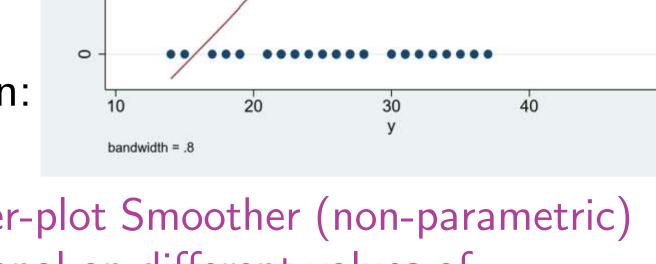
Estimation of Risk Aversion Parameters: Analyzing Ultimatum Game Data 估計風險偏好: 分析最後通牒談判實驗結果

Joseph Tao-yi Wang (王道一) EE-BGT, Lecture 3b (Experimetrics Module 3b)

<u>Ultimatum Game Data</u>


- ▶ 200 subjects splitting a pie of \$100
 - ▶ Play ultimatum game twice with different opponents
 - ▶ Be Proposer and Respondent each once
- ▶ Simulated Experiment Data: ug_sim.dta
 - ▶ Proposer *i* Offer: *y*
 - ▶ Respondent j Reaction: d (=1 if Accept; =0 if Reject)
 - ▶ male_i: Gender dummy for Proposer *i* to be male
 - male_j: Gender dummy for Respondent j to be male

Respondents Accept or Reje

▶ STATA: tab d

d	Freq.	Percent	Cum.	
0 1—	51	25.50	25.50	
1	149	74.50	100.00	
Total	200	100.00		

- ▶ Plot acceptance function:
 - ▶ STATA: lowess d y

Lowess smoother

Locally Weighted Scatter-plot Smoother (non-parametric)

O

- \blacktriangleright Mean value of d conditional on different values of y
 - ▶ Want to jitter? Try: lowess d y jitter(5) msize(3)

Probit Model for Choosing Accept

▶ Model this as Probit: $\Pr(d = 1|y) = \Phi(\beta_0 + \beta_1 y)$

where
$$\Phi(z) = \Pr(Z < z) = \int_{-\infty}^{z} \phi(z) dz$$
 is standard Normal cdf

- This is because:
- Propensity to accept: $d^* = \beta_0 + \beta_1 y + \epsilon$, $\epsilon \sim N(0,1)$
 - Accept if great than 0: $d=1 \Leftrightarrow d^*=\beta_0+\beta_1y+\epsilon>0$ $\Leftrightarrow \epsilon>-\beta_0-\beta_1y$
- So, $\Pr(d=1) = \Pr(\epsilon > -\beta_0 \beta_1 y) = \Phi(\beta_0 + \beta_1 y)$

Probit Model for Choosing Accept

▶ STATA probit d y

```
Results:
```

Predicted Probability

```
\Pr(d=1|y) = \Phi(-3.855 + 0.144y)
```

Probit regression

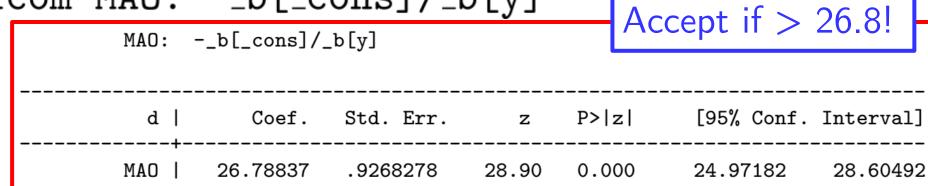
```
Number of obs = 200

LR chi2(1) = 93.63

Prob > chi2 = 0.0000

Pseudo R2 = 0.4123
```

```
d l
                                          P>|z|
                                                      [95% Conf. Interval]
             Coef.
                      Std. Err.
          .1439157
                      .0212804
                                   6.76
                                           0.000
                                                      .1022069
                                                                  .1856244
         -3.855266
                                  -6.11
                                           0.000
                                                    -5.092872
                                                                 -2.617661
_cons |
                       .631443
```


Predict Minimum Acceptable Offer (MAO)

- ▶ With Propensity to Accept $d^* = \beta_0 + \beta_1 y + \epsilon$
- ▶ Can Calculate Minimum Acceptable Offer (MAO):
 - ▶ Indifferent Between Accept/Reject if $\hat{d}^* = \hat{\beta}_0 + \hat{\beta}_1 y = 0$

▶ So,
$$y^{MAO} = -\frac{\hat{\beta}_1}{\hat{\beta}_0} = -\frac{3.855}{0.144} = \underline{26.79}$$

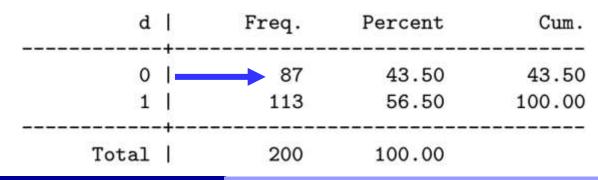
► STATA: nlcom MAO: -_b[_cons]/_b[y]

Get s.e./CI via Delta Method

Strategy Method vs. Direct Response

- \blacktriangleright In addition to ask Proposer to make offer y
- ▶ Solnick (2001) and others ask responders to state
 - ▶ MAO (Minimum Acceptable Offer) y^{MAO}
- ▶ Then play out the decision:
 - Accept if $y \ge y^{MAO}$
 - Reject if $y < y^{MAO}$
- Is stating your true MAO incentive compatible? Yes!
 - ▶ MAO = entire strategy (more informative than "Accept 50")

Ultimatum Game Data: Strategy Method


- ▶ 200 subjects splitting a pie of 100
 - ▶ Play ultimatum game twice with different opponents
 - ▶ Be Proposer and Respondent each once
- ▶ Simulated Strategy Method Data: ug_sm_sim.dta
 - ▶ Proposer *i* Offer: *y*
 - ▶ Respondent j MAO: y^{MAO}
 - ▶ male_i: Gender dummy for Proposer i to be male
 - male_j: Gender dummy for Respondent j to be male
 - ▶ Outcome: d (=1 if $y \ge y^{MAO}$; = 0 f $y < y^{MAO}$)

Confidence Interval of MAO

- ▶ 95% Confidence Interval in STATA: ci means MAO (ci MAO)
 - ▶ STATA
 Results:

Variable	Obs	Mean	Std. Err.	[95% Conf.	Interval]
MAO	200	31.375	.6666664	30.06036	32.68964

- Narrower than direct response: (24.97, 28.60)
 - ▶ But 5 units higher (31.4 vs. 26.8), to:
 - ▶ Signal Toughness (Eckel and Grossman, 2001)
 - ▶ Hypothetical (Cold)
 - ▶ So more rejections: tab d

Test of Gender Effects

- ▶ Gender as a treatment in Ultimatum game: ug_sim.dta
- Conduct regression analysis

$$y_i = \beta_0 + \beta_1 \mathtt{male_i} + \beta_2 \mathtt{male_j} + \beta_3 \mathtt{m_to_f} + \epsilon_i$$

- STATA: regress y male_i male_j m_to_f
 - ▶ With dummies:
- ▶ male_i: Gender dummy for Proposer *i* to be male
- male_j: Gender dummy for Respondent j to be male
- m_to_f: Dummy for male proposing to female responder
 gen m_to_f=male_i*(1-male_j)

Test of Gender Effects

STATA regress y male_i male_j m_to_f

Results:	Source	SS	df	MS		Number of ob	
	Model	976.185392	3	325.395131		F(3, 196 Prob > F	3) = 3.37 = 0.0195
Male offer \$4.5	2 Residual	18901.4946	196	96.436197		R-squared	= 0.0491
						Adj R-square	
less $(z = -2.40)$	Total	19877.68	199	99.8878392		Root MSE	= 9.8202
				·			T+
Offer male \$3.7	74r	Coef.	Std. E	Err. z	P> z	[95% Coni.	Interval]
more ($z = -1.8$	1) male_i	-4.519608	1.8850	99 -2.40	0.017	-8.23729	8019261
`	male_j	3.744608	2.0740	1.81	0.073	3457722	7.834988
Male offer	m_to_f	2.381863	2.802	275 0.85	0.396	-3.145557	7.909282
	_cons	35.275	1.5527	09 22.72	0.000	32.21284	38.33716
female \$2.38							

more (z = 0.85) Chivalry Effect: Eckel and Grossman (2001)

Do Male Responders Reject Offers More Often?

▶ STATA

probit d y male_j

Log likelihood = -64.116904

Male reject same offer more than female

```
Iteration 0: log likelihood = -113.55237
Results: Iteration 1: log likelihood = -68.373743
           Iteration 2: log likelihood = -64.187937
           Iteration 3: \log \text{ likelihood} = -64.116934
           Iteration 4: log likelihood = -64.116904
           Iteration 5: \log \text{ likelihood} = -64.116904
           Probit regression
```

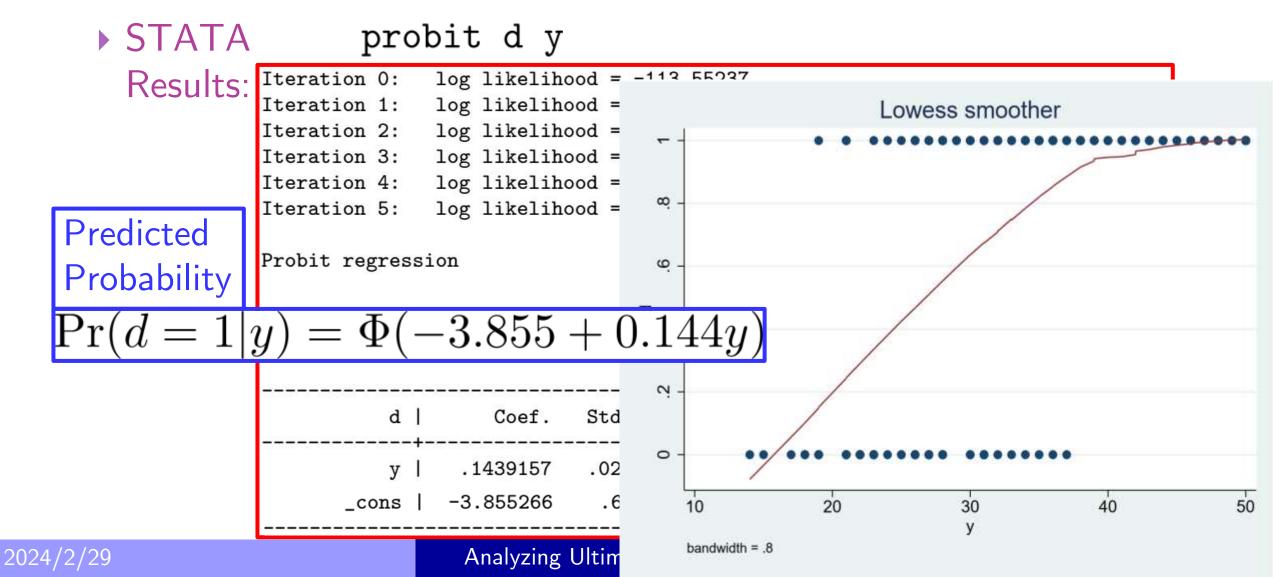
Offer how much more for same acceptance rate? 0.598/0.157!!

```
Number of obs
                       200
LR chi2(2)
                     98.87
Prob > chi2
                    0.0000
Pseudo R2
                    0.4354
```

```
Std. Err.
            Coef.
                                      P>|z|
                                               [95% Conf. Interval]
          .1567836
                    .0231961 6.76
                                      0.000 .11132
                                                          .2022472
                    .2668131
                            -2.24
                                      0.025
                                              -1.120585
                                                         -.0746966
male_j |
         -.5976406
         -3.933341
                              -5.97
                                              -5.224796
                                                         -2.641886
 _cons |
                    .6589175
                                      0.000
```

Offer How Much More For Same Acceptance Rate?

STATA nlcom more_to_male: -_b[male_j]/_b[y]

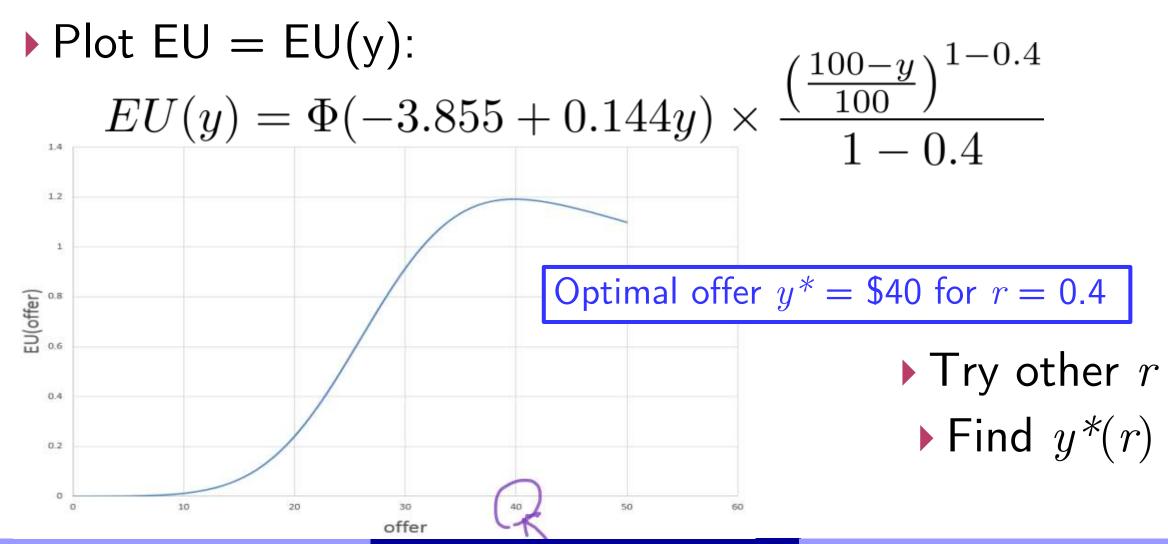

```
Results: more_to_male: -_b[male_j]/_b[y]

r | Coef. Std. Err. z P>|z| [95% Conf. Interval]

more_to_male | 3.811882 1.612015 2.36 0.018 .6523915 6.971373
```

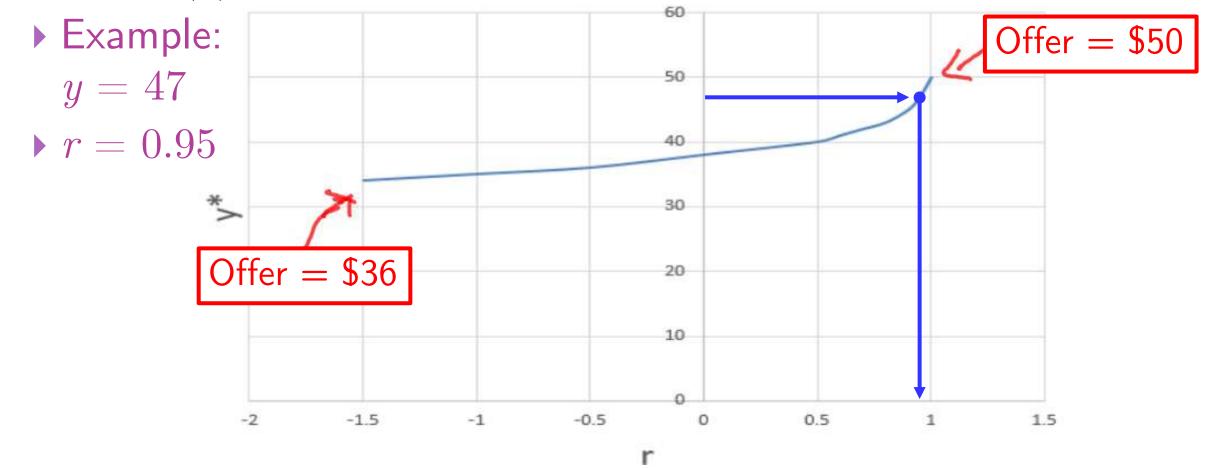
- ▶ 95% Confidence Interval is very wide
- ightharpoonup 0.598/0.157 = \$3.81 is very close to $\hat{eta_2} = \$3.74$
 - ▶ Estimated coefficient of male_j
- Proposers rationally react to tough male responders
 - ▶ By proposing \$3.74 more (compared to female responders)

Recall: Probit Model for Choosing Accept


Proposer Decision as Risky Choice

Rational Expectations: Know Acceptance probability is $\Pr(d=1|y) = \Phi(-3.855+0.144y)$

- ▶ What should proposers do? Roth et al. (AER 1991) propose:
- \blacktriangleright Offer 50: Get \$50 for sure (50-50 are 100% accepted) or
- ▶ Offer y = \$40: Get \$(100-y) = \$60 with uncertainty
 - Normalize pie size \$100 to 1: proposer decision.xlsx


$$r = 0.4 \text{ yield: } EU(y) = \Phi(-3.855 + 0.144y) \times \frac{\left(\frac{100 - y}{100}\right)^{1 - 0.4}}{1 - 0.4}$$

Proposer Decision as Risky Choice

Proposer Decision as Risky Choice

Plot $y^*(r)$:

Toward a Mixture Model of Social Preference

- ▶ 18% (36 out of 200) of the proposer offer y = 50
 - ▶ Are all of them extremely risk averse?
- ▶ No! People can offer 50-50 because they think it is fair
 - ▶ Need a mixture model to analyze this (see next lecture):
 - ▶ 18% of the population motivated by fairness offer 50-50
 - ▶ 82% of the population motivated by self-interest
 - make risky choices according to their risk preferences
- ▶ Who are these equal-splitters/egalitarians?

Who Are These Equal-Splitters/Egalitarian?

- STATA gen egal=y==50
 Command: tab egal
- ▶ STATA Results:

)	egal	Freq.	Percent	Cum.
	0 1	l 164 l 36	82.00 18.00	82.00 100.00
	Total	 200	100.00	

- Is Egalitarianism is Related to Gender? Use χ^2 test!
 - ▶ STATA Command: tab male_i egal , chi2
 - ▶ STATA Results:

25 of 91 female are egalitarian

11 of 109 male are egalitarian

	egal		
male_i	0	1	Total
	+	+-	
0	l 66	25	91
1	J 98	11	109
	+	+-	
Total	164	36	200
Pe	earson chi2(1)	= 10.1506	Pr = 0.001

Female more likely to be egalitarian (p = 0.001)

Acknowledgment

- ▶ This presentation is based on
 - ▶ Section 3.2 and 3.11 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We would like to thank 陳詠駿、張學仁 and 林欣葇 for their in-class presentations