Estimating Social Preferences From Dictator Game Data 估計社會偏好: 以獨裁分配實驗結果為例

Joseph Tao-yi Wang (王道一) EE-BGT, Lecture 3c (Experimetrics Module 4)

Part I: Dictator Game with Prices 第一部分: 不同價格下的獨裁分配

Joseph Tao-yi Wang (王道一) Experimetrics Lecture 5 (實驗計量第五講)

Estimating Social Preferences

The Dictator Game

Endowments m

One Subject Chooses Allocation for Both
 The Dictator

Involving Prices: Andreoni and Miller (2002)

- Alter Endowment m, Prices of Keeping p_1 and Giving p_2
- To test if choice data x_1 and x_2 is Rationalizable
- If yes, can estimate underlying utility function
 - Satisfy GARP?

Estimating Social Preferences

The Dictator Game with Prices

One Subject Chooses Allocation for Both
 The Dictator

The Dictator Game with $(p_1, p_2) = (1/3, 1)$

Dictator Allocate 40

Directed to Self $(1/3)x_1$

$\underbrace{\circ}$ $\underbrace{\circ}$ Directed to Other $1x_2$

Endowments m = 40

• If $1x_2 = 30$, $(1/3)x_1 + 1x_2 = 40$ • Then $(1/3)x_1 = 40 - 30 = 10$

So,
$$x_1 = 30!$$

Joseph Tao-yi Wang

Data of Andreoni and Miller (2002)

- Choose p_1x_1 Directed to Self
 - Amount Received by Self x_1 (and Price of Keeping p_1)
- \blacktriangleright Choose p_2x_2 Directed to Other
 - Amount Received by Other: x_2 (and Price of Giving p_2)
- ▶ Subject to Budget Constraint: p₁x₁ + p₂x₂ ≤ m
 ▶ Since BC binds, choose only p₂x₂ and p₁x₁ = m p₂x₂

▶ Define Budget Shares $w_1 = \frac{p_1 x_1}{m}$, $w_2 = \frac{p_2 x_2}{m}$ ▶ N=176: garp.dta

11 Budget Sets Presented in Random Order

Budget	m	p_1	p_2	Observati	ons	Mean amo	unt sent to other
1	40	0.33	1	176			8.02
2	40	1	0.33	176			12.81
3	60	0.5	1	176			12.67
4	60	1	0.5	176			19.40
5	75	0.5	1	176	Give	17-24% in	15.51
6	75	1	0.5	176	stand	lard, (1,1)-	22.68
7	60	1	1	176	dicta	tor games	14.55/60 = 24%
8	100	1	1	176	consi	stent with	23.03/100 = 23%
9	80	1	1	34	Came	erer (2003)	13.5/80 = 17%
10	40	0.25	1	34			3.41
11	40	1	0.25	34			14.76

Estimating Social Preferences

Joseph Tao-yi Wang

Property 1: Bias Toward Giving-to-Self

Estimating Social Preferences

Joseph Tao-yi Wang

Property 2: Giving (x_2) is a Normal Good $p_2 x_2$ ► STATA Lowess smoother 100 Results: lowess p2x2 m amount directed to other (p2x2) 20 40 60 80 . 0 100 60 80 40 endowment \mathcal{M}

2024/2/29

bandwidth = .8

ang

Property 3 and 4: Linear Regression

STATA regress x2 p2 p1, vce(cluster i) Results:

	Linear regression		Number of obs	= 1510
Giving	Obeys Law of Demand	(t = -7.90)	F(2, 175) Prob > F	= 61.20 = 0.0000
Giving	and Keeping are Subst	R-squared Root MSE	= 0.1847 = 28.661	
		(Std. Err	r. adjusted for 176	clusters in i)
	 x2 Coef	Robust Std. Err. t	P> t [95%	Conf. Interval]
	p2 -39.00726 p1 14.47704 _cons 43.95138	6 4.934956 -7.90 4 1.664276 8.70 3 4.663821 9.42	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	695 -29.26757 24 17.76167 681 53.15596
2024/2/29		Estimating Social Preference	ces Josep	h Tao-yi Wang

Property 2: Adding Income to the Linear Regression

STATA regress x2 p2 p1 m, vce(cluster i)

Results: Linear regression	$ \begin{array}{c} Giving \\ (t = 9 \end{array} \end{array} $	g is a Norr 9.57): Wh	mal Good en <i>m</i>	Number of (F(3, 1	obs = 75) =	1510 61.25
p_1 Highly Correlated with m and No Longer	Increases by 1, Giving Increases by 0.265			Prob > F R-squared Root MSE	0.0000 0.1976 28.441	
Significant (Previously Served as its Proxy)		(S Robust	td. Err. a	djusted for	176 clus	ters in i)
x2	Coef.	Std. Err.	t :	P> t [9	5% Conf.	Interval]
$p_{2} -52$ $p_{1} -52$ $p_{1} -52$ $p_{1} -52$ $p_{1} -52$ m -52 $p_{2} -52$ $p_{1} -52$ m -52 m -52 m -52 m -52 m -52 m -52	.12677 357528 265248 .92717	5.063235 1.783083 .0277023 4.707122	-10.30 0.76 9.57 10.18	$\begin{array}{cccc} 0.000 & -62 \\ 0.447 & -2.2 \\ 0.000 & .22 \\ 0.000 & 38 \end{array}$.11964 161587 105744 .63713	-42.13391 4.876643 .3199216 57.2172

Tobit Regression: Account for 42% Giving Zero

STATA t	<u>cob</u> :	it x2	p2 p1	m, vce	(clus	ter i	i) ll(O)
To	bit r	regression				Number	r of obs =	1510
Kesults:			Stronge	er Overall	Result	$S = \frac{F}{2}$	3, 1507) =	54.33
T o	-			07 146		Prob >	> F =	0.0000
го	og pse	eudolikelin	1000 = -50	27.140		Pseudo	0 R2 =	0.0250
Tobit Coefficient f	or]		(S1	td. Err.	adjusted	for 176 clu	sters in i)
$n_{10}(10.81 \ t=2.76)$	is	1		Robust				
8 Times Larger th:	2n	x2	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
OLS (1.36, $t = 0.7$)	'6)	p2	-67.1347	7.049639	-9.52	0.000	-80.96285	-53.30656
	/		3322818	0380964	8.72	0.000	2575541	4070095
		_cons	34.41715	6.122105	5.62	0.000	22.4084	46.4259
	/	/sigma	42.59774	2.46888			37.75494	47.44055
	Obs.	summary:		left-censor	red obser	vations a	at x2<=0	
.024/2/29			0	right-censor	red obser	vations		

Random Effect Tobit Regression: Panel Data

2024/2

► STATA	xtset i	t					
Results	xttobit	x2 p2 j	p1 m,]	1(0)			
itesuits.	Random-effects	Tobit regres	ssion		Number o	of obs :	= 1510
	Group variable	: i			Number o	of groups	= 176
	Random effects	u_i ~ Gauss	ian		Obs per	group: min :	= 8
						avg :	= 8.6
						max :	= 11
	Integration me	thod: mvaghe		Integrat	tion points	= 12	
					Wald chi	i2(3)	= 605.11
	Log likelihood	= -4663.20	72		Prob > c	chi2	= 0.0000
	x2	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
	p2	-75.14353	4.942489	-15.20	0.000	-84.83063	-65.45643
	p1	9.896787	5.060785	1.96	0.051	0221691	19.81574
/29	m	.3672872	.0639333	5.74	0.000	.2419803	.4925941

1 	Random-effects Tobit regression							
	Group variable	: i			Number	of groups	= 176	
Random Ett	Random effects	u_i ~ Gaussi	an		Obs pe	r group: min	= 8	
					1	avg	= 8.6	
► STATA			max	= 11				
Results:	Integr	= 12						
	Wald chi2(3)							
1	Log likelihood	= -4663.207	72		Prob >	chi2	= 0.0000	
Even Stronger R	esults! x2	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]	
Between-Subject	p2	-75.14353	4.942489	-15.20	0.000	-84.83063	-65.45643	
Hotoropoity is	p1	9.896787	5.060785	1.96	0.051	0221691	19.81574	
neterogeneity is	m	.3672872	.0639333	5.74	0.000	.2419803	.4925941	
Large (44.06)	_cons	32.68706	6.512942	5.02	0.000	19.92193	45.4522	
and Significant	/sigma_u	44.0585	3.276081	13.45	0.000	37.6375	50.4795	
(+-13/5)	/sigma_e	28.67666	.7433699	38.58	0.000	27.21968	30.13364	
((-13.45)	rho	.7024244	.0320737			.6367994	.7620325	
024/2/29		Estimating So	ocial Preferen	ces		Joseph Tao-vi \	Nang	

Constant Elasticity of Substitution Utility Function

Andreoni and Miller (2002) Estimate Social Preference via
 CES: Constant Elasticity of Substitution Utility Function

$$U(x_1, x_2) = \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho}\right]^{\frac{1}{\rho}}$$

- Selfishness: $0 \le \alpha \le 1$
 - \blacktriangleright Willingness to Trade Off Equity and Efficiency: $-\infty \leq \rho \leq 1$
- Elasticity of Substitution: $\sigma = \frac{1}{1-\rho}$

• Estimate $\hat{\alpha}, \hat{\rho}$ from behavior in Dictator Game

Constant Elasticity of Substitution Utility Function • CES Utility Function $U(x_1, x_2) = [\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho}]^{\frac{1}{\rho}}, \sigma = \frac{1}{1 - \rho}$ 1. Perfect Substitutes (Linear): Focus on Efficiency: $\sigma \to \infty, \Rightarrow \rho \to 1$ $\Rightarrow U(x_1, x_2) \rightarrow \alpha x_1 + (1 - \alpha) x_2$ 2. Perfect Complements (Leontief): Focus on Equity: $\sigma \to 0, \Rightarrow \rho \to -\infty$ $\Rightarrow U(x_1, x_2) \rightarrow \min\left\{\alpha x_1, (1 - \alpha) x_2\right\}$ 3. Cobb-Douglas: $\sigma \to 1, \Rightarrow \rho \to 0$ $\Rightarrow U(x_1, x_2) \to x_1^{\alpha} x_2^{1-\alpha}$

Demand Function Derived From CES Utility Function

Consumer Problem with CES Utility Function

$$\max_{x_1, x_2} U(x_1, x_2) = \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho}\right]^{\frac{1}{\rho}} \text{ s.t. } p_1 x_1 + p_2 x_2 \le m$$
$$\mathcal{L} = \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho}\right]^{\frac{1}{\rho}} - \lambda \left(p_1 x_1 + p_2 x_2 - m\right)$$
$$\text{FOC: } \frac{\partial \mathcal{L}}{\partial x_1} = \frac{1}{\rho} \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho}\right]^{\frac{1}{\rho} - 1} \cdot \rho \alpha x_1^{\rho - 1} - \lambda p_1 \le 0, x_1 \ge 0$$
$$\frac{\partial \mathcal{L}}{\partial x_2} = \frac{1}{\rho} \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho}\right]^{\frac{1}{\rho} - 1} \cdot \rho (1 - \alpha) x_2^{\rho - 1} - \lambda p_2 \le 0, x_2 \ge 0$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = p_1 x_1 + p_2 x_2 - m \le 0, \lambda \ge 0$$

Estimating Social Preferences

Demand Function Derived From CES Utility Function

• Constraint binds; x_1 and x_2 are positive (increasing U):

$$(1) = \frac{1}{\rho} \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho} \right]^{\frac{1}{\rho} - 1} \cdot \rho \alpha x_1^{\rho - 1} = \lambda p_1$$

$$(2) = \frac{1}{\rho} \left[\alpha x_1^{\rho} + (1 - \alpha) x_2^{\rho} \right]^{\frac{1}{\rho} - 1} \cdot \rho (1 - \alpha) x_2^{\rho - 1} = \lambda p_2$$

$$(3) = p_1 x_1 + p_2 x_2 = m$$

$$\Rightarrow \frac{(2)}{(1)} = \frac{(1 - \alpha)}{\alpha} \left(\frac{x_2}{x_1} \right)^{\rho - 1} = \frac{p_2}{p_1} \Rightarrow \left(\frac{p_2}{p_1} \cdot \frac{\alpha}{1 - \alpha} \right)^{\frac{1}{\rho - 1}} = \frac{x_2}{x_1}$$

Demand Function Derived From CES Utility Function

$$\Rightarrow x_{2} = \left(\frac{p_{2}}{p_{1}} \cdot \frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}} \cdot x_{1}$$
(3) = $m = p_{1}x_{1} + p_{2}x_{2} = x_{1} \cdot \left[p_{1} + p_{2}\left(\frac{p_{2}}{p_{1}} \cdot \frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}}\right]$

$$\Rightarrow x_{1}^{*} = \frac{m}{p_{1} + p_{2}\left(\frac{p_{2}}{p_{1}} \cdot \frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}}} = \frac{mp_{1}^{\frac{1}{\rho-1}}}{p_{1}^{\frac{\rho}{\rho-1}} + p_{2}^{\frac{\rho}{\rho-1}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}}}$$

$$\Rightarrow w_{1}^{*} = \frac{p_{1}x_{1}^{*}}{m} = \frac{p_{1}^{\frac{\rho}{\rho-1}}}{p_{1}^{\frac{\rho}{\rho-1}}\left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}}}, \quad w_{2}^{*} = 1 - w_{1}^{*}$$

Estimating Social Preferences

Joseph Tao-yi Wang

Estimating CES Demand via Non-Linear Least Square

▶ Hence, we estimate Non-Linear Least Square (NLLS):

$$w_{1} = \frac{p_{1}^{\frac{\rho}{\rho-1}}}{p_{1}^{\frac{\rho}{\rho-1}} + p_{2}^{\frac{\rho}{\rho-1}} \left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}}} + \epsilon$$

- For a sample of size n, consisting of w_{1i}, p_{1i}, p_{2i}
- Find $\hat{\alpha}$, $\hat{\rho}$ to minimize squared random error:

$$\sum_{i=1}^{n} \left[w_{1i} - \frac{p_{1i}^{\frac{\rho}{\rho-1}}}{p_{1i}^{\frac{\rho}{\rho-1}} + p_{2i}^{\frac{\rho}{\rho-1}} \left(\frac{\alpha}{1-\alpha}\right)^{\frac{1}{\rho-1}}} \right]^2$$

Estimating CES Demand via Non-Linear Least Square

STATA Command: nl

{rho} and {aa} in {} are to be estimated

. nl (w1 = (p1^({rho}/({rho}-1)))/((p1^({rho}/({rho}-1))) /// > +(({aa}/(1-{aa}))^(1/({rho}-1)))*(p2^({rho}/({rho}-1))))), /// > initial(rho 0.0 aa 0.5) vce(cluster i)

Provide Starting Values for NL Optimization (Required to Run!)

Cluster-Robust Standard Errors

Applied to Andreoni and Miller (2002) data, we have...

Estimating Social Preferences

Estimating Social Preferences

Joseph Tao-yi Wang

Part II: Using Discrete Choice Models 第二部分: 使用離散選擇模型

Joseph Tao-yi Wang (王道一) Experimetrics Lecture 5 (實驗計量第五講)

Estimating Social Preferences

Dictator Game with Discrete Choice

- Engelmann and Strobel (2004)
- Ask Subjects to Choose Among Several Allocations
 - ▶ To Estimate Utility Function of Own vs. Other Payoffs
 - (As Person 2)

Use Discrete
 Choice Models

Allocation	А	В	С
Person 1	8	6	10
Person 2	8	6	7
Person 3	4	6	7
Total	20	18	24

Various Types of Social Preferences

- Selfish Types: Chooses A to earn \$8
 - ▶ Better than B (\$6) or C (\$7)
- Inequity-Averse Types: Choose B to let all earn \$6
 - Guilt if A: \$8 > \$4 of Person 3
 - ▶ Envy if C: \$7 < \$10 of Person 1
- Efficiency Types: Choose C to maximize total surplus = \$24
 - Not Pareto Dominant!

Allocation	А	В	С
Person 1	8	6	10
Dictator	8	6	7
Person 3	4	6	7
Total	20	18	24

Discrete Choice Models

• Efficiency:

$$EFF_j = \sum_{k=1}^{3} x_{jk}$$

• $EFF_A = 20$; $EFF_B = 18$; $EFF_C = 24$

3

$$x_{jk} = Payoff of Person k$$

in Allocation j

Minimax:	inimax: $MM_j = \min_k x_{jk}$		A	В	С
	k=1,2,3	Person 1	8	6	10
$MM_A = 4;$	• $MM_A = 4; MM_B = 6; MM_C = 1$	Dictator	8	6	7
Selt:	$SELF_j = x_{j2}$	Person 3	4	6	7
$SELF_A = 8;$	$SELF_B = 6; SELF_C = 7$	7 Total	20	18	24

Estimating Social Preferences

Joseph Tao-yi Wang

Discrete Choice Models: Fehr and Schmidt (1999)

F-S Utility Function: (*n* Players; $x_i = \text{Person } i \text{ Payoff}$) $u_i = x_i - \frac{\alpha_i}{n-1} \sum_{k \neq 1} \max(x_k - x_i, 0) - \frac{\beta_i}{n-1} \sum_{k \neq 1} \max(x_i - x_k, 0)$

- **Envy** α_i
 - Disadvantageous Inequality
- Guilt β_i
 - Advantageous Inequality
- Envy greater than Guilt: $\alpha_i > \beta_i$

Discrete Choice Models: Fehr and Schmidt (1999)

$$u_i = x_i - \frac{\alpha_i}{n-1} \sum_{k \neq 1} \max(x_k - x_i, 0) - \frac{\beta_i}{n-1} \sum_{k \neq 1} \max(x_i - x_k, 0)$$
 (*n* Players;
• Disadvantageous Inequality (*ENVY*_j): $x_i = \text{Payoff}$
• $FSD_A = 0$; $FSD_B = 0$; $FSD_C = -3/2$ of Person *i*)
 $FSD_j = -\frac{1}{2} \sum_{k \neq 2} \max(x_{jk} - x_{j2}, 0)$
• Advantageous Inequality (*GLT*_j):
• $FSA_A = -2$; $FSA_B = 0$; $FSA_C = 0$
 $FSA_j = -\frac{1}{2} \sum_{k \neq 2} \max(x_{j2} - x_{jk}, 0)$
 $FSA_j = -\frac{1}{2} \sum_{k \neq 2} \max(x_{j2} - x_{jk}, 0)$

Conditional Logit Model (CLM)

- Simulated Engelmann and Strobel (2004): ES_sim.dta
- ▶ J=3 rows per subject: asclogit (Alternative-Specific CLM)
- \blacktriangleright Utility of Subject i for Allocation j is

$$U_{ij} = \alpha_1 FSD_{ij} + \alpha_2 FSA_{ij} + \alpha_3 EFF_{ij} + \alpha_4 MM_{ij} + \epsilon_{ij}$$

$$= \underline{\vec{z_{ij}}'\vec{\alpha}} + \underline{\epsilon_{ij}}$$
 Random Component

Deterministic Component

Intercept Not Identified (Does not affect behavior!)

Conditional Logit Model (CLM)

▶
$$y_{ij} = 1$$
: Chosen if $U_{ij} = \max(U_{i1}, U_{i2}, \dots, U_{iJ})$

• $y_{ii} = 0$: Not Chosen otherwise

$$y_{ij} = 1 \Leftrightarrow \vec{z}_{ij}'\vec{\alpha} + \epsilon_{ij} > \vec{z}_{ik}'\vec{\alpha} + \epsilon_{ik}, \ \forall k \neq j$$
$$\Leftrightarrow \epsilon_{ik} - \epsilon_{ij} < \vec{z}_{ij}'\vec{\alpha} - \vec{z}_{ik}'\vec{\alpha}, \ \forall k \neq j$$

The Conditional Logit Model yields:

$$\Pr(y_{ij} = 1) = \frac{\exp(\vec{z}_{ij}'\vec{\alpha})}{\sum_{k=1}^{J} \exp(\vec{z}_{ik}'\vec{\alpha})}$$

• Maddala (1983): ϵ_{ij} 's iid Type I Extreme Value distribution

(aka Gumbel distribution)

<u>Conditional Logit Model (CLM)</u>

• Assume ϵ_{ij} 's are iid Type I Extreme Value distribution with pdf: $f(\epsilon) = \exp(-\epsilon - \exp(-\epsilon)), -\infty < \epsilon < \infty$ And cdf: $F(\epsilon) = \exp(-\exp(-\epsilon)), -\infty < \epsilon < \infty$ Then: $\Pr(y_{ij} = 1) = \frac{\exp(\vec{z}_{ij}'\vec{\alpha})}{\sum_{k=1}^{J} \exp(\vec{z}_{ik}'\vec{\alpha})}$ Likelihood: $L_i(\alpha) = \frac{\sum_{k=1}^J y_{ik} \exp(\vec{z}_{ik}'\vec{\alpha})}{\sum_{k=1}^J \exp(\vec{z}_{ik}'\vec{\alpha})}$ • Log-Likelihood: $\log L(\alpha) = \sum \ln L_i(\alpha)$ i=1**Estimating Social Preferences** 2024/2/29 Joseph Tao-yi Wang

<u>Alternative-Specific Conditional Logit Model (CLM)</u>

> STATA asclogit y FSD FSA EFF MM, Command: case(i) alternatives(j) noconstant

STATA Results:

Α	Iteration 0: log likelihood = -317.10088			
	Iteration 1: log likelihood = -308.55197			
S:	Iteration 2: log likelihood = -308.51212			
	Iteration 3: log likelihood = -308.51212			
	Alternative-specific conditional logit	Number of obs	=	990
	Case variable: i	Number of cases	=	330
	Alternative variable: t	Alts per case: m	nin =	3
		a	avg =	3.0
		n	nax =	3
		Wald chi2(4)	=	80.96
	Log likelihood = -308.51212	Prob > chi2	=	0.0000
	y Coef. Std. Err. z	P> z [95%	Conf.	Interval]

	Iteration	n 0: la	og likelihood	l = -317.100	88			
Altorpativo	Iteration	1: lo	og likelihood	l = -308.551	97			
Allemative-	Iteration	n 2: lo	og likelihood	l = -308.512	12			
	Iteration	1 3: lo	og likelihood	l = -308.512	12			
\mathbf{F}								
C	Alternative-specific conditional logit					Number o	of obs =	990
Commar	Case vari	able:	i			Number c	of cases =	330
	Alternati	ve var	riable: t			Alts per	case: min =	3
\blacktriangleright SIAIA		Rot	h Inequal	ity Aversi	ons		avg =	3.0
Roculter							max =	3
ILCSUILS.		Ma	tter! ($z =$	2.32/2.0	4)			
					/	Wald	chi2(4) =	80.96
Excluded SELF	Log likel	.ihood	= -308.51212	2		Prob	> chi2 =	0.0000
because of		y I	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
multicallinoarity		+-						
multiconnearity	t							
	L (FSD	.3267221	.1405881	2.32	2 0.020	.0511745	.6022697
Efficiency Even	More 📙	FSA	.3447768	.1688655	2.04	0.041	.0138065	.6757472
	2621	EFF	1879009	.0714842	2.63	3 0.009	.0477943	.3280074
[important!] (z =	2.05/	MM	.0804075	.0895162	0.90	0.369	0950409	.255856

2024/2/29

Estimating Social Preferences

Observed Heterogeneity in CLM

- Add Interactions in CLM to
 - Explain subject differences with subject characteristics
 male_i = 1 if male; = 0 if female

$$U_{ij} = \alpha_1 FSD_{ij} + \alpha_2 FSD_{ij} \times male_i + \alpha_3 FSA_{ij} + \alpha_4 FSA_{ij} \times male_i$$

$$+ \alpha_5 EFF_{ij} + \alpha_6 MM_{ij} + \epsilon_{ij}$$

STATA Command:

asclogit y FSD male_FSD FSA male_FSA EFF MM, case(i) alternatives(j) noconstant

Observed Heterogeneity in CLM

$c \pm a \pm a$	Alternative-specific condi-	tional logit		Number of	obs	=	990
\blacktriangleright SIAIA	Case variable: i			Number of	cases	=	330
Poculter							
itesuits.	Alternative variable: j			Alts per	case: mi	n =	3
					av	g =	3.0
Male exhibit mo	ore Envy $(z = 1.98)$				ma	x =	3
				Wald d	chi2(4)	=	85.42
	Log likelihood = -299.6794			Prob >	> chi2	=	0.0000
	y Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
Female exhibit	more Guilt ($z = -2.99$)					
	FSD .1907648	.1552983	1.23	0.219	11361	43	.495144
	male_FSD .2535549	.1281861	1.98	0.048	.00231	47	.504795
	FSA .5649655	.1879811	3.01	0.003	.19652	93	.9334017
	male_FSA 5760542	.192775	-2.99	0.003	95388	63	1982221
	EFF .1606768	.0741216	2.17	0.030	.01540	12	.3059525
	MM .1170375	.091562	1.28	0.201	06242	07	.2964958
2024/2/29	L						

Acknowledgment

This presentation is based on

- Section 4.1-3 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We would like to thank 劉彥均 and 賴恩得 for their inclass presentations and screen shots

