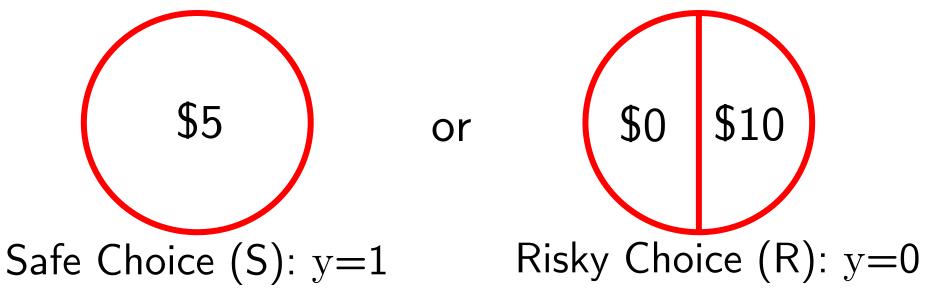
Estimation of Risk Aversion Parameters: Binary Lottery Choice 估計風險偏好: 二選一風險決策

Joseph Tao-yi Wang (王道一) EE-BGT, Experimetrics Module 3a

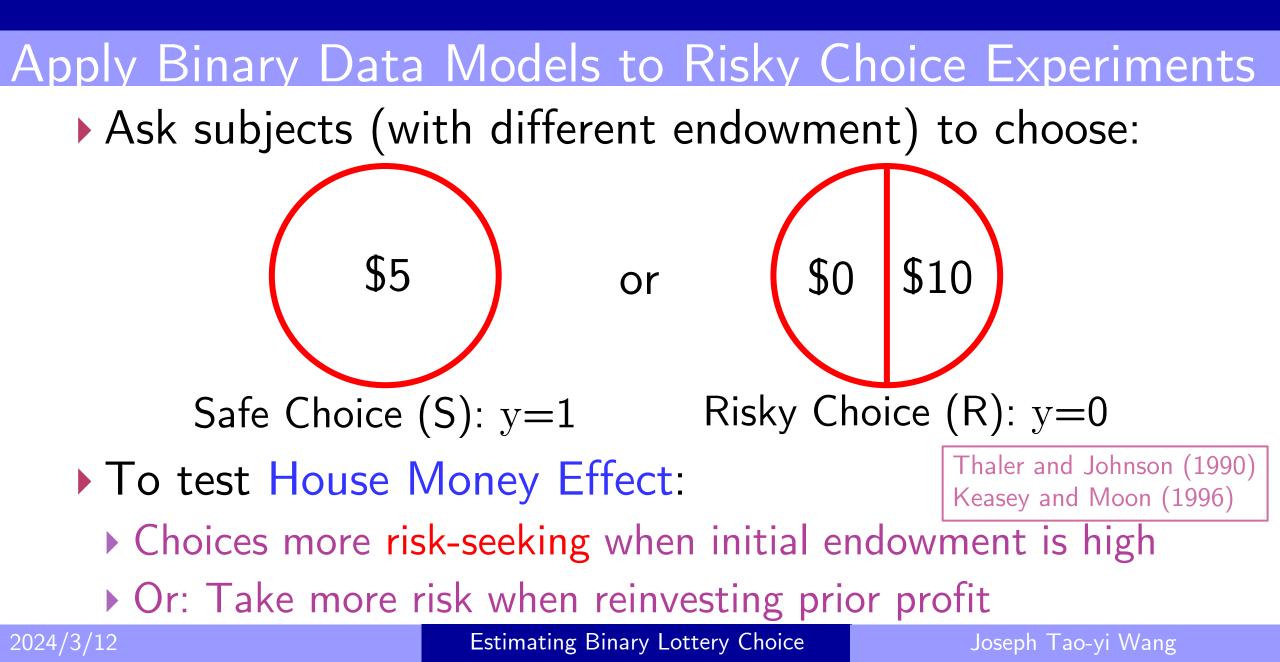
Estimating Binary Lottery Choice

Thaler and Johnson (1990); Keasey and Moon (1996)

> You received an endowment, and now have a choice:



Which would you choose if your endowment is \$10?
Which would you choose if your endowment is \$1,000?



	w 	N(y) 1	mean(y)
Apply Binary Data Models to Risky	0	50	.92
	.5	50	.88
▶ 1,050 subjects with wealth w_i	1	50	.88
	1.5	50	.84
	2	50	.84
Binary Outcome: Choose	2	50	.04
	2.5	50	.9
	3	50	.84
Safe $(y = 1)$, or Risky $(y = 0)$	3.5	50	.72
	4	50	.78
Simulated experiment data	4.5	50	.7
	5	50	.7
House_money_sim.dta	5.5	50	.74
	6	50	.72
STATA: table w, contents(n y mean	• •	50 50	.72 .5
▶ 92% choose safe at $w_i = \$0$	7.5	50	.64
	8	50	.5
	8.5	50	.48
▶ 50% choose safe at $w_i = $ \$10	0.5	50	.40
	9	50	.56
	9.5	50	.5
2024/3/12 Estimating Binary Lottery Choice	10	50	.5

Probit Model for Choosing Safe Under Wealth Level w_i Model this as Probit: $Pr(y_i = 1|w_i) = \Phi(\beta_0 + \beta_1 w_i)$

where $\Phi(z) = \Pr(Z < z) = \int_{-\infty}^{z} \phi(z) dz$ is standard Normal cdf

And its pdf is
$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-z^2}{2}\right)$$

Likelihood:

$$L = \prod_{i=1}^{n} \left[\Phi(\beta_0 + \beta_1 w_i) \right]^{y_i} \left[1 - \Phi(\beta_0 + \beta_1 w_i) \right]^{1-y_i}$$

Probit Model for Choosing Safe Under Wealth Level w_i

- ► Log-Likelihood: (Easier for numerical maximization!) $\log L = \sum_{i=1}^{n} y_i \ln \left[\Phi(\beta_0 + \beta_1 w_i)\right] + (1 - y_i) \ln \left[1 - \Phi(\beta_0 + \beta_1 w_i)\right]$
- Since $\Phi(-z) = 1 \Phi(z)$,
 - ▶ Rewrite log-Likelihood with Safe $(yy_i = 1)$ & Risky $(yy_i = -1)$ log $L = \sum_{i=1}^{n} \ln \left[\Phi(yy_i \times (\beta_0 + \beta_1 w_i)) \right]$

) probit y w in STATA to perform MLE to find $\beta_0,\,\beta_1$

Probit Model for Choosing Safe Under Wealth Level w_i

STATA probit y w Results:

		-								
	Itera	tion 0: 1	og likelihoo	d = -634.483	3				· .	
	Itera	eration 1: log likelihood = -584.91375						1,050 Subjects		
	Itera	eration 2: \log likelihood = -584.5851						of 1 Round each		
	Itera	teration 3: log likelihood = -584.58503								
			og likelihoo							
		t regress	0			Number	of obs	3 =	1050	
		C				LR chi	2(1)	=	99.80	
						Prob >	chi2	=	0.0000	
	Log l	ikelihood	= -584.58503	3		Pseudo	R2	=	0.0786	
Strong Ho	use	 v	Coef.	Std. Err.		 D> 7	 Габу	Conf	Interval]	
Money Effect		y 1				I > Z				
		+ w	1409882	.0145377	-9.70	0.000	1694	 1816	1124948	
(z = -9.70))	_cons		.0911155		0.000		3071		

2024/3/12

Estimating Binary Lottery Choice

Wald Test for the House Money Effect (Probit)

Wald Test for
$$\beta_1 = 0$$
: $W = \frac{\left(\hat{\beta}_1 - 0\right)^2}{\operatorname{Var}\left(\hat{\beta}_1\right)} \sim \chi^2(1)$

► STATA test w=0 Results: (1) [y]w = 0Chi2(1) = 94.05 Prob > chi2 = 0.0000 Strong House Money Effect: $W = (-9.70)^2 = 94.05$ >> 3.84 = $\chi^2_{1,0.05}$

Estimating Binary Lottery Choice

Prediction: Pr(Safe) for Each Wealth Level

• Graph estimated probability:

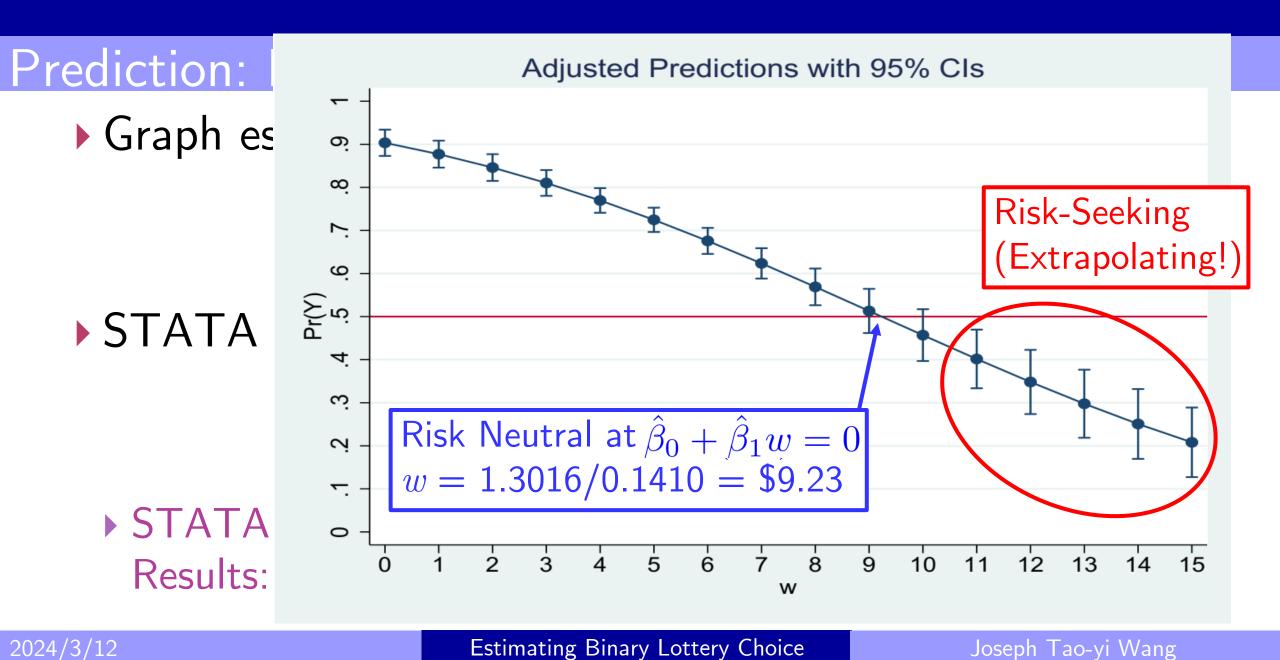
$$\Phi(\beta_0 + \beta_1 w) = \Phi(1.302 - 0.141w)$$

STATA Command:

margins, at(w=(0(1)15)
marginsplot, ylabel(0(0.1)1) yline(0.5)

STATA Results:

2024/3/12



Estimating Binary Lottery Choice

Conditional Marginal Effect at No Wealth (w = \$0)

Predict change in Pr(Safe) due to change in w (w = \$0) margins, dydx(w) at(w=0)

STATA Results:

Conditional Model VCE		•	ts		Numbe	er of obs	=	1050
Expression dy/dx w.r.t. at	. :	• -	lict() =	0	Pr(Sa when	afe) drop w rises f	s by from	2.41% \$0 to \$
	 	dy/dx	Delta-method Std. Err.	-	P> z	 [95% C	 onf.	Interval]
 v	+- v	024109	.0013299	-18.13	0.000	02671	 55	0215026

Estimating Binary Lottery Choice

Conditional Marginal Effect at Higher Wealth (w = \$10)

> Predict change in Pr(Safe) due to change in w (w =\$10)

margins, dydx(w) at(w=10)

STATA Results:

Condition Model VCE		rginal effec M	ts		Numbe	er of obs =	1050
Expressic dy/dx w.r at	.t. :	r(y), predic w w	=	10	as v	Safe) drops l v rises from eper slope in	\$10 to \$11
		dy/dx	Delta-method Std. Err.	-	P> z	[95% Conf.	Interval]
	+ ע	0559177	.0053804	-10.39	0.000	0664631	0453724

Average Marginal Effect

Average predict change in Pr(Safe) due to change in w

margins, dydx(w) at(w=10)

STATA Results:

Average margin Model VCE				Nu	mber of obs =	= 1050
Expression :] dy/dx w.r.t.	: w			0	Pr(Safe) drops on average as <u>across all ob</u>	w rises by
	•	Delta-method Std. Err.	-	P> z	[95% Conf	. Interval]
W	0444259	.0039929	-11.13	0.00	00522518	0366

Estimating Binary Lottery Choice

Likelihood Ratio Test for House Money Effect (Probit) • Wald Test for $\beta_1 = 0$: $W = \frac{(\hat{\beta}_1 - 0)^2}{Var(\hat{\beta}_1)} \sim \chi^2(1)$ • Likelihood Ratio (LR) Test between:

• Unrestricted: $\log L_U = \sum_{i=1} \ln \left[\Phi(yy_i \times (\beta_0 + \beta_1 w_i)) \right]$

• Restricted:
$$\log L_R = \sum_{i=1}^n \ln \left[\Phi(yy_i \times (\beta_0)) \right]$$

• LR for $\beta_1 = 0$: $LR = 2\left(\log L_U - \log L_R \right) \sim \chi^2(1)$

							n					
Unrest	ricted	Pro	<u>bit M</u>	odel	$\log L$	$U_U = \sum_{i=1}^{N}$	$\int \ln \left[\Phi \right]$	$(yy_i \times$	< (/	$\beta_0 +$	$(\beta_1 w_i))]$	
	ΤΑΤΑ		probit			<i>i</i> =	=1					J
R	lesults:											_
	teration 0 teration 1	0									ubjects	
	teration 2 teration 3	0							of	1 Ro	und eac	h
It	teration 4 robit regre	: log	likelihoo				Numbe	er of (oha	_	1050	
	=-584		1				LR ch	ni2(1) > chi:		=	99.80	C
Lo	og likeliho	ood =	-584.5850	3				lo R2			0.0786	
		y +	Coef.	Std.	Err.	Z	P> z	[9	5% (Conf.	Interval]	
	con:		1409882 1.301654			-9.70 14.29	0.000			816 071	1124948 1.480237	

Estimating Binary Lottery Choice

Restricted Probit Model

• Restricted:
$$\log L_R = \sum_{i=1}^n \ln \left[\Phi(yy_i \times (\beta_0)) \right]$$

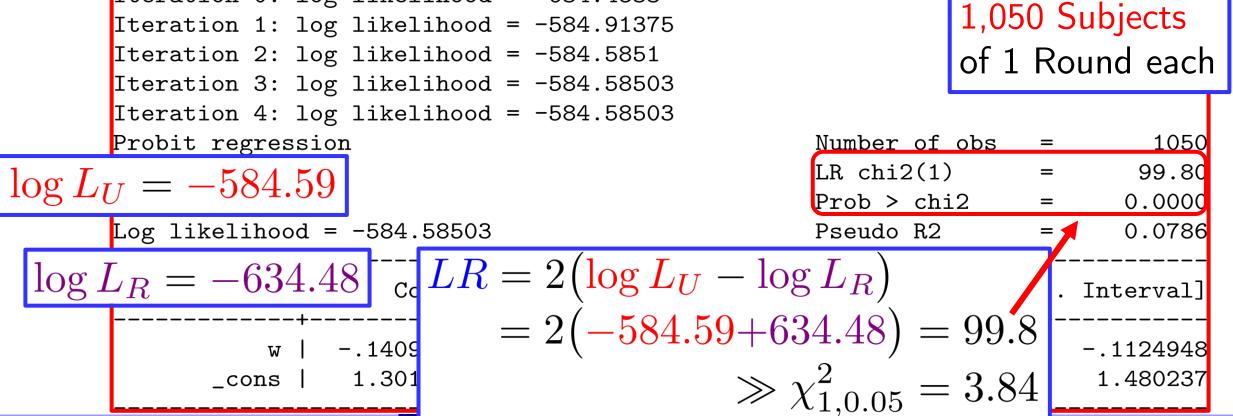
							1,050 Subjects of 1 Round eac		
Probit r $\log L_R =$	egression	1		-	Number LR chi2	(0)	=	1050 0.00	
<u> </u>		-634.4833			Prob > Pseudo			0.0000	
	у I +	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]	
	cons	.5464424	.0408516	13.38	0.000	.4663	3746	.6265101	

Estimating Binary Lottery Choice

Likelihood Ratio Test for House Money Effect (Probit)

> STATA probit y w Results: Iteration 0: log likelihood = -634.4833 Iteration 1: log likelihood = -584.01375

2024/3/12



Estimating Binary Lottery Choice

Likelihood Ratio Test for House Money Effect (Probit)

```
STATA Command: probit y w
```

```
probit y w
est store with_w
```

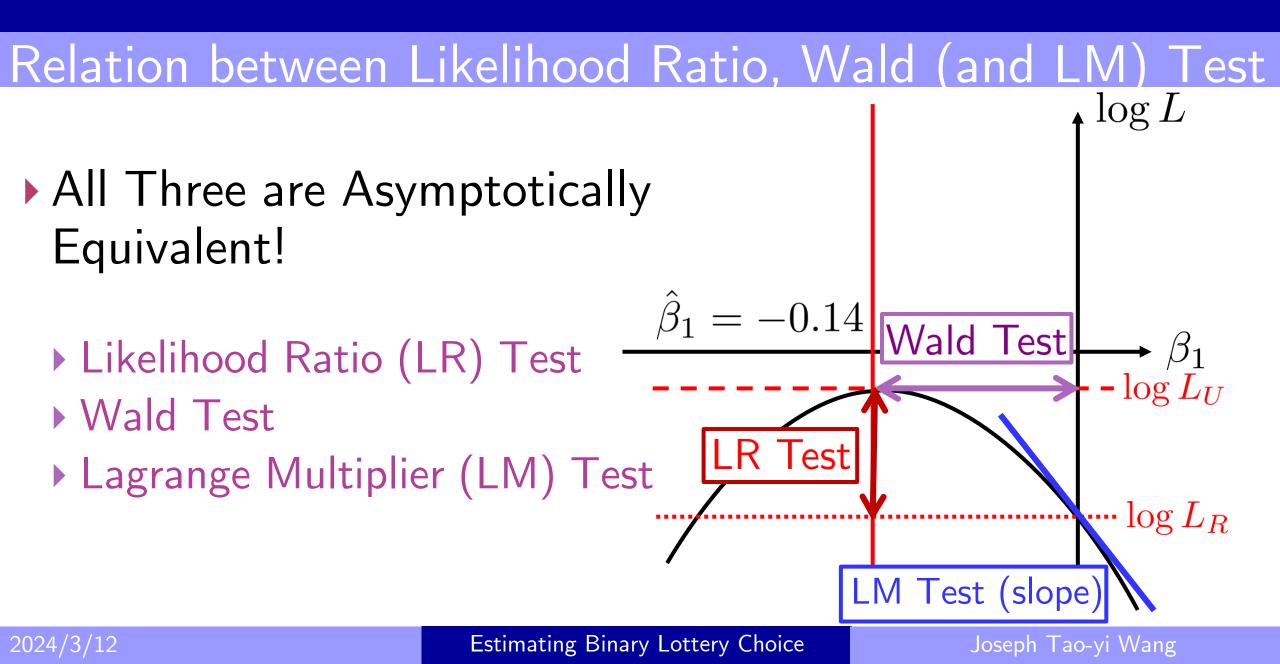
```
probit y
est store without_w
```

```
lrtest with_w without_w
```

STATA Results:

Likelihood-ratio test	LR chi2(1) =	99.80
(Assumption: without_w nested in with_w)	Prob > chi2 =	0.0000

Estimating Binary Lottery Choice



```
Maximum Likelihood Estimation (MLE) of Probit
                                               * LOG-LIKELIHOOD EVALUATION PROGRAM "myprobit" STARTS HERE:
     Estimate probit with MLE
                                               program define myprobit
   Use binary lottery choice
                                               * SPECIFY NAME OF QUANTITY WHOSE SUM WE WISH TO MAXIMISE (logl)
                                               * AND ALSO PARAMETER NAMES (EMBODIED IN xb)
     of: house_money_sim.dta
                                               * PROVIDE LIST OF TEMPORARY VARIABLES (p ONLY)
                                               args logl xb
     STATA: myprobit.do
                                               tempvar p
   Use ml to maximize
                                               * GENERATE PROBABILITY OF CHOICE MADE BY EACH SUBJECT (p):
                                               quietly gen double 'p'=normal(yy*'xb')
    \log L =
                                               * TAKE NATURAL LOG OF p AND STORE THIS AS log1
      n
                                               quietly replace 'logl'=ln('p')
     \sum \left[ \ln \left[ \Phi(yy_i \times (\beta_0 + \beta_1 w_i)) \right] \right]
                                               * END "myprobit" PROGRAM:
     i=1
2024/3/12
                                     Estimating Binary Lottery Choice
                                                                            Joseph Tao-yi Wang
```

- To ignore errors if the following command is not applicable, can add at the beginning
- Maximize log1
- Over $xb = \beta_0 + \beta_1 w_i$
 - local variables like other defined by

tempvar

2024/3/12

Such as 'p'_

* LOG-LIKELIHOOD EVALUATION PROGRAM "myp capture program drop myprobit program define myprobit

* SPECIFY NAME OF QUANTITY WHOSE SUM WE * AND ALSO PARAMETER NAMES (EMBODIED IN * PROVIDE LIST OF TEMPORARY VARIABLES (r

Estimating Binary Lottery Choice

args logl xb

- Unlike global variables like yy
- * GENERATE PROBABILITY OF CHOICE MADE BY Does not need single quotation marks like quietly gen double _ p'=normal(yy*'xb') local variables 'p' or 'logl' * TAKE NATURAL LOG OF p AND STORE THIS A quietly replace 'logl'=ln('p') END "myprobit" PROGRAM: * end2024/3/12 Estimating Binary Lottery Choice Joseph Tao-yi Wang

- ▶ The ml Routine uses the lf likelihood evaluator
 - Run on each row of the data set, unlike the d-family evaluator (which runs on each block of rows)

```
* READ DATA
use "house money_sim", clear
* GENERATE (INTEGER) yy FROM y:
gen int yy=2*y-1
* SPECIFY LIKELIHOOD EVALUATOR (lf), EVALUATION PROGRAM (myprobit),
* AND EXPLANATORY VARIABLE LIST.
* RUN MAXIMUM LIKELIHOOD PROCEDURE
ml model lf myprobit ( = w)
ml maximize
```

► STATA	ml model]	lf myprobi	t (= w)					
	ml maximiz	ze						
Results:	initial: log l	ikelihood = -	-727.80454					
	alternative: l	og likelihood	d = -635.132	1				
	1							
	39							
	03							
	Iteration 3: 1	og likelihood	d = -584.585	03				
		-			Number	r of obs	=	1050
					Wald o	chi2(1)	=	94.05
	Log likelihood	= -584.58503	3		Prob 3	> chi2	=	0.0000
	 	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]
		1409882 1.301654						1124948 1.480237

Estimating Binary Lottery Choice

Same as Probit Model

STATA probit y w Results:

Iteration 0: log likelihood = -634.4833 1,050 Subjects Iteration 1: log likelihood = -584.91375of 1 Round each Iteration 2: log likelihood = -584.5851 Iteration 3: log likelihood = -584.58503Iteration 4: log likelihood = -584.58503Probit regression 1050 Number of obs LR chi2(1)99.80 = Prob > chi2 0.0000 = Log likelihood = -584.585030.0786 Pseudo R2 = Strong House Coef. Std. Err. z [95% Conf. Interval] y | P>|z| Money Effect wΙ 0.000 -.1694816 -.1124948-.1409882 .0145377 -9.70(z = -9.70)1.301654 .0911155 14.29 0.000 1.123071 1.480237 cons

2024/3/12

Estimating Binary Lottery Choice

- Reduced form models simply attempt to explain the data
- Structural Models: Assume all individuals have the same utility function:

$$U(x) = \frac{x^{r}}{1-r}, \ r \neq 1$$

= ln(x), r = 1

- Constant Relative Risk Aversion (CRRA): r = RRA
 Higher r = more risk averse
- Negative r = risk-seeking

In Binary Lottery Choice, Expected Utility for choosing Safe and Risky are:

 $EU(S) = \frac{(w+5)^{1-r}}{1-r}$ $EU(R) = 0.5 \frac{(w)^{1-r}}{1-r} + 0.5 \frac{(w+10)^{1-r}}{1-r}$

• Choose Safe if $EU(S) - EU(R) + \epsilon > 0$

Fechner Error Term: When computing EU difference, individuals make computational error $\epsilon \sim N(0, \sigma^2)$

```
Probability of Safe choice being made is:
\Pr(S) = \Pr[EU(S) - EU(R) + \epsilon > 0]
          = \Pr[\epsilon > EU(R) - EU(S)]
         = \Pr \left| \frac{\epsilon}{\sigma} > \frac{EU(R) - EU(S)}{\sigma} \right|
         = 1 - \Phi \left[ \frac{EU(R) - EU(S)}{\sigma} \right] = \Phi \left[ \frac{EU(S) - EU(R)}{\sigma} \right]
```

Filling in EU (and using the yy trick), we obtain the log-likelihood function:

$$\log L = \sum_{i=1}^{n} \ln \Phi \left[yy_i \times \frac{\frac{(w_i+5)^{1-r}}{1-r} - \left(0.5\frac{(w_i)^{1-r}}{1-r} + 0.5\frac{(w_i+10)^{1-r}}{1-r}\right)}{\sigma} \right]$$

Choose r and σ to maximize logL
 Need to program this in STATA using the ml command

• Choose r and σ to maximize $\log L$

```
STATA command: args logl r sig
```

```
program drop structural
program structural
args logl r sig
tempvar eus eur diff p
quietly gen double 'eus'=(w+5)^(1-'r')/(1-'r')
quietly gen double 'eur'=0.5*w^(1-'r')/(1-'r')+0.5*(w+10)^(1-'r')/(1-'r')
quietly gen double 'diff'=('eus'-'eur')/'sig'
quietly gen double 'p'=normal(yy*'diff')
quietly replace 'logl'=ln('p')
end
```

STATA Results

	initial: log	likelihood =	- <inf> (could</inf>	not be	evaluate	d)				
	feasible: log	likelihood =	-601.45646							
•	rescale: log	likelihood =	-601.45646							
	rescale eq: log likelihood = -600.78259									
	Iteration 0:	log likelihoo	d = -600.7825	9						
	Iteration 1: log likelihood = -595.2424									
	Iteration 2: log likelihood = -595.22797									
	Iteration 3: log likelihood = -595.22739 $r = 0.2177$									
	Iteration 4: log likelihood = -595.22739 Number of obs = 1050 $\sigma = 0.3586$									
	Number of obs	= 1050			σ-	- 0 3586				
	Wald chi2(0)	= .			0 -	- 0.0000				
	Log likelihoo	d = -595.2273	9 Prob > chi2	= .						
		Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]			
		+								
	-	.21765	.0976928	2.23	0.026	.0261757	.4091244			
		+								
	sig	1								
	Ũ	.3585733	.1046733	3.43	0.001	.1534174	.5637292			

Estimating Binary Lottery Choice

The estimated (homogeneous) utility function is:

$$U(x) = \frac{x^{1-0.2177}}{1-0.2177} = \frac{x^{0.7823}}{0.7823}$$

With Fechner computation error $\epsilon \sim N(0, 0.3586^2)$

Note that this estimation assumes every individual has the same risk preference

• We can relax this assumption...

Now assume each subject has his/her own r for the CRRA utility function:

$$U(x) = \frac{x^{1-r}}{1-r}$$

- Assume r has population distribution $r \sim N(\mu, \sigma^2)$
- Subject respond to Multiple Price List (MPL) of Holt and Laury (2002)
 - Choose Safe or Risky lottery for each question

 \blacktriangleright Indifferent between S and R at threshold risk attitude r^*

Problem	Safe(S)	Risky(R)	r^*
1	(0.1, \$2.00; 0.9, \$1.60)	(0.1, \$3.85; 0.9, \$0.10)	-1.72
2	(0.2, \$2.00; 0.8, \$1.60)	(0.2, \$3.85; 0.8, \$0.10)	-0.95
3	(0.3, \$2.00; 0.7, \$1.60)	(0.3, \$3.85; 0.7, \$0.10)	-0.49
4	(0.4, \$2.00; 0.6, \$1.60)	(0.4, \$3.85; 0.6, \$0.10)	-0.15
5	(0.5, \$2.00; 0.5, \$1.60)	(0.5, \$3.85; 0.5, \$0.10)	0.15
6	(0.6, \$2.00; 0.4, \$1.60)	(0.6, \$3.85; 0.4, \$0.10)	0.41
7	(0.7, \$2.00; 0.3, \$1.60)	(0.7, \$3.85; 0.3, \$0.10)	0.68
8	(0.8, \$2.00; 0.2, \$1.60)	(0.8, \$3.85; 0.2, \$0.10)	0.97
9	(0.9, \$2.00; 0.1, \$1.60)	(0.9, \$3.85; 0.1, \$0.10)	1.37
10	(1.0, \$2.00; 0.0, \$1.60)	(1.0, \$3.85; 0.0, \$0.10)	∞

2024/3/12

Estimating Binary Lottery Choice

- Threshold risk attitude r* can be calculated with Excel in:
 risk aversion calculations.xlsx
- Each subject is only asked 1 of the 10 problems
 (Pseudo) data for 100 subjects: holtlaury_sim.dta
- Subject *i* asked choice problem with threshold r_i^*
- Safe Choice Dummy:
 - ► $y_i = 1$ if chose S
 - ▶ $y_i = 0$ if chose R

• Given
$$r_i \sim N(\mu, \sigma^2)$$
, we have:
 $\Pr(y_i = 1) = \Pr(r_i > r_i^*) = \Pr\left(z > \frac{r_i^* - \mu}{\sigma}\right)$
 $= \Pr\left(z < \frac{\mu - r_i^*}{\sigma}\right) = \Phi\left[\frac{\mu}{\sigma} + \left(-\frac{1}{\sigma}\right)r_i^*\right] = \Phi\left[\alpha + \beta r_i^*\right]$

Can estimate a probit model: probit y rstar
Then, apply delta method:

Delta Method

(nlcom in STATA) used to obtain standard errors of \$\hu\$, \$\hat{\alpha}\$
More generally, consider reduced form estimates \$\hat{\alpha}\$, \$\hat{\beta}\$
Variance matrix is: \$\hat{V}\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\hat{\alpha}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\beta\$ \$\beta\$ \$\beta\$ \$\hat{\beta}\$ \$\beta\$ \$\beta

Estimating Binary Lottery Choice

The Delta Method

• Can uncover structure parameters μ, σ from reduced form estimates of α , β through $\boldsymbol{\alpha} = \frac{\mu}{\sigma}, \boldsymbol{\beta} = -\frac{1}{\sigma} \Rightarrow \mu = -\frac{\boldsymbol{\alpha}}{\beta}, \sigma = -\frac{1}{\beta}$ • Estimate matrix $D = \begin{pmatrix} \frac{\partial \mu}{\partial \beta} & \frac{\partial \mu}{\partial \alpha} \\ \frac{\partial \sigma}{\partial \beta} & \frac{\partial \sigma}{\partial \alpha} \end{pmatrix} = \begin{pmatrix} \frac{\alpha}{\beta^2} & -\frac{1}{\beta} \\ \frac{1}{\beta^2} & 0 \end{pmatrix}$ • Use square root of diagonal in $\hat{V}\begin{pmatrix}\hat{\mu}\\\hat{\sigma}\end{pmatrix} = \hat{D}\begin{bmatrix}\hat{V}\begin{pmatrix}\hat{\beta}\\\hat{\alpha}\end{bmatrix}\end{bmatrix}\hat{D}'$

Heterogeneous Agent Model

► STATA	probit :	y rstar					
Results	Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4: Probit regress LR chi2(1) = Prob > chi2 = Log likelihood	log likelihood log likelihood log likelihood log likelihood sion Number of 74.20 0.0000	$d = -32.75468$ $d = -31.8999^{\circ}$ $d = -31.89664$ $d = -31.89664$ $f obs = 100$	89 74 43 43			
	у	 Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]
		+ -1.826082 .7306556 ures and 0 suc	.2264169	3.23	0.001	.2868867	
1/2/10							A /

Estimating Binary Lottery Choice

Heterogeneous Agent Model

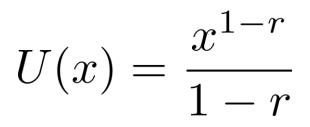
STATA 1	nlcom	(mu:	b[_co	ns]/_b[r	star]) (sig	;: −1/_b[rstar])
Results		b[_cons]/_ l/_b[rstar						
$\hat{\mu} = 0.4$	001	y	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
$\hat{\sigma} = 0.5$		mu sig	.400122 .5476205	.0978294 .104399	4.09 5.25	0.000	.2083799 .3430021	.5918641 .7522389

Hence, every subject has RRA coefficient drawn from: $r \sim N(0.4001, 0.5476^2)$

And calculate EU to make decision without error

Interval Data

- Revisit Holt and Laury (2002)
- Still assume subjects have CRRA utility function:



- But subject are asked each problem in order, revealing where in the list they switch
 - More precise information available regarding subject risk preference

Interval Data

▶ EU-maximizing subject has RRA *r* between 0.15 and 0.41

Problem	$\operatorname{Safe}(S)$	Risky(R)	r^*
1	(0.1, \$2.00; 0.9, \$1.60)	(0.1, \$3.85; 0.9, \$0.10)	-1.72
2	(0.2, \$2.00; 0.8, \$1.60)	(0.2, \$3.85; 0.8, \$0.10)	-0.95
3	(0.3, \$2.00; 0.7, \$1.60)	(0.3, \$3.85; 0.7, \$0.10)	-0.49
4	(0.4, \$2.00; 0.6, \$1.60)	(0.4, \$3.85; 0.6, \$0.10)	-0.15
5	(0.5, \$2.00; 0.5, \$1.60)	(0.5, \$3.85; 0.5, \$0.10)	0.15
6	(0.6, \$2.00; 0.4, \$1.60)	(0.6, \$3.85; 0.4, \$0.10)	0.41
7	(0.7, \$2.00; 0.3, \$1.60)	(0.7, \$3.85; 0.3, \$0.10)	0.68
8	(0.8, \$2.00; 0.2, \$1.60)	(0.8, \$3.85; 0.2, \$0.10)	0.97
9	(0.9, \$2.00; 0.1, \$1.60)	(0.9, \$3.85; 0.1, \$0.10)	1.37
10	(1.0, \$2.00; 0.0, \$1.60)	(1.0, \$3.85; 0.0, \$0.10)	∞

Estimating Binary Lottery Choice

- \blacktriangleright Estimate population r from subject-specific intervals
- (Pseudo) data for 100 subjects: interval_data_sim.dta • For $r_i \sim N(\mu, \sigma^2)$, subject *i* with $l_i < r_i < h_i$ has

$$L_{i} = \Pr(l_{i} < r < h_{i}) = \Pr(r_{i} < h_{i}) - \Pr(r < l_{i})$$
$$= \Phi\left(\frac{u_{i} - \mu}{\sigma}\right) - \Phi\left(\frac{l_{i} - \mu}{\sigma}\right)$$
Hence, $\log L = \sum_{i=1}^{n} \ln\left[\Phi\left(\frac{u_{i} - \mu}{\sigma}\right) - \Phi\left(\frac{l_{i} - \mu}{\sigma}\right)\right]$

• Interval Regression: Estimate likelihood-maximizing $\hat{\mu}, \hat{\sigma}$

STATA command: intreg rlower rupper

Result:

2024/3/12

t:	Fitting consta	ant-only model	1:							
ι.	Iteration 0: 1	log likelihood	d = -199.0723	31						
	teration 1: log likelihood = -198.96851									
	Iteration 2: 1	log likelihood	d = -198.9684	19						
	Fitting full m	nodel:								
	Iteration 0: 1	log likelihood	d = -198.9684	19						
	Iteration 1: 1	log likelihood	d = -198.9684	19						
	Interval regre	ession Number	of obs = 100	C						
	LR chi2(0) = $($	0.00								
	Log likelihood	1 = -198.96849	9 Prob > chi2	2 = .						
	I	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]			
	_cons	.613146	.0597808	10.26	0.000	.4959777	.7303143			
	/lnsigma	5323404	.0764651	-6.96	0.000	6822092	3824716			

	Fitting consta	int-only model:					
Interval Dat	Iteration 0: 1	og likelihood	= -199.0723	1			
	Iteration I: I	og likelinood	190.9005	T			
STATA	Iteration 2: 1	.og likelihood	= -198.9684	9			
	Fitting full m	nodel:		<u> </u>			
RACIIIC	Iteration 0: 1	0					
	Iteration 1: 1	0					
	Interval regre		of obs = 100				
	LR chi2(0) = 0						
	Log likelihood	l = -198.96849	Prob > chi2	= .			
	$0.1 0 \mathbf{F} \circ \mathbf{F}$	(2)	9+d Err		DN 7	[05% Conf	Tntorwoll
$r \sim N (0.61)$	31, 0.587	2^{-}		ے	「/ 乙 		
	cons	.613146	.0597808	10.26	0.000	.4959777	.7303143
	++						
	/lnsigma	5323404	.0764651	-6.96	0.000	6822092	3824716
	+						
	sigma	.587229	.0449025			.505499	.6821733
	Observation summary: 0 left-censored observations						
	0 uncensored observations						
	6 right-censor		ns				
2024/3/12	94 interval ob	servations					

If risk attitude depends on age and gender:

- $r_i = \beta_0 + \beta_1 age_i + \beta_2 male_i + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2)$
- Explanatory variables $\vec{x}_i = (1 \quad age_i \quad male_i)'$
- Have coefficients $\vec{\beta} = (\beta_0 \ \beta_1 \ \beta_2)'$ $r_i = \vec{x_i}' \vec{\beta} + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2) \Rightarrow r_i \sim N\left(\vec{x_i}' \vec{\beta}, \sigma^2\right)$

Hence,

 $\log L = \sum_{i=1}^{n} \ln \left[\Phi \left(\frac{u_i - \vec{x_i'} \vec{\beta}}{\sigma} \right) - \Phi \left(\frac{l_i - \vec{x_i'} \vec{\beta}}{\sigma} \right) \right]$

Estimating Binary Lottery Choice

Joseph Tao-yi Wang

STATA intreg rlower rupper age male

Result:

```
Fitting constant-only model:
Iteration 0: log likelihood = -199.07231
Iteration 1: log likelihood = -198.96851
Iteration 2: log likelihood = -198.96849
Fitting full model:
Iteration 0: log likelihood = -197.24143
Iteration 1: log likelihood = -197.17109
Iteration 2: log likelihood = -197.17108
Interval regression Number of obs = 100
LR chi2(2) = 3.59
Log likelihood = -197.17108 Prob > chi2 = 0.1657
             Coef. Std. Err. z P>|z| [95% Conf. Interval]
        age | .02213 .0196956 1.12 0.261 -.0164727 .0607327
       male | -.2165679 .1341118 -1.61 0.106 -.4794222 .0462864
      _cons | .1592841 .4565128 0.35 0.727 -.7354646 1.054033
```

2024/3/12

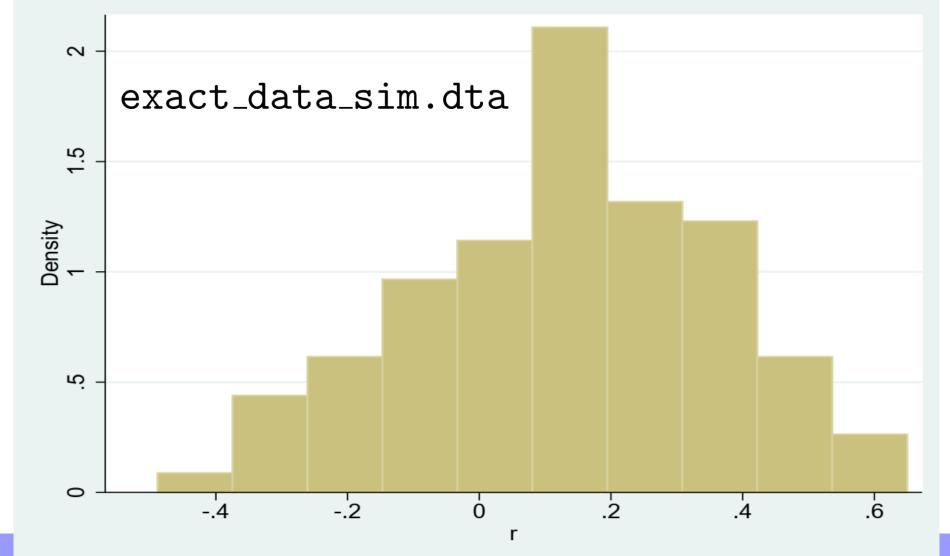
	Fitting consta	itting constant-only model:							
	Iteration 0: 1	log likelihood	l = -199.072	231					
	Iteration 1: 1	log likelihood	l = -198.968	351					
	Iteration 2: 1	0	l = -198.968	349					
		ting full model:							
	Iteration 0: 1	•							
	Iteration 1: 1	•							
	Iteration 2: 1	•							
I COULT	Interval regre		of obs = 10	00					
	LR chi2(2) = 3				_				
	Log likelihood	d = -197.17108	3 Prob > chi	12 = 0.165	7				
		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
But none	age	.02213	.0196956	1.12	0.261	0164727	.0607327		
Dut none	male	2165679	.1341118	-1.61	0.106	4794222	.0462864		
significant	_cons	. 1592841	.4565128	0.35	0.727	7354646	1.054033		
Significant		5507208	.0764747	-7.20	0.000	7006085	4008332		
	sigma	.5765341	.0440903			.4962832	.6697618		
$\hat{r}_i = 0.159 + 0.022age_i - 0.217male_i)$ $\hat{\sigma} = 0.577$									
2024/3/12	6 right-censo		ons						
2024/3/12	94 interval ob	oservations							

- Ask subject Certainty Equivalent (CE) for a lottery
 - Amount for sure indifferent with lottery
- Exact information of subject risk preference With the CRRA utility function: $U(x) = \frac{x^{1-r}}{1-r}$
- If (0.3, \$3.85; 0.7, \$0.10) has CE = \$0.75, can find r

so: $0.3 \frac{(3.85)^{1-r}}{1-r} + 0.7 \frac{(0.1)^{1-r}}{1-r} = \frac{(0.75)^{1-r}}{1-r}$ > r = 0.41! (See risk aversion calculations.xlsx)

- To elicit subject CE with Incentive Compatibility (IC)
 - Provide incentives for truthful report
- Use Becker-DeGroot-Marschak (BDM) Mechanism
 - Becker et al. (1964)
 - 1. Report CE. Then, computer draw a random price
 - 2. If random price is higher than CE, earn random price
 - 3. If random price is lower than CE, play the lottery
- Why is it IC to report truthfully?

Simulated
 Data for
 N=100:



- Given population distribution $r \sim N(\mu, \sigma^2)$
 - Want to estimate $\hat{\mu}, \hat{\sigma}$
- Density for observation r_i is

$$f(r_i; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(r_i - \mu)^2}{2\sigma^2}\right) = \frac{1}{\sigma}\phi\left(\frac{r_i - \mu}{\sigma}\right)$$

Hence, the sample log-likelihood function is:

$$\log L = \sum_{i=1}^{n} \ln \left[\frac{1}{\sigma} \phi \left(\frac{r_i - \mu}{\sigma} \right) \right]$$

- Choose r and σ to maximize $\log L$
 - STATA command: args lnl xb sig

```
program define exact
args lnf xb sig
tempvar y p
quietly gen double 'y'=$ML_y1
quietly gen double 'p'=(1/'sig')*normalden(('y'-'xb')/'sig')
quietly replace 'lnf'=ln('p')
end
ml model lf exact (r= ) ()
ml maximize
```

STATA Results

2024/3/12

initial	: log l	ikelihood = -	<inf> (could</inf>	d not be	evaluated	1)			
feasibl	e: log	likelihood =	-60.251905						
rescale	: log l	ikelihood = -	7.5739988						
rescale	rescale eq: log likelihood = 3.1167494								
Iterati	on 0: 1	og likelihood	l = 3.1167494	1					
Iterati	on 1: 1	og likelihood	1 = 3.2682025	5			_		
Iterati	on 2: 1	og likelihood	l = 3.6372157	7		0.1910			
Iterati	on 3: 1	og likelihood	l = 3.637384		$\mu =$: 0.134()		
Iterati	on 4: 1	og likelihood	l = 3.637384		'				
Number	of obs	= 100			^	\cap \cap \cap \cap \cap			
Wald ch	i2(0) =	• •			$\sigma =$	0.2333	5		
Log lik	elihood	= 3.637384 F	rob > chi2 =	= .			-		
	r	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]		
	+								
eq1	_cons	.1340463	.0233327	5.74	0.000	.0883149	. 1797776		
eq2	+ 								
-	_cons	.2333275	.0164987	14.14	0.000	.2009905	.2656644		

Joseph Tao-yi Wang

Sample Mean and Sample Variance are MLE!

 \blacktriangleright This is exactly the sample mean and variance of r

STATA command: summ r

Variable	Obs	Mean	Std. Dev.	Min	Max
r	100	.1340463	.2345029	4884877	.6499107

- Except sample variance is divided by (n 1) instead of n
- Recall from your Econometrics class
 - Sample mean and sample variance maximizes likelihood!
 - But ML applies to other continuous data (even censored)

CE Closer to Risk Neutrality?

- $\hat{\mu}^{\text{MLE}} = 0.1340$ much closer to 0 than previous ones:
 - Homogeneous Agent Model: $\hat{r}^{\text{Homo}} = 0.2177$
 - Heterogeneous Agent Model: $\hat{\mu}^{\text{Hetero}} = 0.4001$
 - Interval Data: $\hat{\mu}^{\text{Interval}} = 0.6131$
- Subjects tend toward risk neutrality when asked CE
 As if they compute EV and report something near
- Explains: Prefer safer lottery in binary choice (P-bet)

But place higher valuation on riskier lottery (\$-bet) Preference Reversals!!

Acknowledgment

This presentation is based on

- ▶ Section 3.1, 3.3-10 of the lecture notes of Experimetrics,
- prepared for a mini-course taught by Peter G. Moffatt (UEA) at National Taiwan University in Spring 2019
 - ▶ We thank 沈汶鋒, 陳詠駿、張學仁, 蘇靖勛、胡南圳 and 林欣素 for their in-class presentations