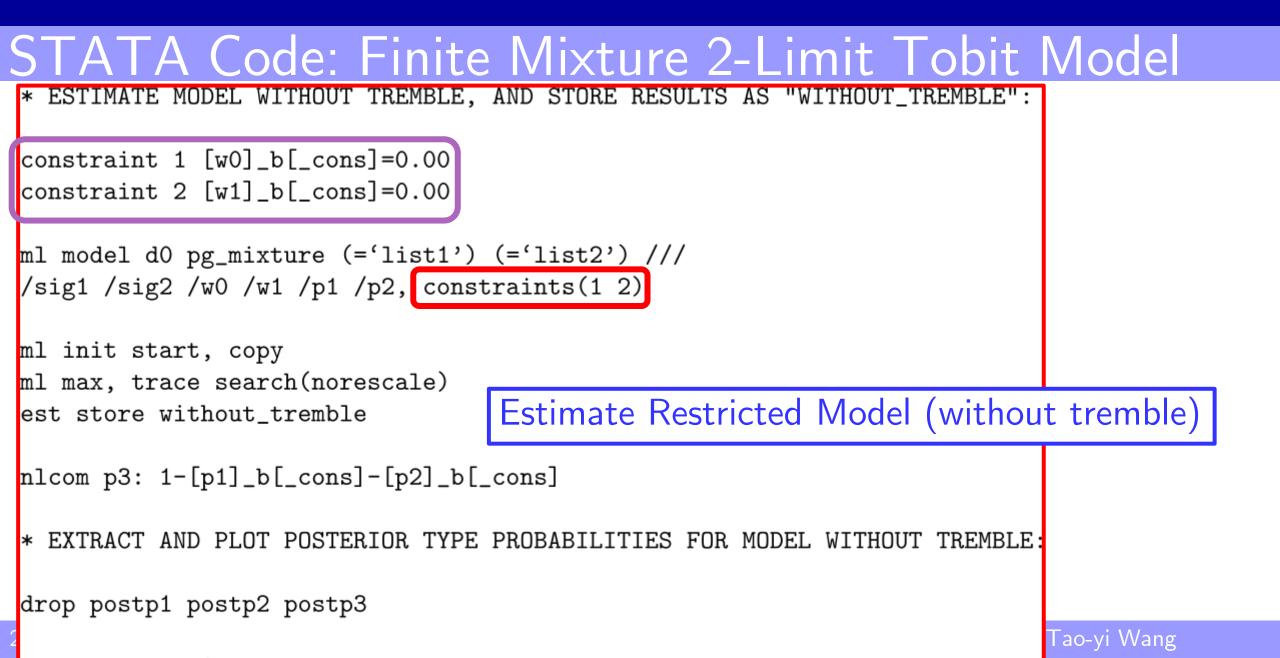
$$E(y^*|ORD, TSK) = 5.299 - 0.964(ORD - 1) - 0.052(TSK - 1)$$
Slower than Reciprocators
$$Slower than Reciprocators$$



## <u>STATA Code: Finite Mixture 2-Limit Tobit Model</u>

- \* EXTRACT POSTERIOR TYPE PROBABILITIES AND PLOT THEM AGAINST
- \* NUMBER OF ZERO CONTRIBUTIONS:

```
drop postp1 postp2 postp3
getmata postp1
getmata postp2
getmata postp3
label variable postp1 "rec"
label variable postp2 "str"
label variable postp3 "fr"
                                 Plot posterior probabilities (with tremble)
by i: gen n_zero=sum(y==0)
scatter postp1 postp2 postp3 n_zero if last==1, title("with tremble") ///
```



```
* EXTRACT AND PLOT POSTERIOR TYPE PROBABILITIES FOR MODEL WITHOUT TREMBLE:
```

```
drop postp1 postp2 postp3
```

getmata postp1 getmata postp2 getmata postp3

label variable postp1 "rec" label variable postp2 "str" label variable postp3 "fr"

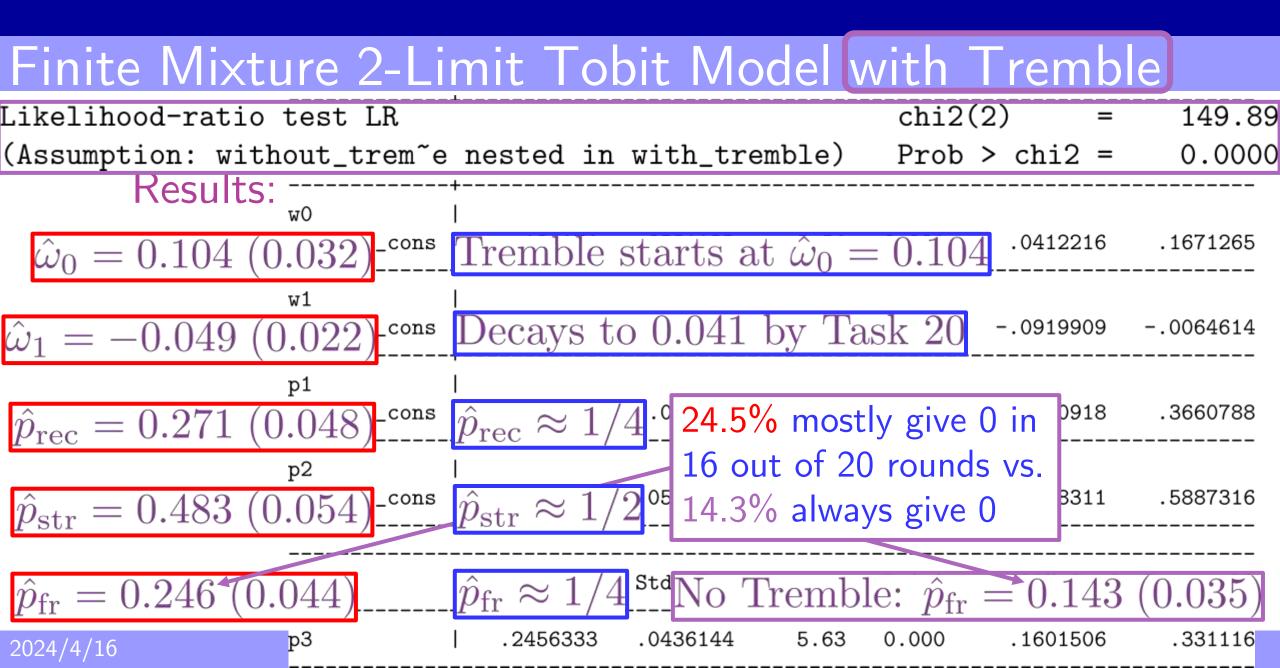
```
scatter postp1 postp2 postp3 n_zero if last==1, title("without tremble") ///
ytitle("posterior probability") msymbol(x Dh Sh) jitter(3) saving(without, replace)
```

\* CARRY OUT LIKELIHOOD RATIO TEST FOR PRESENCE OF TREMBLE:

Irtest with\_tremble without\_tremble Likelihood Ratio Test (with/without tremble)

\* COMBINE THE TWO POSTERIOR PROBABILITY PLOTS

gr combine with.gph without.gph



## Posterior Type Probabilities

$$\Pr(i = \operatorname{rec}|y_{i1}, \dots, y_{iT}) = \frac{p_{\operatorname{rec}}}{L_i} \prod_{t=1}^T \Pr(y_{it} = 0|\operatorname{rec})^{I_{y_{it}=0}} f(y_{it}|\operatorname{rec})^{I_0 < y_{it} < 10} \Pr(y_{it} = 10|\operatorname{rec})^{I_{y_{it}=10}}$$

$$\Pr(i = \operatorname{str}|y_{i1}, \dots, y_{iT}) = \frac{p_{\operatorname{str}}}{L_i} \prod_{t=1}^T \Pr(y_{it} = 0|\operatorname{str})^{I_{y_{it}=0}} f(y_{it}|\operatorname{str})^{I_0 < y_{it} < 10} \Pr(y_{it} = 10|\operatorname{str})^{I_{y_{it}=10}}$$

$$\Pr(i = \operatorname{fr}|y_{i1}, \dots, y_{iT}) = \frac{p_{\operatorname{fr}}}{L_i} \prod_{t=1}^T \Pr(y_{it} = 0 | \operatorname{fr})^{I_{y_{it}=0}} f(y_{it} | \operatorname{fr})^{I_0 < y_{it} < 10} \Pr(y_{it} = 10 | \operatorname{fr})^{I_{y_{it}=10}}$$

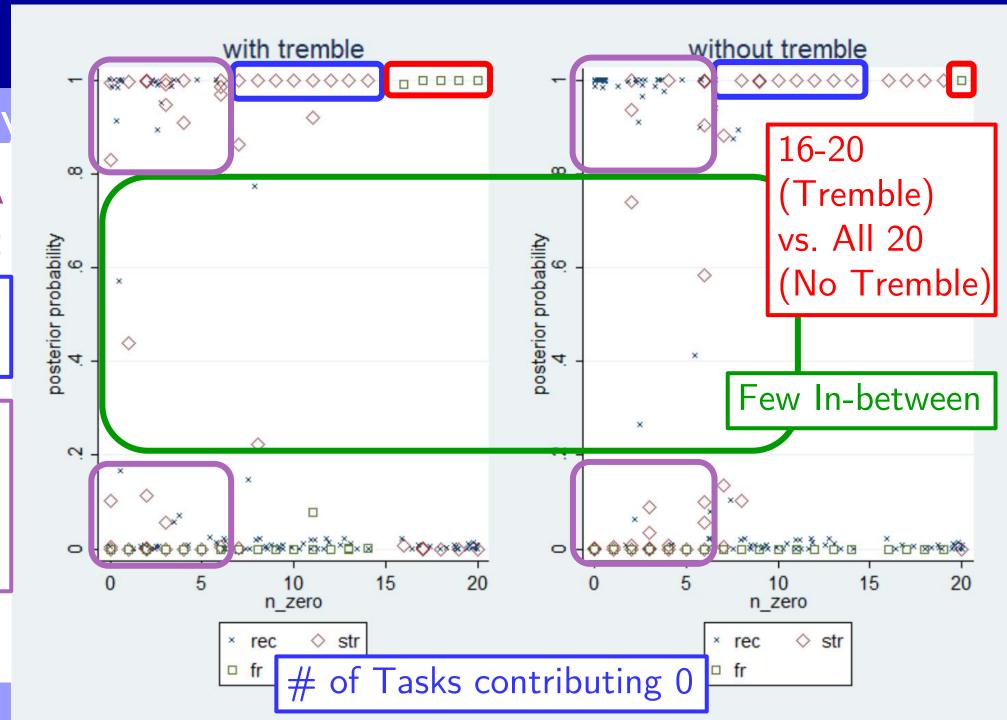
Posterior Tv ► STATA

Results:

6-14(or 6-19) are Strategists

0-5 are Mixture of Strategists and Reciprocators

2024/4/16



## Conclusion: Finite Mixture Model

- Mixture Model accounts for Types in the Population
  - Infinite Mixture Model = Random Coefficient Model

## How it Works?

- Economic Theory Predicts and Name Various Types
- Construct Parametric Model for Behavior of Each Type
- Estimated Using Population Data to Obtain:
  - Mixing Proportions and Parameters of Each Type
  - Individual Posterior Probability of being a Type

## Acknowledgment

## This presentation is based on

- Section 5.1-5 of the lecture notes of Experimetrics (and Section 17.3 of the textbook on Experimetrics),
- Prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
  - We would like to thank 康柏賢 for his in-class presentations

