Coordination 協調賽局

Joseph Tao-yi Wang (王道一) Lecture 10, EE-BGT

- Which Equilibrium to Select Among Many?
 - ▶ This requires Coordination!
- ▶ Examples of Coordination in Daily Life:
 - Language
 - Trading in Markets (Liquidity)
 - ▶ Industry Concentration

- ▶ Equilibrium Selection in Game Theory
- 1. Desirable Features Approach:
 - ▶ Payoff-Dominance, Risk Dominance, etc.
- 2. Convergence via Adaptation/Learning
 - ▶ Weibull (1995), Fudenberg and Levine (1998)
- 3. Empirical Approach: Infer Principles by
 - Putting people in experiments and observe actual behavior/outcome

- Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- ▶ Why are observations useful?
- Schelling (1960, p.164):
 - ▶ "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver any more than one can prove,
 - by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
 - ▶ Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams
 - Speed Limits (useful because they reduce speed "variance," and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- ▶ US railroad tracks is 4 feet and 8.5 inch
 - ▶ Because English wagons were about 5 feet (width of two horses), and lead to
- Space Shuttle Rockets smaller than ideal
 - ▶ since they need to be shipped back by train...
- Industries are concentrated in small areas
 - Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
 - ▶ I want to live where others (like me) live

Examples of Coordination Impact:

Drive on Left/Right side of the Road

- ▶ Right: Asia, Europe (Same continent!)
- ▶ Left: Japan, UK, Hong Kong (Islands!)
- Sweden switched to Right (on Sunday morning)

- What about America? Right, to avoid
 - ▶ Hitting others with the whip on your right hand!
- Bolivians switch to Left in mountainous area
 - ▶ To see outer cliffside from (left) driver seat
- ▶ Pittsburgh left: 1st left-turner goes 1st at green
 - on two-lane streets to avoid blocking traffic

3 Types of Coordination Games

- Matching Games
 - ▶ Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
 - ▶ Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

- Categorizing Products
 - ▶ Where should you find MCU? Disney or Action?
 - ▶ Find your favorite item at a new Costco store
- Common Language:
 - ▶ Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- ▶ Key: Agreeing on something is better than not; but some coordinated choices are better

Matching Game: GAMES magazine (1989)

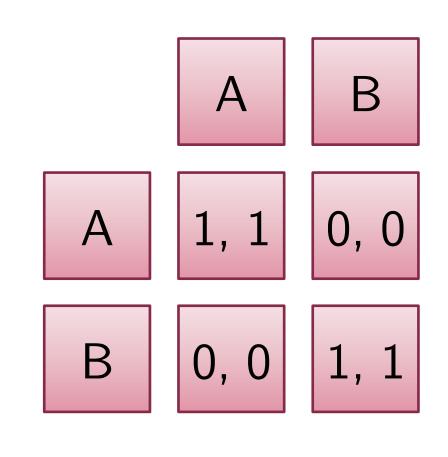
- Pick one celebrity (out of 9) for President, another for Vice-President:
 - Oprah Winfrey, Pete Rose,
 - Bruce Springsteen, Lee laccoca,
 - Ann Landers, Bill Cosby,
 - ▶ Sly Stallone, Pee-Wee Herman,
 - Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one

Matching Game: Taiwanese Version in Spring 2025

- For 2028 Taiwan Presidential Election:
 - ▶謝淑薇、陳傑憲、林郁婷、蔣萬安、 黃國昌、侯友宜、八炯、 鍾明軒、黃子佼、蕭美琴
- Prize?

Results...

Matching Game: GAMES magazine (1989)


- **US** Results:
- 1. Bill Cosby (1489): successful TV show
- 2. Lee lacocca (1155): possible US candidate
- 3. Pee-Wee Herman (656): successful TV show
- 4. Oprah Winfrey (437): successful TV show

...

9. Shirley MacLaine (196): self-proclaimed reincarnate

Pure Coordination Game

- ▶ Both get 1 if pick the same;
- ▶ Both get 0 if not
- ▶ Two pure NE,
 - ▶ (A, A) and (B, B)
- One mixed NE
 - $(\frac{1}{2}A + \frac{1}{2}B, \frac{1}{2}A + \frac{1}{2}B)$
- Which one will be played empirically?

Pure Coordination Game

- ▶ Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
 - ▶ Win \$1 if your partner picks the same as you
- ▶ Difference between P and C = How Focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Category	Pick a ((n=88)	Coordinate (n=90)		
Category	Response	%	Response	%	
Years	1971	8.0	1990	61.1	
Flowers	Rose	35.2	Rose	66.7	
Dates	Dec. 25	5.7	Dec. 25	44.4	
Numbers	7	11.4	1	40.0	
Colors	Blue	38.6	Red	58.9	
Boy's Name	John	9.1	John		
Gender	Him	53.4	Him	84.4	

2025/5/16

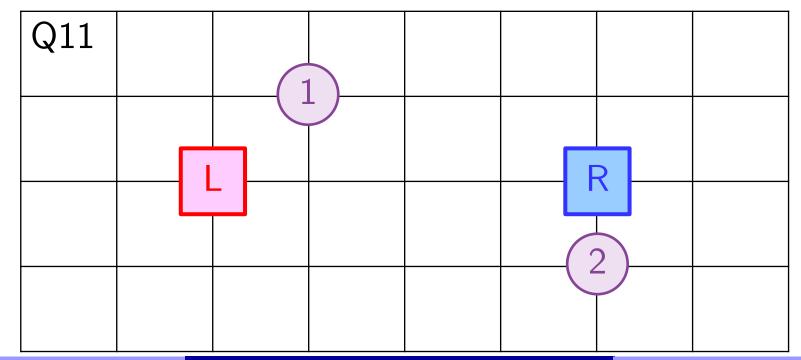
Coordination

Joseph Tao-yi Wang

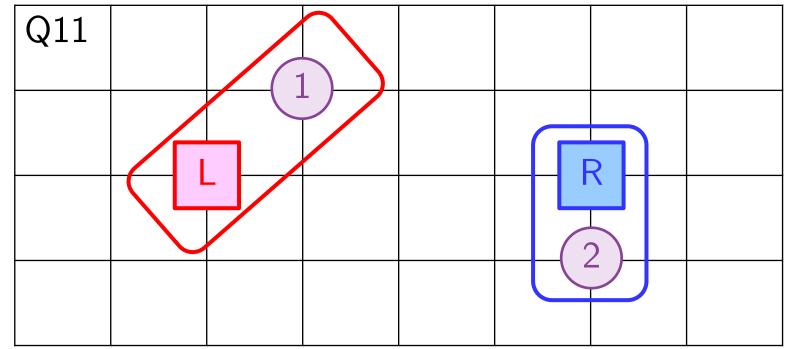
Pure Coordination Game: Follow-up 1

- ▶ Bardsley, Mehta, Starmer, Sugden (EJ 2010)
 - ▶ Incorporate (Replace?) Bardsley, et al. (wp 2001)
- ▶ 14 Games: One in choice set is distinctive
 - ▶ EX: {Bern, Barbodos, Honolulu, Florida}
- ▶ Add Guess Condition (G) to P/C: Guess partner's pick
- Design question: How do you avoid focality of physical location (first/last/top-left)?
 - ▶ Have things swim around the computer screen...

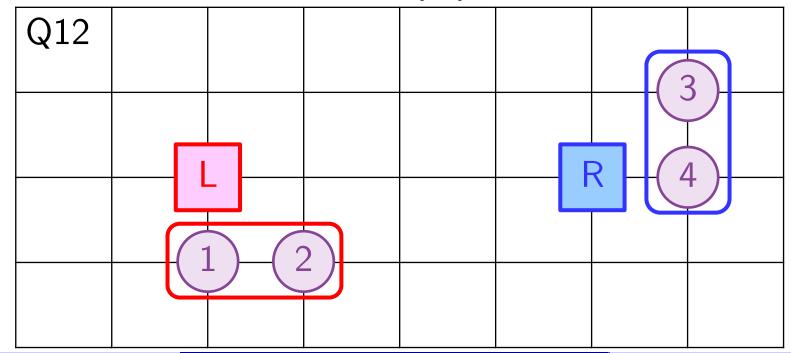
Pure Coordination Game: Follow-up 1

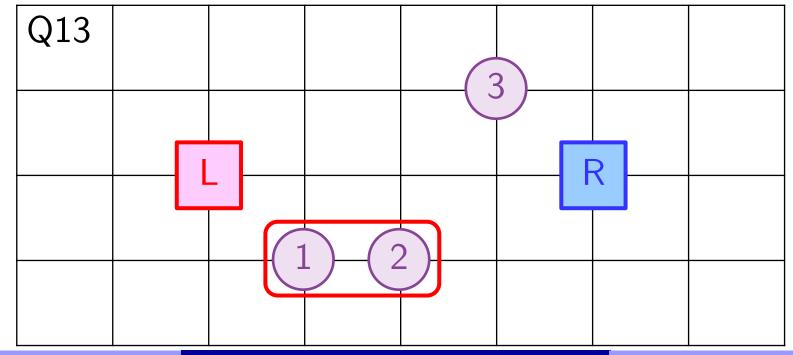

- ▶ EX: {Bern, Barbodos, Honolulu, Florida}
- 1. Could choose Bern in C since Bern in P and G
 - ▶ Derivative Salience: P=G=C (via Cognitive Hierarchy Model!)
- 2. Could choose Bern in C, but Florida in P and G
 - ▶ Schelling Salience: P=G≠C
 - ▶ Team Reasoning: Pick distinctive choice only in C
- Coordinate on this: Even though I would not pick this and I know you would not pick this!

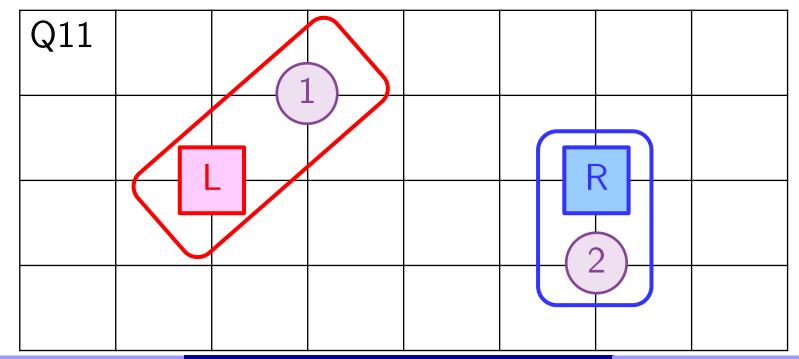
Pure Coordination Game: Follow-up 1

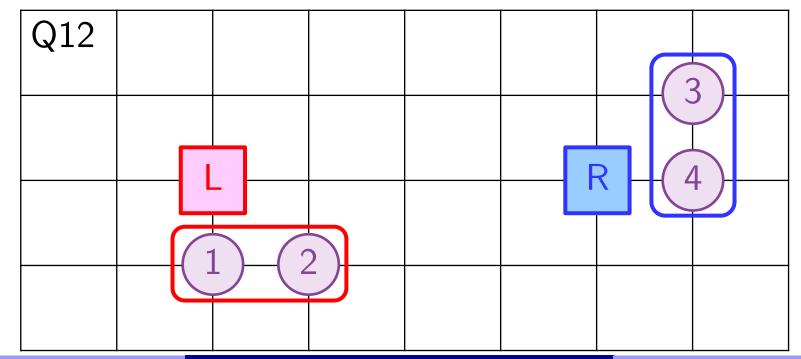

- ▶ Derivative Salience: P=G=C vs. Schelling Salience: P=G≠C
- Schelling Salience wins here!
 - ▶ In 12 games (out of 14):
- ▶ Chose distinctive choice 60% in C (modal!)
 - But less often in P and G
- ▶ EJ 2010: Follow-up with Nottingham subjects
 - Both saliences rejected with subtle design differences (used to coordinate)

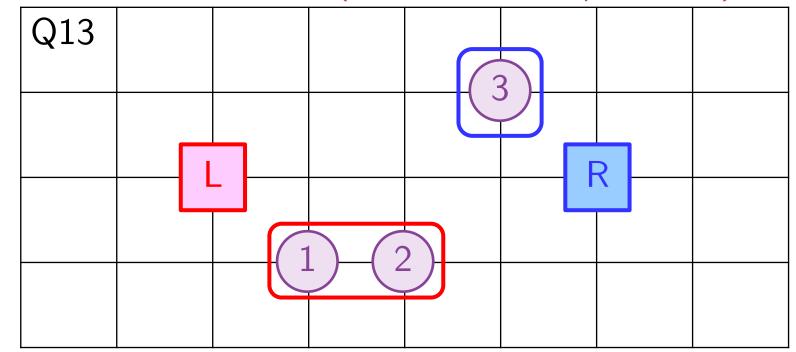
Assignment Game and Visual Selection (Follow-up 2)


- ► Hume (1978/1740) Ownership conventions: spatial/temporal proximity, cultural, etc.
 - ▶ Mehta, Starmer and Sugden (T&D 1994)

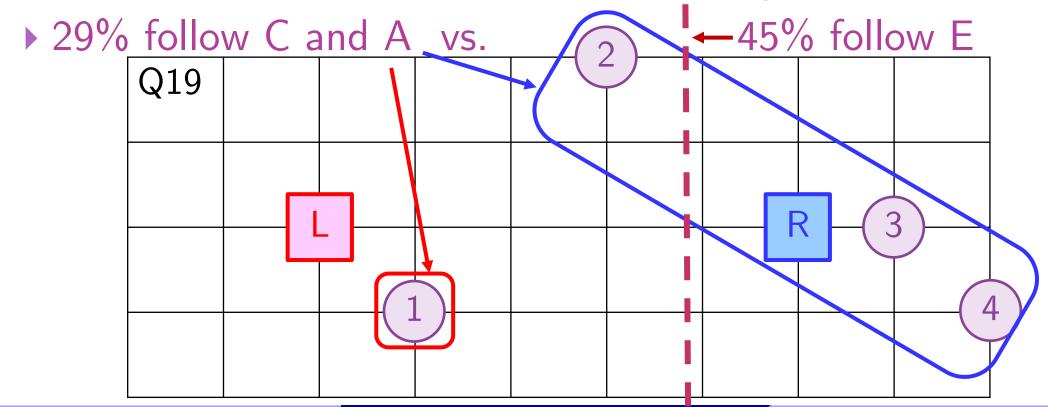

- Assign circles to L or R;
- ▶ Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 1: Closeness (C)


- ▶ Assign circles to L or R
- ▶ Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 2: Equality (E)

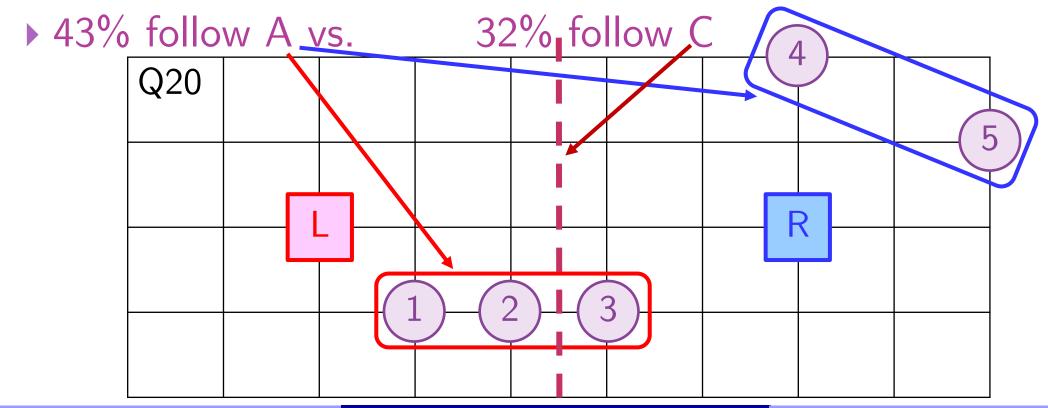

- ▶ Assign circles to L or R
- ▶ Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 3: Accession (A)


- ▶ How would you assign the circles?
- What about this? (C = A = E)
 - ▶ In fact, 74% chose this!

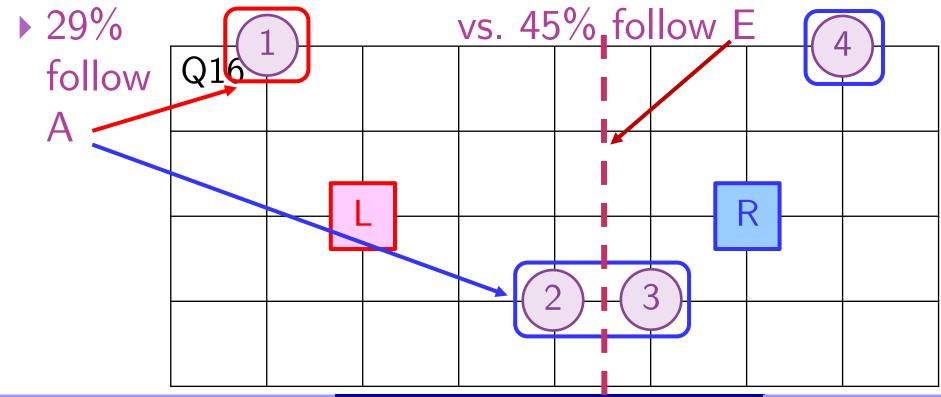
- ▶ How would you assign the circles?
- Mhat about this? (C = A = E)
 - ▶ In fact, 68% chose this!



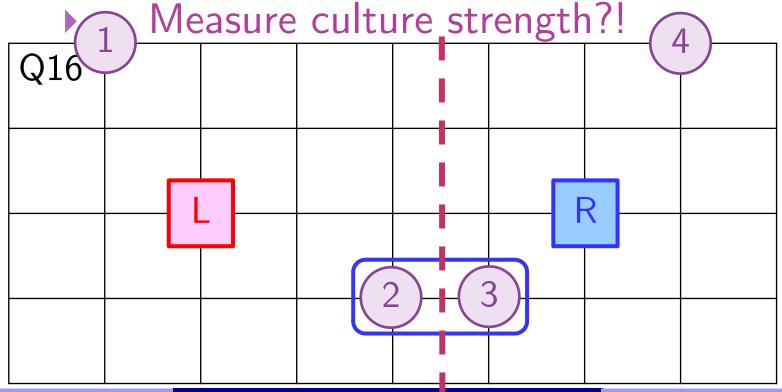
- ▶ How would you assign the circles?
- What about this? (Accession!)
 - ▶ In fact, 70% chose this! (What does C/E say?)


Assignment Game: Closeness and Accession vs. Equality

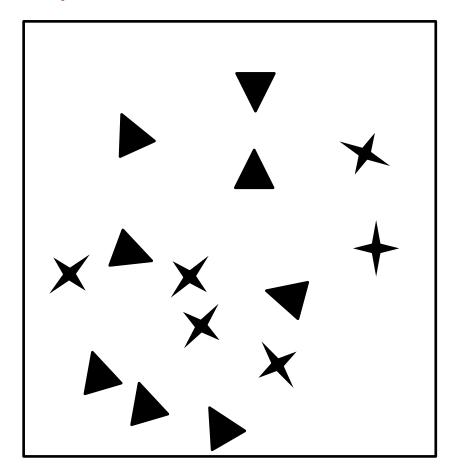
- What does Closeness/Accession say?
- ▶ What does Equality say about this? •••


Assignment Game: Accession vs. Closeness

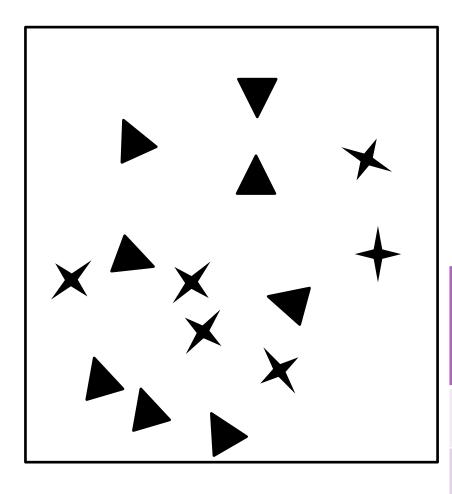
- ▶ What does Accession say about this? •••
- What does Closeness say about this?


Assignment Game: Accession vs. Equality

- What does Accession say about this?
- What does Equality say about this?


Equality > Accession > Closeness

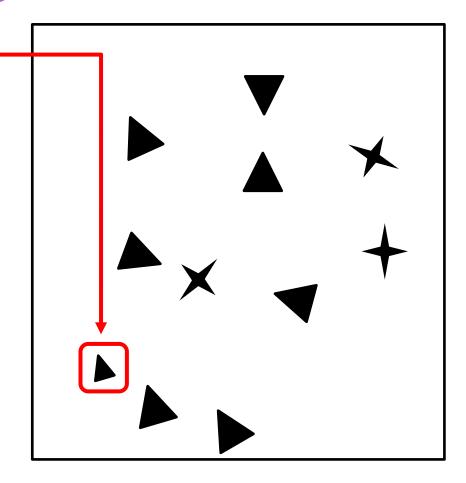
- First Focal Principle: Equality ©
- ▶ Then Accession (if Equality satisfied/silent)



Unpacking Focality

- ▶ Bacharach and Bernasconi (GEB 1997)
- Visual matching game
 - ▶ Pick one from picture:
- ▶ Test rarity preferences
 - ▶ 6 vs. 8
- Are Rare item chosen more frequently
 - ▶ As Rarity increases?
 - ▶ 6/8, 2/3, 6/18, 1/15

Unpacking Focality: Test Rarity



- Yes!
- As Rarity increases,
 - Frequency of rare choice increases!

	# of F	Items		
	6/8	2/3	6/18	1/15
Rare Item	65%	76%	77%	94%
Frequent Item	35%	24%	23%	6%

Unpacking Focality: Test Trade-offs

- Rarity (r = 3 vs. n = 8) against
- Oddity (size or color)-
 - ▶ p(F)= Probability of Notice
 - ▶ Choose Oddity if p(F) > 1/r ?
- Obvious Treatments:
 - p(F)=0.94 >> 1/3 = 1/r
- Subtle Treatments:
 - p(F)=0.40 > 1/3 = 1/r

Unpacking Focality: Test Trade-offs

p(F)

Rare

Oddity

Other

- ▶ Violate p(F) > 1/r | Proportion to Difference!
 - ▶ Mostly chose Obvious vs. Less than half chose Subtle

1
^ × √ +

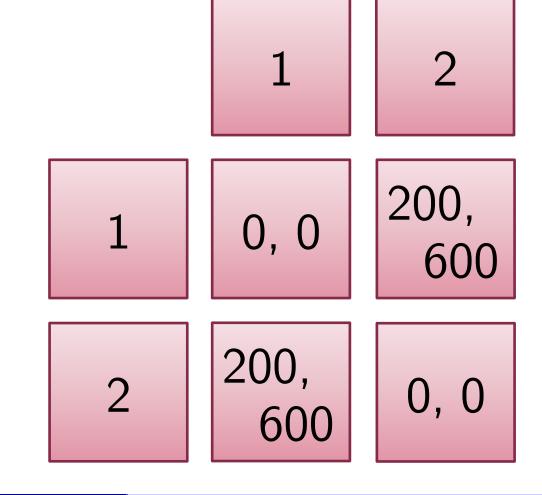
	Obvious Oddity $(1/r)$			Subtle Oddity $(1/r)$					
r = # of Rare	1/2	1/3	1/4	1/5	1/2	1/3	1/4	1/5	1/6

Difference: r - p(F) 0.45 0.58 0.7 0.73 0.05 0.07 0.37 0.05 0.09

0.91 0.95 0.93 0.55 0.40 0.62 0.25 0.25

14% 19% 9% 7% 77% 55% 45% 69% 55%

83% 79% 91% 88% 23% 31% 45% 19% 20%


2% 2% 0% 5% 0% 14% 10% 12% 25%

Unpacking Focality

- Munro (wp 1999)
- Field study of coordination
- Narrow bike lanes in Japan
 - No center line
- ▶ Two bikes coming from opposite directions
 - ▶ Both ride close to middle
- How they avoid colliding?
 - ▶ Both move Left!

Asymmetric Players: Battle of Sexes

- ▶ 100 lottery tickets =
 - ▶ 10% chance to win \$1/\$2
- ▶ Pure NE: (1,2) and (2,1)
 - ▶ Players prefer equilibrium where they play strategy 2
- Mixed NE:
 - ▶ (1/4, 3/4) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- ▶ Cooper, DeJong, Forsythe and Ross (AER 1990)
- ▶ BOS: Baseline (MSE mismatch 62.5%)
- ▶ BOS-300: Row player has outside option 300
 - ▶ Forward Induction predicts (2,1)
- ▶ BOS-100: Row player has outside option 100
 - Forward Induction doesn't apply
- ▶ Compare BOS-100 and BOS-300
 - ▶ Shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	_	37 (22%)	31 (19%)	97 (59%)	165
BOS-300	33	0 (0%)	119 (90%)	13 (10%)	165
BOS-100	3	5 (3%)	102 (63%)	55 (34%)	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

2025/5/16

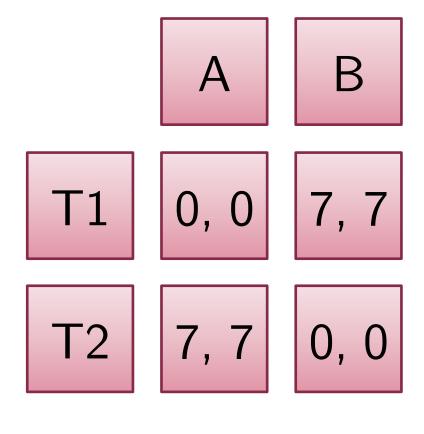
Asymmetric Players: Battle of Sexes

- ▶ Cooper, DeJong, Forsythe and Ross (AER 1990)
- ▶ BOS-1W: 1 way communication by Row
- ▶ BOS-2W: 2 way communication by Both
- ▶ BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - Information set same as simultaneous move
 - ▶ Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

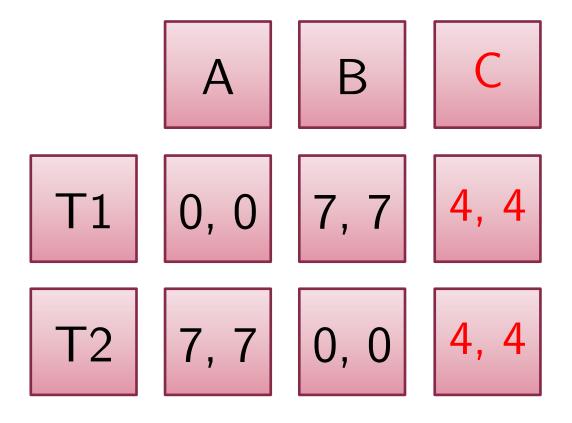
Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31 (19%)	97(59%)	165
BOS-300	33	0 (0%)	119 (90%)	13(10%)	165
BOS-100	3	5 (3%)	102 (63%)	55 (34%)	165
BOS-1W	_	1 (1%)	158(96%)	6 (4%)	165
BOS-2W	_	49(30%)	47 (28%)	69(42%)	165
BOS-SEQ	_	6 (4%)	103(62%)	56(34%)	165

2025/5/16


Where Does Meaning Come From?

- ▶ Communication can help us coordinate
- ▶ But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!

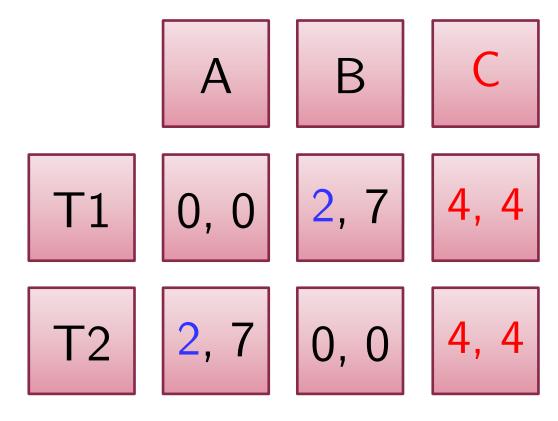
- ▶ Blume, DeJong, Kim and Sprinkle (AER 1998)
 - ▶ See also BDKS (GEB 2001) which is better!


Evolution of Meaning: Game 1 (Baseline)

- ▶ Game 1: Blume et al. (AER 1998)
- ▶ Sender has private type T1 or T2
- Sends message "*" or "#" to receiver
- Receiver chooses A or B (to coordinate type)
- ▶ Game 1NH: See only history of own match

Evolution of Meaning: Game 2

- ▶ Game 2:
- Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium


Evolution of Meaning

- ▶ Blume, DeJong, Kim and Sprinkle (AER 1998)
- ▶ Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - ▶ Theory: Pooling or Separating Equilibrium

Percentage Consistent with Separating Equilibrium									
Game \ Period	1	5	10	15	20				
1st Session: Game 1	48%	65%	74%	89%	95%				
2nd Session									
Game 1	49%	72%	61%	89%	100%				
Game 1NH	55%	55%	28%	55%	72%				
Game 2									
Separating	44%	88%	88%	88%	94%				
Pooling	39%	5%	0%	5%	5%				
2025/5/16	2025/5/16 Coordination Joseph Tao-yi Wang								

Evolution of Meaning: Game 3

- ▶ Game 3: Coordinate payoffs become (2,7)
 - So sender wants to disguise types to force receiver to choose C (safe action)
 - Allowed to send 2 or 3 messages...

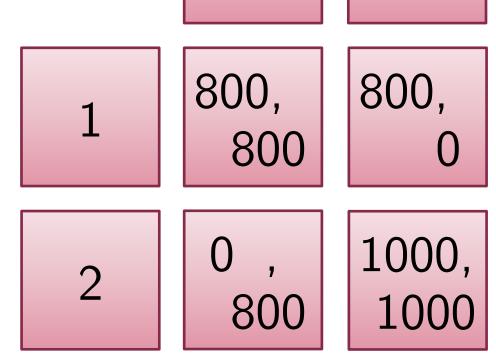
Evolution of Meaning (Blume et al. AER 1998)

- ▶ Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - ▶ Theory: Pooling or Separating Equilibrium
- ▶ Game 3: Coordinate payoffs become (2,7)
 - ▶ Sender wants to disguise type so receiver picks C (safe action)
 - ▶ Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages								
# of Messages-Equil. Played	1-10	11-20	21-30	31-40	41-50	51-60		
2 nd Session: 2-Separating	43%	53%	38%	39%				
2-Pooling	33%	34%	41%	43%				
3-Separating	43%	38%	33%	24%				
3-Pooling	33%	37%	42%	60%				
1 st Session: 2-Separating	39%	27%	23%	24%	24%	23%		
2-Pooling	39%	48%	51%	60%	63%	61%		
3-Separating	23%	22%	23%	25%	22%	24%		
3-Pooling	55%	61%	58%	56%	57%	61%		
2025/5/16	Coordina	ntion		Joseph	Tao-yi Wan	g		

Example of Asymmetric Payoffs

- Market Entry Game
 - lacktriangleright n players decide to enter market with capacity c
 - ▶ Payoffs declines as number of entrants increase
 - ightharpoonup " < 0 " if number > c (= market capacity)


- Sundali, Rapoport and Seal (OBHDP 1995)
 - Number of Entrants: Predicted vs. Actual

Market Entry Game: Results Close to Equilibrium										
Capacity	1	3	5	7	9	11	13	15	17	19
Predicted Number of Entrants										
MSE	0	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9
Actual Number of Entrants										
All Data	1.0	3.7	5.1	7.4	8.7	11.2	12.1	14.1	16.5	18.2
1 st Block	1.3	5.7	9.7	6.7	3.7	14.0	11.3	11.3	16.0	18.0

- ▶ Kahneman (1988): "To a psychologist, it looks like magic."
 - ▶ See BI-SAW paper by Chen et al. (2012)...

Games with Asymmetric Equilibria

- ▶ Stag Hunt
 - Cooper, DeJong, Forsythe & Ross (AER 1990)
- ▶ 100 lottery tickets =
 - ▶ 10% chance to win \$1/\$2
- ▶ Pure NE:
 - \blacktriangleright (1,1) and (2,2)
 - ▶ Mixed NE?
- Which would you pick?

Games with Asymmetric Equilibria

- ▶ Cooper, DeJong, Forsythe and Ross (AER 1990)
- ▶ CG: Baseline Stag Hunt
- ▶ CG-900: Row has outside option 900 each
 - ▶ Forward Induction predicts (2,2)
- ▶ CG-700: Row has outside option 700 each
 - Forward Induction doesn't apply
- ▶ CG-1W: 1-way communication by Row
- ▶ CG-2W: 2-way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	(1,1)	(2,2)	Other	# Obs
CG	_	160(97%)	0(0%)	5 (3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	_	26(16%)	88(53%)	51 (31%)	165
CG-2W	_	0(0%)	150(91%)	15(9%)	165

(1,1) Payoff = 800 vs. (2,2) Payoff = 1000

Weak-Link Game (aka Minimum Effort Game)

- ▶ Van Huyck, Battalio and Beil (AER 1990)
- \blacktriangleright Each of you belong to a team of n players
- ▶ Each of you can choose effort $X_i = 1-7$
- Earnings depend on
 - lacktriangle Your own effort X_i , and
 - ▶ The smallest effort $\min\{X_j\}$ of your team
- Payoff = 60 + 20 * $\min\{X_j\}$ 10 * X_i

Team Project Payoff

Cost of Effort X_i

Weak-Link Game: Van Huyck et al. (AER 1990)

- Payoff = $60 + 10 * min\{X_j\} 10 * (X_i min\{X_j\})$ Team Minimum Deviation from Min
- ▶ Payoff sensitive to weakest link in production chain:
- 1. Cobb-Douglas Production Function (Leontief)
- 2. All have to arrive for restaurant to seat your group
- 3. Each has to do their job for whole project to fly
 - ▶ Law firms, accounting firms, investment banks, etc.
- 4. Prepare an airplane for departure

Weak-Link Game: Van Huyck et al. (AER 1990)

TOGIT BITTING GAT
$m = \min\{X_j\}$
Team Minimum
Payoff = 60 + $10 * m$ - $10 * (X_i - m)$
Deviation

Devia	ation
from	Min

Your	Smallest X_j in the Team								
X_i	7	6	5	4	3	2	1		
7	130	110	90	70	50	30	10		
6	-	120	100	80	60	40	20		
5	-	-	110	90	70	50	30		
4	-	-	-	100	80	60	40		
3	-	-	-	_	90	70	50		
2	-	-	_	-	-	80	60		
1	_	_	_	_	-	_	70		

2025/5/16

Coordination

Joseph Tao-yi Wang

Weak-Link Game: Van Huyck et al. (AER 1990)

- ▶ What is your choice when...
 - ▶ Group size = 2?
 - ▶ Group size = 3?
 - ▶ Group size = 20?
- ▶ Can some kind of communication help coordinate everyone's effort?

Let's conduct a classroom experiment first...

Classroom Experiment: 書群之馬

最弱環節賽局 (Weak-Link Game)

Weak-Link Game (最弱環節賽局)

- ▶ Each DM chooses effort $X_i = 1-4$
 - ▶ Spade = 4, Heart = 3, Diamond = 2, Club = 1
- ▶ DM (Decision Maker) = a team of two
 - ▶ 每組每回合都會有四張撲克牌,分別為黑桃(4)、紅心(3)、方塊(2)、梅花(1)
 - ▶ 主持人會跟每組收一張牌
 - 交出來的花色代表你們花多少時間排練
 - ▶ 你們的努力程度: 黑桃 = 4小時、紅心 = 3小時、方塊 = 2小時、梅花 = 1小時
 - ▶ 各組要討論屆時交出哪一張牌...

Payoff = $3 * \min\{X_j\} - 1 * X_i$ Cost of Effort X

Team Project Payoff

- ▶ $\min\{X_j\} = \lceil 花最$ 少時間排練那一組 的排練時數」,
- ▶ 每一小時的排練大 家都會得到3分
- ▶ 各組自己每花一小 時排練,就少1分

Your X_i	$\min\{X_j\}$ (最低那組時數)						
(本組時數)	4	3	2	1			
4	8	5	2	-1			
3	_	6	3	0			
2	_	_	4	1			
1	_	_	_	2			

- 1. How much would you earn if all DM choose $X_i = 4$?
 - **8**!
 - ▶ 如果所有各組 都花四小時排 練,這樣各組 會拿幾分?
 - ▶ 8分!

Your X_i	$\min\{X_j\}$ (最低那組時數)						
(本組時數)	4	3	2	1			
4	8	5	2	-1			
3	_	6	3	0			
2	-	-	4	1			
1	_	-	-	2			

- 2. How much would you earn if you choose $X_i = 3$ while others choose $X_j = 4$?
 - ▶ 6 (< 8)</p>
 - ▶ Not worth it!
 - ▶ 如果別組都花四 小時排練,但你們這組只花三小時排練,這樣 們會拿幾分? 麼做值得嗎?
 - ▶ 6分! 小於8分所 以不值得!

Your X_i	$\min\{X_j\}$ (最低那組時數)						
(本組時數)	4	3	2	1			
4	8	5	2	-1			
3	_	6	3	0			
2	_	_	4	1			
1	_	_	-	2			

- 3. How much would you earn if you choose $X_i=2$ while some other DM choose $X_i=1$?
 - **▶** 1 (< 2)
 - If you also choose $X_i = 1!$
 - ▶ 如果有某一組只花一小時 排練,你們這組如果花兩 小時排練,值得嗎?
 - ▶ 不值得,因只得1分,但 如果也花一小時就會跟他 們一樣得到2分!

Your X_i	$\min\{X_j\}$ (最低那組時數)							
(本組時數)	4	3	2	1				
4	8	5	2	-1				
3	_	6	3	0				
2	_	_	4	1				
1	_	-	_	2				

Weak-Link Game (最弱環節賽局)

▶ Please decide now and we will see the results...

6. Are you satisfied with the results? How can you

encourage cooperation next time?

你對結果滿意嗎?如果你希望大家都更好, 該怎麼鼓勵大家合作?

▶ 讓我們再來做一次...

	Your X_i	$\min\{X_j\}$ (最低那組時數)							
	(本組時數)	4	3	2	1				
	4	8	5	2	-1				
,	3	_	6	3	0				
	2	_	_	4	1				
	1	_	_	_	2				

Weak-Link Game (最弱環節賽局)

- In reality, people would see each other's effort and increase effort gradually
- Let's try again by committing hour-by-hour!
 - ▶ 現實中你們彼此多半 清楚大家的排練情況, 而且時數可以逐步加 碼。這次我們採一小 時、一小時逐步加碼 方式進行

Your X_i	$\min\{X_j\}$ (最低那組時數)							
(本組時數)	4	3	2	1				
4	8	5	2	-1				
3	-	6	3	0				
2	_	_	4	1				
1	_	_	_	2				

Back to Van Huyck et al. (AER 1990)..

acit to vair in
$m = \min\{X_j\}$
Team Minimum
Payoff = 60 + $10 * m$
$-10 * (X_i - m)$

Devia	ation
from	Min

Your		Smallest X_j in the Team									
X_i	7	6	5	4	3	2	1				
7	130	110	90	70	50	30	10				
6	-	120	100	80	60	40	20				
5	-	-	110	90	70	50	30				
4	-	-	-	100	80	60	40				
3	-	-	-	-	90	70	50				
2	-	-	-	_	-	80	60				
1_	-	-	-	-	-	-	70				

2025/5/16

Coordination

Joseph Tao-yi Wang

Weak-Link Game: Large Group (Extensions)

- ▶ 7 Large Group (n = 14-16) sessions (Table 7.25)
 - $\blacktriangleright X_i$ starts at 4-7, but quickly drop to 1-2!

Choice Frequencies in 7 Large Group Sessions

V	Round					(group size $n = 14-16$)				
X_i	1	2	3	4	5	6	7	8	9	10
7	33	13	9	4	4	4	6	3	3	8
6	10	11	7	_	1	2	_	-	-	_
5	34	24	10	12	2	2	24	1	-	1
4	17	23	24	18	15	5	3	3	2	2
3	5	18	25	25	17	9	8	3	4	2
2	5	13	17	23	31	35	39	27	26	17
1	2	5	15	25	37	50	47	70	72	77

(2 modes in red/pink)
Table 7.25 of Camerer
(BGT 2003)

Weak-Link Game: Large Group (Extensions)

- ▶ 7 Large Group (n = 14-16) sessions (Table 7.25)
 - $\blacktriangleright X_i$ starts at 4-7, but quickly drop to 1-2!
- Extensions in Van Huyck et al. (AER 1990):
 - ▶ No penalty above min: 83% choose 7 in round 1
 - ▶ See effort distribution: Accelerate race to bottom
- ▶ 1 Small Group (n=2) Session (Table 7.26)
 - $lackbox{1}{} X_i$ starts at 1 or 7, but quickly converges to 7!
 - If choose $X_i = 7$ first, will wait a couple rounds for partner to follow...

Choice Frequencies in Small Group Session

V	Round			(group size $n=2$)				
X_i	1	2	3	4	5	6	7	
7	9	13	13	17	19	19	21	
6	0	1	4	2	1	1	0	
5	4	1	1	1	0	0	0	
4	0	1	2	0	1	1	0	
3	1	2	1	1	0	0	0	
2	1	2	0	0	0	0	1	
1	8	4	3	3	3	3	2	

(2 modes in red/pink)
Table 7.26,
Camerer (BGT 2003)

2025/5/16

Coordination

Joseph Tao-yi Wang

Weak-Link Game: Small Group Extension

- ▶ Van Huyck et al. (AER 1990) also did
- ▶ Small Group (n=2) + Random Matching:
 - ▶ Start high (4-7), but drop to 1!
- Small group size not enough
 - Need stability/mutual adjustment of fixed pairing!
- Clark and Sefton (wp 1999)
 - ▶ Replicate random-matching results in stag hunt
 - Still unpublished: Difficult to publish replications?
- Group Size Meta-Study (Table 7.27)

Round 1 Group Minima

Group		Distribution of $\min\{X_j\}$								
size n	1	2	3	4	5	6	7	Obs.		
2	43%	<u>7%</u>	<u>7%</u>	7%	29%	-	7%	14		
3	25%	5%	<u>35%</u>	15%	5%	-	15%	20		
6	73%	16%	11%	-	-	_	_	19		
9	-	<u>100%</u>	-	-	-	-	-	2		
12	<u>100%</u>	-	-	-	-	_	-	2		
14-16	28%	<u>28%</u>	14%	28%	-	-	-	7		

(Median underlined; 2 modes in red/pink) Middle Panel of Table 7.27, Camerer (BGT 2003)

2025/5/16 Coordination Joseph Tao-yi Wang

Round 5 Group Minima

Group		Distribution of $\min\{X_j\}$							
size n	1	2	3	4	5	6	7	Obs.	
2	14%	_	-	-	-	-	86%	14	
3	30%	15%	<u>20%</u>	15%	-	_	20%	20	
6	80%	10%	10%	-	-	-	-	19	
9	<u>100%</u>	-	-	-	-	-	_	2	
12	-	-	-	-	_	_	-	-	
14-16	<u>100%</u>	_	-	_	-	_	_	7	

(Median underlined; 2 modes in red/pink) Bottom Panel of Table 7.27, Camerer (BGT 2003)

2025/5/16

Weak-Link Game: Group Size Meta-Study

- Large Group size $(n \ge 6)$:
 - ▶ 1st period $\min\{X_j\}$ ≤ 4 vs. 5th period $\min\{X_j\}$ mostly 1
- Small Group size (n = 2-3):
 - ▶ 1st period $min{X_i}$ only partly in 5-7
 - ▶ 5th period min $\{X_j\}$ mostly (86%) reaches 7 if n=2
- ▶ But 1st period median $X_i = 4$ -5 for all n!
 - ▶ Why? Maybe subjects think they play against representative opponent (and clone for large *n*)

Round 1 Choices (Median Underlined)

Group	Distribution of X_i							
size n	1	2	3	4	5	6	7	Obs.
2	28%	3%	3%	7%	<u>21%</u>	_	36%	28
3	8%	5%	8%	17%	<u>7%</u>	2%	41%	60
6	18%	7%	13%	<u>16%</u>	7%	7%	39%	114
9	0%	11%	28%	<u>39%</u>	5%	-	17%	18
12	25%	4%	13%	<u>8%</u>	16%	4%	29%	24
14-16	2%	5%	5%	17%	<u>32%</u>	9%	31%	104

(Median underlined; 2 modes in red/pink) Top Panel of Table 7.27, Camerer (BGT 2003)

2025/5/16 Coordination Joseph Tao-yi Wang

Weak-Link Game: Local Interaction

- Berninghaus, Erhart and Keser (GEB 2002)
 - ▶ 3-person weak-link game
- What does Game Theory say?
 - ▶ Inefficient Nash: Each earn 80 if (X, X, X)
 - ▶ Efficient Nash: Each earn 90 if (Y, Y, Y)

		Ot	ther Player Choice	ces
		Both X	One X, One Y	Both Y
Row	X	80	60	60
Player	Y	10	10	90

ng

Weak-Link Game: Local Interaction

- ▶ Baseline: Play 20 rounds with the same 2 opponents
 - See opponent choices (but not who made what)
- Local Interaction: 8 subjects form a circle to play the 2 neighbors next to you
 - ▶ Contagion: Can spread Equilibrium around circle

		Ot	her Player Choi	ces
		Both X	One X, One Y	Both Y
Row	X	80	60	60
Player	Y	10	10	90

ng

Weak-Link Game: Local Interaction

- ▶ Baseline (Fixed): 75% initially play Y
 - ▶ 7 of 8 groups converge to all-Y equilibrium
- ▶ Local Interaction: half initially play Y
 - ▶ Drop to None play Y in round 20
 - ▶ Because 64% play X if one neighbor played X

		Ot	ther Player Choi	ces
		Both X	One X, One Y	Both Y
Row	X	80	60	60
Player	Υ	10	10	90

Weak-Link Game: Mergers

- Camerer and Knez (SMJ 1994):
 - ▶ Two groups each play 3-person weak-link game
 - ▶ Then merge into one 6-person group
- ▶ Two Possible Predictions:
 - Mergers Fail: Large group size reduces efficiency
 - Mergers Restart: Coordinate on good equilibrium
- ▶ Results: Mergers Fail! (Table 7.29)
 - ▶ Group Minima mostly 1 in Round 1 and 5
 - Regardless knowing other group minimum or not

2025/5/16 Coordination Joseph Tao-yi Wang

Group Minima Before/After Mergers

1/ 0									
Know Ot	ther Gro	oup Minin	num	Don't Know Other Minimum					
Before Merger A		After M	lerger	Before M	lerger	After Merger			
Round	5	1	5	Round	5	1	5		
Session 1	(1,2)	$(1,2)$ $\rightarrow 1$	1	Session 1	(2,4) –	\rightarrow $(1,2)\rightarrow 1$	1		
Session 2	(1,4)	$(1,1)$ $\rightarrow 1$	1	Session 2	(7,3)	\rightarrow $(7,1)\rightarrow 1$	1		
Session 3	(1,1)	$(1,2)$ $\to 1$	1	Session 3	(3,2)	→ (3,1) → 1	2		
Session 4	(4,1)	(4,1) - 1	1	Session 4	(7,3)	→ (7,3) → 3	3		
Session 5	(1,7)	(1,7) - 1	1	Session 5	(7,3)	→ (7,2) → 2	1		
(.,.) show min of 3-person group min of 6-person group Table 7.29, Camerer (BGT 2003)									

(.,.) show min of 3-person group min of 6-person group Table 7.29, Camerer (BGT 2003)

Coordination Joseph Tao-yi Wang

Weak-Link Game: Bonus

- Camerer and Knez (SMJ 1994): 2nd Treatment
 - Announce a bonus of \$0.20/\$0.50 if all choose 7
 - ▶ Additional bonus + announcement (beyond implicit gains if all choose 7)
- ▶ Results: 90% choose 7 in next period
 - ▶ Compared to 85% choose 1-2 last period
- Confirms Knez and Simester (JLE 2001)
 - Why group-level bonuses work so well

Weak-Link Game: Leadership

- ▶ Weber, Camerer, Rottenstreich and Knez (OS 2001)
- ▶ Play in large (n=8-10) or small (n=2) group
 - ▶ Each choose $s_i = 0, 1, 2, 3;$
 - ▶ Payoff = \$2.50 + \$1.25 × [min s_i 1] s_i 0.25 × $1_{\min s_i = 0}$
 - ▶ Payoff = \$2.50 s_i if min $s_i = 1$
 - ▶ Payoff = \$3.75 s_i if min s_i = 2
 - ▶ Payoff = \$5.00 s_i if min s_i = 3
 - ▶ Payoff = $$1.00 s_i$ if min $s_i = 0$

Weak-Link Game: Leadership

- ▶ Weber, Camerer, Rottenstreich and Knez (OS 2001)
- ▶ Play in large (n=8-10) or small (n=2) group
 - ▶ Each choose $s_i = 0, 1, 2, 3;$
 - ▶ Payoff = \$2.50 + \$1.25 x [min s_i 1] s_i 0.25 x $1_{\min s_i = 0}$
- ▶ After 2 rounds, randomly select a leader
 - ▶ Makes short speech to encourage more effort
 - ▶ Then, rate leader before/after 5 more rounds
- Attribute success to leadership personalities?

Weak-Link Game: Leadership

Effort	Lá	arge (1	n=8-10	0)		Small (<i>n</i> =2)			
Level	0	1	2	3	0	1	2	3	
Round 1-2	25%	24%	20%	32%	5%	24%	26%	45%	
Leadership	Ratii	ng (be	fore)	5.88	Ratir	Rating (before) 5.80			
Round 3-8	47% 4% -		49%	6%	6% 6% 6%		83%		
Leadership	Rating (after)			4.53	Rati				

Confirm Nisbett and Ross (bk 1991)

Attribute too much cause of success/failure to leadership personalities

Table 7.30, Camerer (BGT 2003)

2025/5/16 Coordination Joseph Tao-yi Wang

Median-Action Game: Van Huyck, Battalio and Beil (QJE 1991)

- In a team of n=9, you choose effort $X_i=1-7$
- Earnings depend on your own effort, and
 - \blacktriangleright The median effort M of your team
- Payoff = $70 + 10 \times (M 1) 5 \times (X_i M)^2$ Team Project Payoff Cost of Non-Conformity
 - Situations where players prefer to conform
 - Example: Prefer to not work too hard or too little
- ▶ Maximin $X_i = 3$ vs. Payoff-dominant $X_i = 7$

Median-Action Game: Van Huyck et al. (QJE1991)

Team Median
Payoff (¢) = 70
= 70
$+ 10 \times (M-1)$
$-5\times(X_i-M)^2$
Deviation from M

	Your		Median Value of X_j in the team								
	X_i	7	6	5	4	3	2	1			
	7	130	115	90	55	10	-45	-110			
	6	125	120	105	80	45	0	-55			
2	5	110	115	110	95	70	35	-10			
	4	85	100	105	100	85	60	25			
-	3	50	75	90	95	90	75	50			
	2	5	40	65	80	85	80	65			
	1	-50	-5	30	55	70	75	70			

2025/5/16

Coordinatio

Joseph Tao yr vvang

Median-Action Game Results

	17		Roui	nd			(6 g	roup	s; 54	subje	ects)	
	X_i	1	2	3	4	5	6	7	8	9	10	
Ī	7	8	2	2	_	-	1	1	-	-	-	(2
	6	4	6	6	6	3	3	4	1	3	1	re gro
	5	15	15	22	19	22	20	20	24 ¹	23^{1}	26 ²	Т
	4	19	26	22	29^1	27^1	30 ²	30 ²	28 ²	28 ³	27^3	(E
	3	8	3	2	-	-	-	-	1	- /	7 –	(L
	2	-	1	Disne	ersion	1	_	_	_	_/		
	1	_	1	-	-		ock-ir	า: <u>s</u> ar	ne_gr	oup i	ne <u></u> dia	ans

(2 modes in red/pink)^{1-3 of} groups in equilibrium

Table 7.32, Camerer (BGT 2003)

Coordination

Median-Action Game (γ) : Original

Team Median
Payoff (¢)
= 70
$+ 10 \times (M-1)$
$-5\times(X_i-M)^2$
Deviation from M

	Your		Median Value of X_j in the team									
	X_i	7	6	5	4	3	2	1				
	7	130	115	90	55	10	-45	-110				
	6	125	120	105	80	45	0	-55				
<u> </u>	5	110	115	110	95	70	35	-10				
	4	85	100	105	100	85	60	25				
	3	50	75	90	95	90	75	50				
	2	5	40	65	80	85	80	65				
	1	-50	-5	30	55	70	75	70				

2025/5/16

Median-Action Game (ω): non-BR $\pi = 0$

Team Median
Payoff (¢)
= 70
$+ 10 \times (M-1)$
$-5\times(X-M)^2$
Deviation from M

Maximin no longer $X_i = 3$

	Your	Median Value of X_j in the team						
	X_i	7	6	5	4	3	2	1
	7	130	0	0	0	0	0	0
	6	0	120	0	0	0	0	0
2	5	0	0	110	0	0	0	0
1	4	0	0	0	100	0	0	0
	3	0	0	0	0	90	0	0
	2	0	0	0	0	0	80	0
	1	0	0	0	0	0	0	70

2025/5/16

Median-Action Game Results: Round 1

	Game (y)		Game	(ω)	Game (ϕ)		
X_{i}	Principle Round 1		Principle	Round 1	Principle	Round 1	
7	Payoff-Dom.	15%	Payoff-Dom.	52%	_	8%	
6	-	7%	_	4%	_	11%	
5	_	28%	-	33%	_	33%	
4	_	35%	_	11%	Maximin	41%	
3	Maximin	15%	_	-	_	8%	
2	-	-	_	-	_	-	
1	- (2 mode	es in rod/ni	- ak): Tabla 7 22	- Camoror (E	SCT 2003)	_	
(2 modes in red/pink); Table 7.33, Camerer (BGT 2003) wang							

Median-Action Game (γ) : Original

Team Median
Payoff (¢)
= 70
$+10\times(M-1)$
$-5\times(X_i-M)^2$
Deviation from M

	Your	Median Value of X_j in the team						
	X_i	7	6	5	4	3	2	1
	7	130	115	90	55	10	-45	-110
	6	125	120	105	80	45	0	-55
2	5	110	115	110	95	70	35	-10
	4	85	100	105	100	85	60	25
	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
	1	-50	-5	30	55	70	75	70

2025/5/16

Median-Action Game (ϕ)

▶ Payoff (¢) = 70
$+\frac{10 \times (M-1)}{-5 \times (X_i - M)^2}$
Deviation from M

Your	Your Median Value of X_j in the team						
X_i	7	6	5	4	3	2	1
7	70	65	50	25	-10	-55	-110
6	65	70	65	50	25	-10	-55
5	50	65	70	65	50	25	-10
4	25	50	65	70	65	50	25
3	-10	25	50	65	70	65	50
2	-55	-10	25	50	65	70	65
1	-110	-55	-10	25	50	65	70

2025/5/16

Codramation

Joseph Tao yr vvang

Median-Action Game Results: Round 1

	Game (y)		Game ((ω)	Game (ϕ)		
X_{i}	Principle	Round 1	Principle	Round 1	Principle	Round 1	
7	Payoff-Dom.	15%	Payoff-Dom.	52%	_	8%	
6	- 7%		_	4%	-	11%	
5	In-between	28%		33%	-	33%	
4	III-between	35%	-	11%	Maximin	41%	
3	2		Follow Single	Dringiples	7-	8%	
2			Follow Single Principles		_	_	
1			- ak): Table 7 22	- Camoror (E	SCT 2003)	_	
1							