Dominance-Solvable Games (優勢可解賽局實驗)

Joseph Tao-yi Wang (王道一) EE-BGT, Lecture 7

Joseph Tao-yi Wang

Dominance

- Strategy A dominates strategy B (B dominated by A)
 - Strategy A gives you better payoffs than Strategy B regardless of opponent strategy
- Dominance Solvable
 - A game that can be solved by iteratively eliminating dominated strategy (IEDS)
- Do people obey dominance?
- Will you bet on others obeying dominance?

Dominance

- Do people obey dominance?
 - Looking both sides to cross a 1-way street
 - If you can see this, I can't see you."
 - Guess above 67 in the *p*-Beauty Contest (with p = 2/3)
- Behavior in Dominant-Solvable Games measures
 - Extent of Iterative Elimination of Dominated Strategies (IEDS)
 - Belief about others (Theory of Mind)
 - Degree of others' strategic sophistication

Belief About Dominance

- ▶ Will you bet on others obeying dominance? In...
- Diplomatic Decisions:
 - Knowing how leaders behave before impose tariffs/call a bluff
- Designing Incentive Contracts: (Prendergast, 1999)
 - Workers respond to incentives rationally, but...
 - Companies unwilling to bet on it/do not use optimal contracts
- Voting Theory vs. Practice: (Alverez and Nagler, 2002)
 - Predictions of Strategic Voting vs. Voters surprisingly sincere

Belief About Dominance

SOPH: Knowing other's steps of reasoning

- ▶ Good Advice: Do not guess 0 in the *p*-beauty contest game!
- ▶ Why? Goal is to "Reason one step ahead, but no further!"
- Why limited steps of iterative thinking?
 - There is a huge difference (in cognitive status) between:
 - 1. Do you obey dominance?
 - 2. Will you bet on others obeying dominance?
 - And, going to 3+ levels of iterated reasoning is nearly impossible:

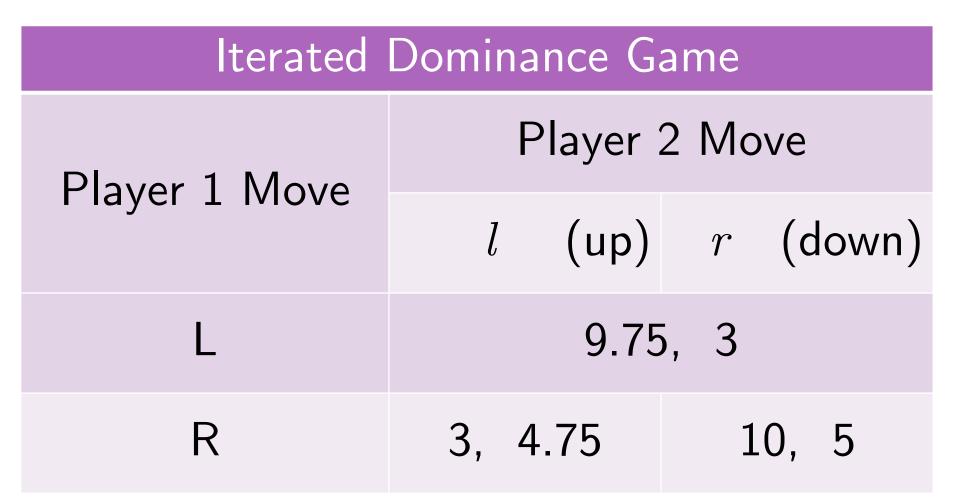
3. Will you believe that others think you obey dominance?

Belief of Iterated Dominance

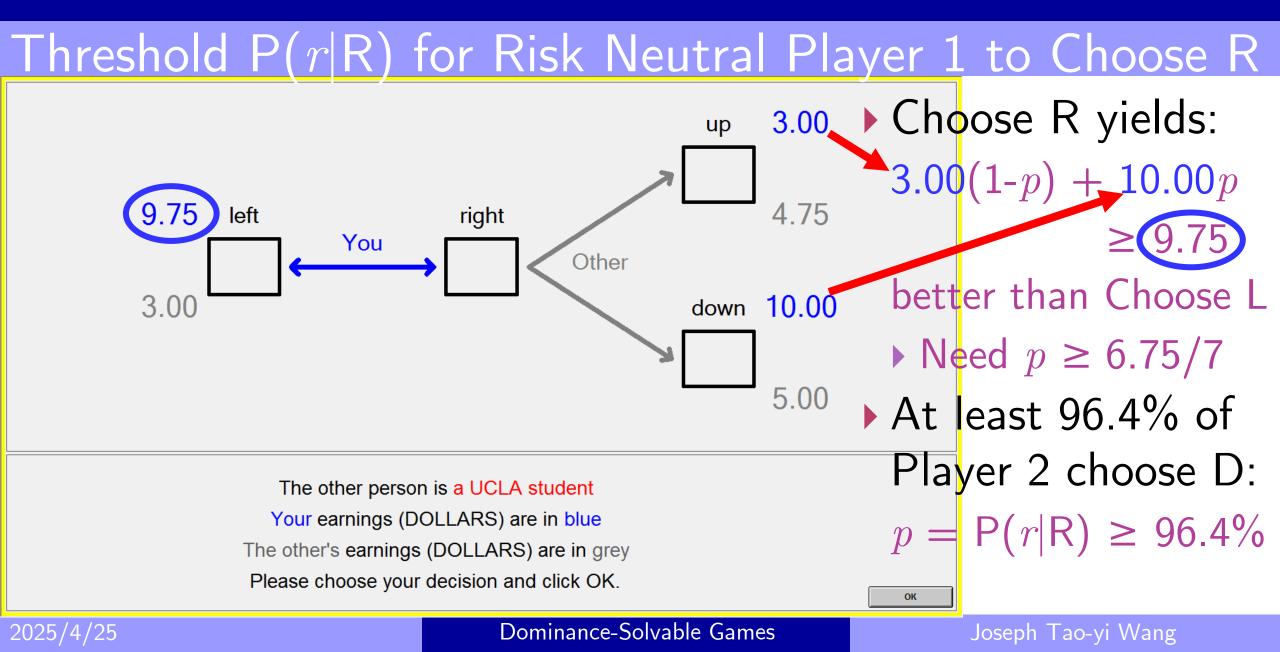
- 1. Obey Dominance, (=One Level of Iterated Dominance)
 - ► Do you obey dominance? Do others obey dominance?
- 2. Believe that others obey dominance,
 - Will you bet on others obeying dominance?
 - Will others bet on you obeying dominance?
- 3. Believe that others believe you will obey dominance,
 - ► Will you believe that others think you obey dominance?
 - ▶ Will others believe that you think they obey dominance?

Belief of Iterated Dominance

- 4. Believe that others believe you believe they obey dominance,
 - Will you believe others believe you think they obey dominance?
 - ▶ Will others believe you believe they think you obey dominance?
- Believe that others believe that you believe that they believe you obey dominance,
 - ▶ Will you believe others believe you believe they think you obey dominance?
 - Will others believe you believe they believe you think they obey dominance?


Empirical Upper Bound on Steps of Reasoning

- Established by Experimental Results (since 1995) under:
 - Definition: Obey Dominance = One Step of Iterated Dominance
 - Qualification: Players' utility depends only on own payoffs
- Nearly all use one step of iterated dominance
- At least 10% have two levels of iterated dominance
 - ► Another 10% or more have three levels of iterated dominance
 - ▶ Yet another 10+% have four levels of iterated dominance
- Median steps of iterated dominance = 2 (Oversimplified?!)


Outline

- ► A Simple Test: Beard and Beil (MS 1994)
 - Goeree and Holt (AER 2001), Schotter, Weigelt and Wilson (GEB 1994)
- Centipede: McKelvey and Palfrey (ECMA 1992)
- Mechanism Design:
 - Sefton and Yavas (GEB 1996)
- Dirty Face:
 - Weber (EE 2001)

A Simple Test: Beard and Beil (MS 1994)

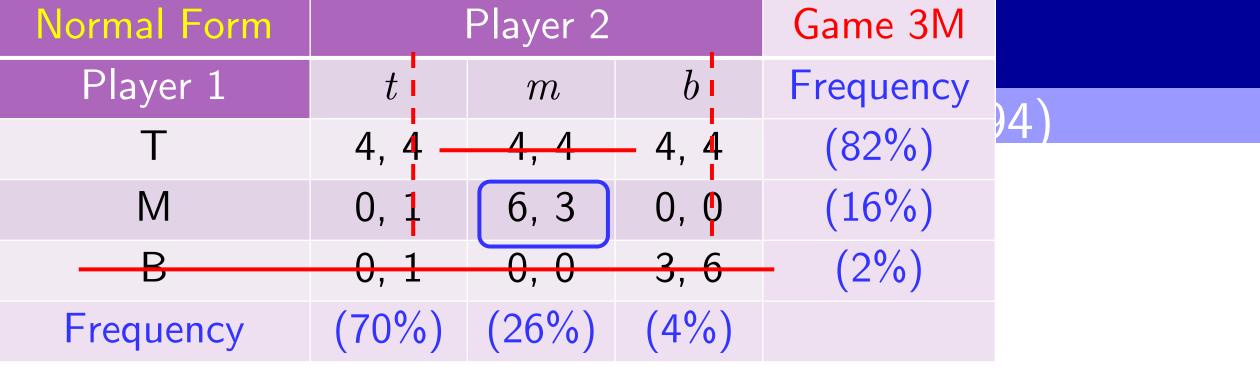
A Simple Te	st: Bear	d and E	Beil (N	IS 19	94)		
Treatment	Pay	yoffs fror	n	Freq	uency	N	Threshold
Treatment	(L, <i>l</i>)	(R, <i>l</i>)	(R, r)	L	r R		$P(r \mid R)$
1 (baseline)	(9.75,3)	(3, 4.75)	(10, 5)	66%	83%	35	96.4%
2 (less risk)	(<u>9</u> 3)	(3, 4.75)	(10, 5)	65%	100%	31	85.7%
3 (even less risk)	(<u>7</u> 3)	(3, 4.75)	(10, 5)	20%	100%	25	57.1%
4 (more assurance)	(9.75,3)	(3, <u>3</u>)	(10, 5)	47%	100%	32	96.4%
$5(more\ resentment)$	(9.75, <u>6</u>)	(3, 4.75)	(10, 5)	86%	100%	21	96.4%
6(less risk, more reciprocity)	(9.75, 5)	(5, 9.75)	(10,10)	31%	100%	26	95%
7 (1/6 payoff)	(<u>58.5,18)</u>	(18,28.5)	(60,30)	67%	100%	30	96.4%

A Simple Test: Beard and Beil (MS 1994)

- Player 2 mostly do obey dominance
- Player 1 is inclined to believe this
 - Though they can be convinced if incentives are strong for the other side to comply
- Follow-up studies show similar results:
 - ► Goeree and Holt (AER 2001)
 - Schotter, Weigelt and Wilson (GEB 1994)

Follow-up	#	1: Goere	ee and H	olt (AER	2001) x		
Condition		Threshold		Payoffs		Freq	uency
Condition		$P(r \mid R)$	(L, <i>l</i>)	(R, <i>l</i>)	(R, <i>r</i>)	L	$r \mid R$
Baseline 1	25	33.3%	(70, 60)	(60, 10)	(90, 50)	12%	100%
Lower Assurance	25	33.3%	(70, 60)	(60, <u>48</u>)	(90, 50)	32%	53%
Baseline 2	15	85.7%	(80, 50)	(20, 10)	(90, 70)	13%	100%
Low Assurance	25	85.7%	(80, 50)	(20, <u>68</u>)	(90, 70)	52%	75%
Very Low Assurance	25	85.7%	(400,250)	(100, <u>348</u>)	(450, <u>350</u>)	80%	80%

#2: Schotter, '	Weigelt a	and Wils	son (GEE	3 1994)		
Normal Form	Play	er 2	Game 1M			
Player 1	l	r	Frequency	,		
L	4, 4	4, 4	(57%)			
R	0, 1	6, 3	(43%)			
Frequency	(20%)	(80%)	In Game	e 1M:		
		Player	2 obey (we	eak) dominance		
		Actua	ally 80% choo	ose r		
	Player 1 unwilling to bet on it					
		► But c	only 43% cho	ose R		
2025/4/25	Do	minance-Solvable	e Games	Joseph Tao-yi Wang		


#2: Schotter, \	Neigelt a	and Wils	son (GE	B 1994)		
Normal Form	Play	er 2	Game 1N		2 obey	
Player 1	l	r	Frequenc		choose r	
L	4, 4	4, 4	(57%)		r 1 unsure	
R	0, 1	6, 3	(43%)		choose R	
Frequency	(20%)	(80%)	Sequenti	ial Form	Game 1S	
Player 2 obey		_	4, 4		(8%)	
<pre>dominance (in su</pre>	bgame)		l	r		
Player 1 expects	this F	२	0, 1	6, 3	(92%)	
▶ 92% choose R 2025/4/25	Frequ	uency	(2%)	(98%)		

#2: Schotter et al. (1994) - Tree Presentation Effect

Player 2 obeys dominance (choose r) in both Game 1M and 1S:
98% in Game 1S, and 80% in Game 1M

But Player 1 willing to bet on this (choose R) only in Game 1S:
 92% in Game 1S, but only 43% in Game 1M Tree Presentation!!

Hybrid: Tree Played Simultaneously Game 1H Game 1H like 1S: L (14%) 6 Player 2 obey dominance right ightarrow 88% choose rOther 4 down Player 1 expects this R R (86%) 3 ▶ 86% choose R r (88%) l(12%)Frequency 2025/4/25

3M: (M, m) selected by 3 steps of iterated dominance
Player 1 almost never violates dominance

Only 2% choose B (dominated)

▶ Few Player 2 anticipate this and play 2nd order dominance

• Only 26% choose *m* (weakly dominant)

Joseph Tao-yi Wang

Few beyond 1-step ID!

#2: Schotter, Weigelt and Wilson (GEB 1994)

- ► Game 3S: 1-step ID + Forward Induction selects (M, m)
 - ▶ t dominated by MSE of BoS ($\frac{2}{3}M + \frac{1}{3}B$, $\frac{1}{3}m + \frac{2}{3}b$): 1<2
 - ▶ Rejecting (4, 4) implies expecting (6, 3) by FI and playing M

Before move,	playe	er 2 se	es acti	on	Sequent	tial Form	Game 3S
of player 1	Т	4.4	t				
Player 2 only hypothesizes		,	0, 1		m	b	
it in Game 3M				Μ	6, 3	0, 0	
And player 1 k		this!		В	0, 0	3, 6	

Normal Form		Playe	r 2			Game 3	3M		
Player 1	t	m		b		Frequer	וכא	л)	
Т	4, 4	4, 4	1	4,	4	(82%)	4)	
М	0, 1	6, 3	3	0,	0	(16%)		nilarly to
В	0, 1	0, 0)	3,	6	(2%)			M: Few
Frequency	(70%)	(26%	6)	(4%	%)			De	yond FI
Diavor 1 plave E	I					Sequent	ial Fo	orm	Game 3S
 Player 1 plays F 100% choose M 	Т	4, 4	-	t					(70%)
Player 2 unsure/	/disagre	es	0,	1		m	b		
▶ 69% choose b					Μ	6, 3	0,	0	(100%)
Player 1 expects	this				В	0, 0	3,	6	(0%)
► 70% choose T 2025/4/25	Frequ	Jency	(13	\$%)		(31%)	(69)	%)	

#2: Schotter, Weigelt and Wilson (GEB 1994)

- Conclusion of Schotter et al. (GEB 1994):
- Limited evidence of iteration of dominance (beyond 1step), or SPE, forward induction
 - Can more experience fix this?
- ▶ <u>No</u> for forward induction in 8 periods...
 - Brandts and Holt (1995)
- But, <u>Yes</u> for 3-step iteration in 160 periods
 - Rapoport and Amaldoss (1997): Patent Race

Centipede Game: 4-Move SPNE

McKelvey and Palfrey (Econometrica 1992)

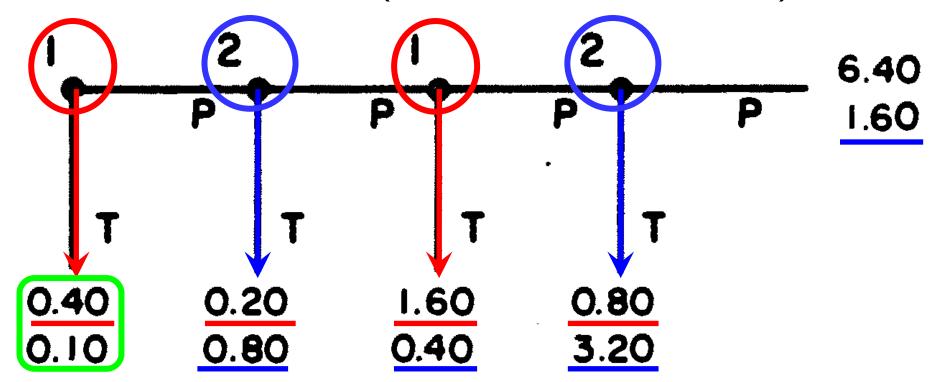
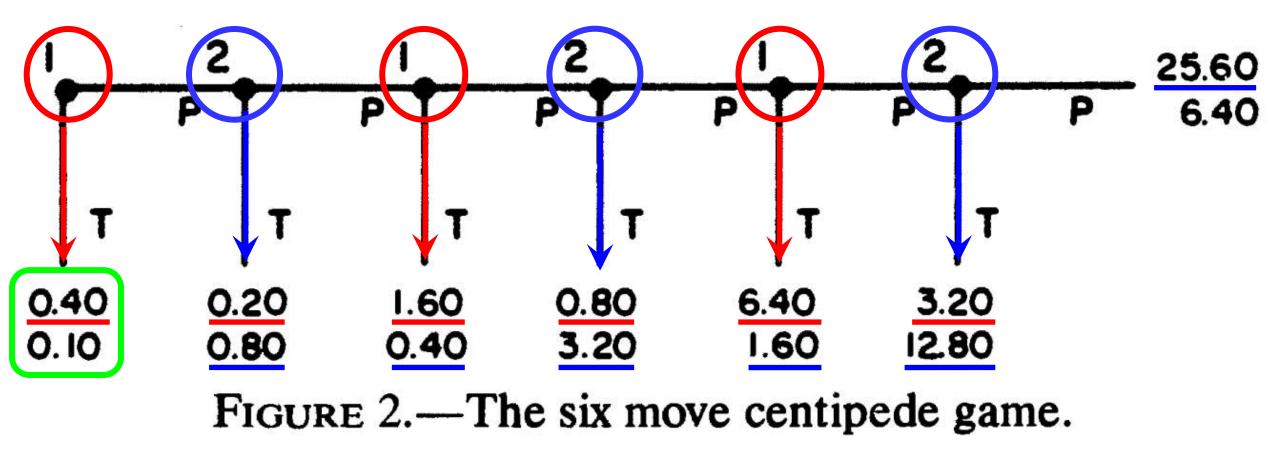



FIGURE 1.—The four move centipede game.

Centipede Game: 6-Move SPNE

Centipede Game: Outcome

		Session	N	f_1	f_2	f_3	f_4	f_5	f_6	<i>f</i> ₇
	1	(PCC)	100	.06	.26	.44	.20	.04		
Four	2	(PCC)	81	.10	.38	.40	.11	.01		
Move	3	(CIT)	100	.06	.43	.28	.14	.09		
	Total	1-3	281	.071	.356	.370	.153	.049		
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050		
	5	(CIT)	100	.02	.09	.39	.28	.20	.01	.01
Six	6	(PCC)	81	.00	.02	.04	.46	.35	.11	.02
Move	7	(PCC)	100	.00	.07	.14	.43	.23	.12	.01
	Total	5-7	281	.007	.064	.199	.384	.253	.078	.014

TABLE IIA PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE

2025/4/25

Dominance-Solvable Games

Joseph Tao-yi Wang

Centipede Game: Pr(Take)

IMPLIED TAKE PROBABILITIES FOR THE CENTIPEDE GAME

	Session	p_1	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆
	1 (PCC)	.06	.28	.65	.83		
Four	2 (PCC)	(100) .10	(94) .42	(68) .76	(24) .90		
Move	3 (CIT)	(81) .06 (100)	(73) .46 (94)	(42) .55 (51)	(10) .61 (23)		
	Total 1-3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
	5 (CIT)	.02 (100)	.09 (98)	.44 (89)	.56	.91 (22)	.50 (2)
Six Move	6 (PCC)	.00 (81)	.02 (81)	.04 (79)	.49	.72	.82
	7 (PCC)	.00 (100)	.07 (100)	.15 (93)	.54 (79)	.64 (36)	.92
	Total 5-7	.01 (281)	.06 (279)	.21 (261)	.53 (205)	.73	.85 (26)

Wang

2025/4/25

Centipede Game

TABLE IIIB

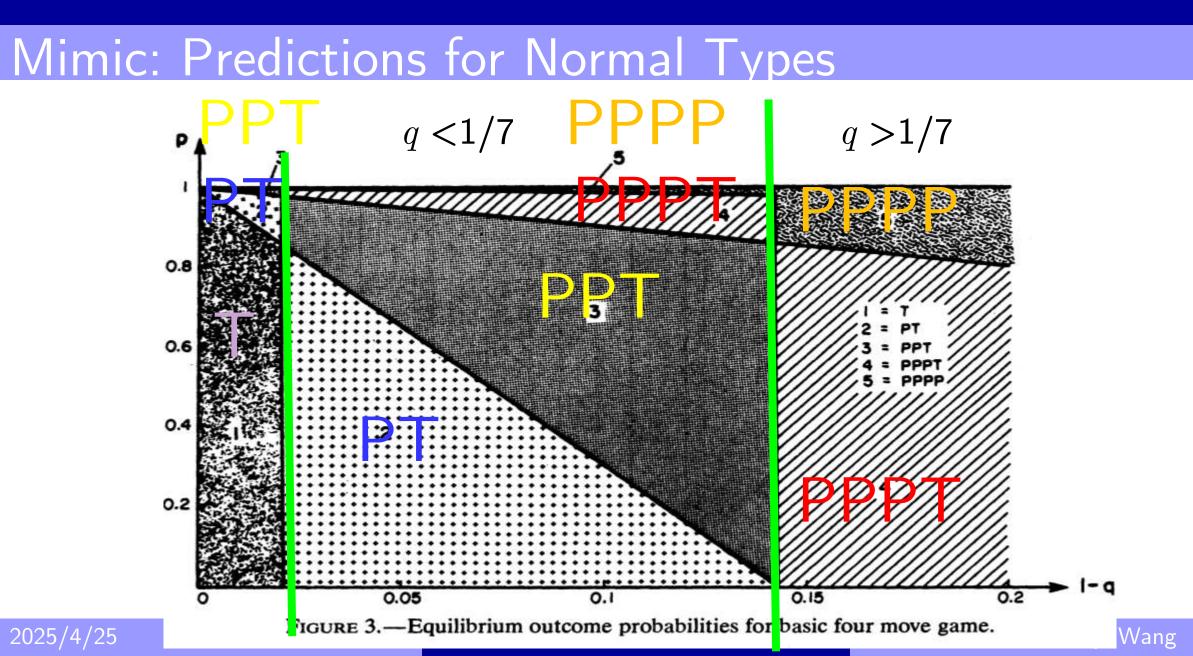
IMPLIED TAKE PROBABILITIES

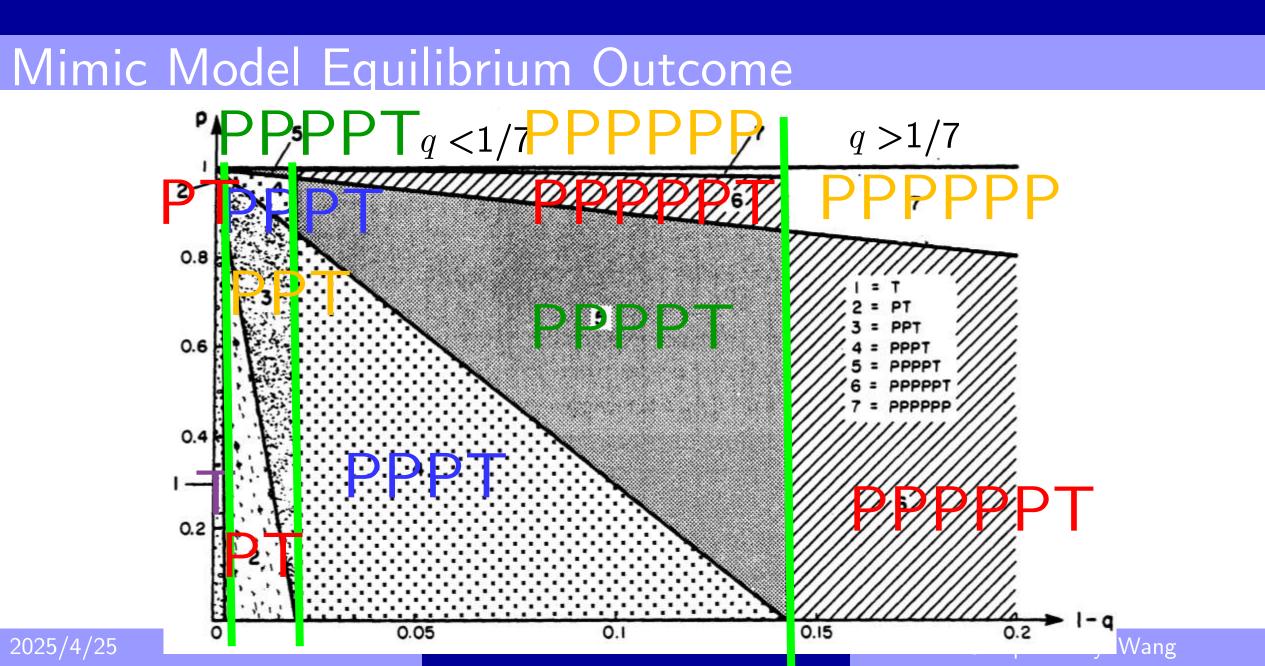
COMPARISON OF EARLY VERSUS LATE PLAYS IN THE LOW PAYOFF CENTIPEDE GAMES

Treatment	Game	<i>p</i> ₁	<i>p</i> ₂	p ₃	<i>P</i> 4	<i>p</i> ₅	p ₆
Four Move	1–5 6–10	.06 (145) .08 (136)	.32 (136) .49 (125)	.57 (92) .75 (69)	.75 (40) .82 (17)		
Four Move	1–5 6–10	.00 (145) .01 (136)	.06 (145) .07 (134)	.18 (137) .25 (124)	.43 (112) .65 (93)	.75 (64) .70 (33)	.81 (16) .90 (10)

Centipede Game: Mimic Model

- What theory can explain this?
- Altruistic Types (1-q = 7%): Prefer to Pass
 Selfish Types (q):
 - Mimic altruistic types up to a point (to gain)
- Unraveling: error rate shrinks over time


Centipede Game: Mimic Model


- Selfish guys sometimes pass (mimic altruist)
- Imitating an altruist might lure an opponent into passing at the next move
 - Raising one's final payoff in the game
- Equilibrium imitation rate depends directly on beliefs about the likelihood (1 q) of a randomly selected player being an altruist
 - The more likely players believe there are altruists, the more imitation there is

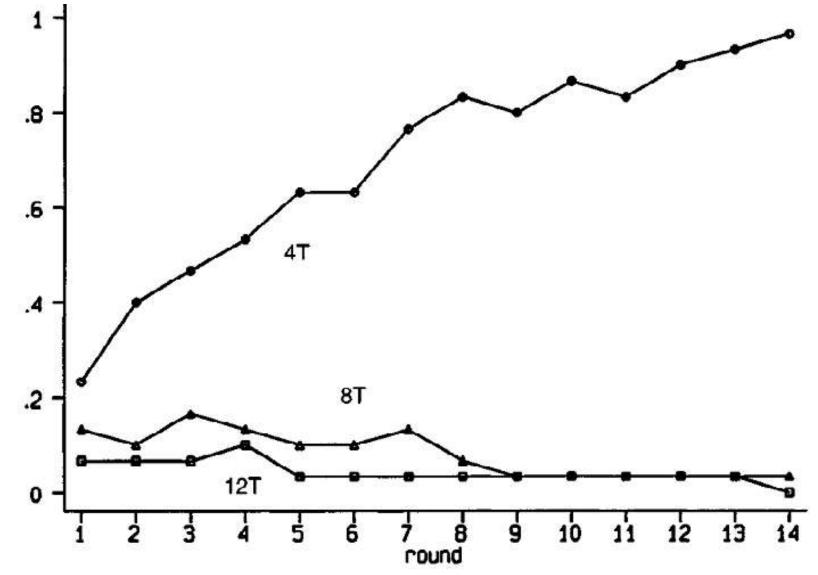
Mimic: Predictions for Normal Types

- 1. On the last move, Player 2 TAKE for any q
- 2. If 1 − q > 1/7, both Player 1 and 2 PASS
 Except on the last move Player 2 always TAKE
- 3. If $0 < 1 q < 1/7 \rightarrow$ Mixed Strategy Equilibrium

4. If 1 - q = 0 both Player 1 & Player 2 TAKE

Centipede: Mimic Model Add Noisy Play

- We model noisy play in the following way.
- In game t, at node s, if p* is the equilibrium probability of TAKE
- Assume player actually chooses TAKE with probability $(1-\varepsilon_t)p^*$, and makes a random move with probability $\epsilon_t = \epsilon e^{-\delta(t-1)}$
 - Explains further deviation from mimic model


Centipede: Follow-up Studies

- Fey, McKelvey and Palfrey (IJGT 1996)
 - Use constant-sum to kill social preferences
 - ▶ Take 50% at 1st, 80% at 2nd
- ▶ Nagel and Tang (JMathPsych 1998)
 - Don't know other's choice if you took first; take half way
- Rapoport et al. (GEB 2003)
 - ▶ 3-person & high stakes: Many take immediately
 - CH can explain this (but not QRE) see theory

- ▶ Pure coordination game with \$1.20 & \$0.60
- How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- Abreu and Matsushima (ECMA 1992)
 - \blacktriangleright Slice the game into T periods
 - \blacktriangleright F : Fine paid by first subject to deviate
 - \blacktriangleright Will not deviate if F> $\$1.20/\,T$
 - Can set T = 1, F = \$1.20; more credible if T large

- ► Glazer and Rosenthal (ECMA 1992)
 - Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- Abreu and Matsushima (ECMA 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of fines.'"
- This invites an experiment!

- Sefton and Yavas (GEB 1996)
- ▶ F = \$0.225
- T = 4, 8, or 12
 - ▶ Theory: Play inferior NE at T = 8, 12, not T = 4
- Results: Opposite, and diverge...
- Why? Choose only 1 switch-point in middle
 - ► Goal: switch soon, but 1 period after opponent

yi Wang

2025/4/25

- ► Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- Katok, Sefton and Yavas (JET 2002)
 - Does not work either
- Can any approximately rational explanation get this result?
 - Maybe "Limited steps of IEDS + Learning"?

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- Why doesn't B realize C is laughing at her?
- Heavens! / must be laughable.
 Littlewood (1953), A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp Econ 2001)

Independent Types: X or O

▶ Pr(X) = 0.8, Pr(O) = 0.2 (X is like "dirty face")

Commonly told: At least one player is type X.

▶ $P(XX) = 0.64 \rightarrow 2/3, P(XO) = 0.32 \rightarrow 1/3$

- Observe other's type
- Choose Up/Down (figure out one is type X)
 - If nobody chooses Down, reveal other's choice and play again

Dirty Face Game: Weber (Exp Econ 01')

		Туре	
			0
Proba	ability	0.8	0.2
Action	Up	\$0	\$0
	Down	\$1	-\$5

Dominance-Solvable Games

- Case XO: Players play (Up, Down) since
- Type X player thinks:
 - ▶ I know that "at least one person is type X"
 - ▶ I see the other person is type O
- So, I must be type $X \rightarrow Chooses Down$
- Type O player thinks:
 - ▶ I know that "at least one person is type X"
 - ▶ I see the other person is type X: No inference \rightarrow Chooses Up

- Case XX First round:
 - ► At least one is type X, but the other guy is type X
- No inference \rightarrow Both choose Up
- Case XX Second round:
- Seeing UU in first
 - The other is not sure about his type
 - He must see me being type X
- I must be Type $X \rightarrow Both choose Down$

			Tria	al 1	Tri	Trial 2	
			XO	XX	XO	XX	
	Round 1	UU	0	7*	1	7*	
		DU	<u>3*</u>	3	4*	1	
		DD	0	0	0	0	
		UU	-	1	-	2	
	Round 2 (after UU)	DU	-	5	-	2	
		DD	-	1*	-	3*	
		Other	_	-	1	_	
025/4/	25		Dominance-Sc	lvable Games		Joseph Lao-yı	

- Results: 87% rational in XO, but only 53% in 2nd round of XX
- Significance:
- Choices reveal limited reasoning, not pure cooperativeness
 - More iteration is better here...
- Upper bound of iterative reasoning
 - Even Caltech students cannot do 2 steps!

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
 - Little evidence beyond 1-step iterative dominance
- Limit of Strategic Thinking: At most 2-3 steps
- Compare with Theories of Initial Responses
 - Level-k: Stahl-Wilson95, CGCB01, CGC06
 - Cognitive Hierarchy: CHC04