Coordination協調賽局

Joseph Tao－yi Wang（王道一）
Lecture 10，EE－BGT

- Why is coordination important? - Matching Games
- Pure Coordination Game
- GAMES magazine (1989)
- Mehta et al. (AER 1994)
- Assignment Games
- Mehta et al. (T\&D 1994)
- Bacharach \& Bernasconi (GEB 1997)
- Games with Asymmetric Payoffs
- Battle of Sexes
- Cooper et al. (AER 1990)
- Blume et al. (AER 1998/GEB 2001)
- Market Entry Games
- Games w/ Asymmetric Equilibrium - Stag Hunt: Cooper et al. (AER90')
- Weak-Link: Van Huyck et al. (AER90')
- Applications to Market Adoption and Culture:
- Clemons and Weber (InfoSysR96), Camerer and Weber (MS 2003)

Why is Coordination Important?

- Which Equilibrium to Select Among Many?
- This requires Coordination!
- Examples of Coordination in Daily Life:
- Language
- Trading in Markets (Liquidity)
- Industry Concentration

Why is Coordination Important?

- Equilibrium Selection in Game Theory

1. Desirable Features Approach:

- Payoff-Dominance, Risk Dominance, etc.

2. Convergence via Adaptation/Learning

- Weibull (1995), Fudenberg and Levine (1998)

3. Empirical Approach: Infer Principles by

- Putting people in experiments and observe actual behavior/outcome

Why is Coordination Important?

- Possible "Selection Principles":
- Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
- "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver any more than one can prove,
- by purely formal deduction, that a particular joke is bound to be funny."

Why is Coordination Important?

- Can't Communication Solve This?
- Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
- Avoiding Traffic Jams
- Speed Limits (useful because they reduce speed "variance," and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- US railroad tracks is 4 feet and 8.5 inch
- Because English wagons were about 5 feet (width of two horses), and lead to
- Space Shuttle Rockets smaller than ideal
- since they need to be shipped back by train...
- Industries are concentrated in small areas
- Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
- I want to live where others (like me) live

Examples of Coordination Impact:

Drive on Left/Right side of the Road

- Right: Asia, Europe (Same continent!)
- Left: Japan, UK, Hong Kong (Islands!)
- Sweden switched to Right (on Sunday morning)
- What about America? Right, to avoid
- Hitting others with the whip on your right hand!
- Bolivians switch to Left in mountainous area
- To see outer cliffside from (left) driver seat
- Pittsburgh left: $1^{\text {st }}$ left-turner goes $1^{\text {st }}$ at green
- on two-lane streets to avoid blocking traffic

3 Types of Coordination Games

- Matching Games
- Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
- Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
- Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

- Categorizing Products
-Where should you find MCU? Disney or Action?
- Find your favorite item at a new Costco store
- Common Language:
- Internet promotes English
- Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better

Matching Game: GAMES magazine (1989)

- Pick one celebrity (out of 9) for President, another for Vice-President:
- Oprah Winfrey, Pete Rose,
- Bruce Springsteen, Lee laccoca,
- Ann Landers, Bill Cosby,
- Sly Stallone, Pee-Wee Herman,
- Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one

Matching Game：Taiwanese Version in Spring 2023

－For 2024 Presidential Election：
－戴資顴，張育成，林書豪，柯文哲，陳時中，管中閣，侯友宜，郭台鉊，蕭美琴，賴清德
Prize？
－Results．．．

Matching Game：Taiwanese Version in Spring 2021

－Taiwanese Version：
－戴資穎，張育成，福原愛，瑞莎，趙婷，陳時中，潘忠政，詹順貴，黃士修，趙介佑
－Prize？
－Results．．．
（of 2021）

Matching Game：Taiwanese Version in Spring 2020

－Taiwanese example：
－戴資穎，周天成，羅志祥，周揚青，劉樂妍，曾博恩，陳時中，黃秋生，陳建仁，黃安
－Prize？
－Results．．．
（of 2020）

Matching Game：Taiwanese Version in Spring 2019

－Taiwanese example：
－戴資穎，陳偉殷，黃國昌，朱敬一，陳建仁，林立青，李來希，舒淇，林志玲，林奕含 朱敬－6 侓建に4
－Prize？
－Results．．．
（of 2019）

Matching Game: GAMES magazine (1989)

- US Results:

1. Bill Cosby (1489): successful TV show
2. Lee lacocca (1155): possible US candidate
3. Pee-Wee Herman (656): successful TV show
4. Oprah Winfrey (437): successful TV show
5. Shirley MacLaine (196): self-proclaimed reincarnate

Pure Coordination Game

- Both get 1 if pick the same;
- Both get 0 if not
- Two pure NE,
- (A, A) and (B, B)
- One mixed NE - $(1 / 2 \mathrm{~A}+1 / 2 \mathrm{~B}, 1 / 2 \mathrm{~A}+1 / 2 \mathrm{~B})$
- Which one will be played empirically?

Pure Coordination Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
- Win \$1 if your partner picks the same as you
- Difference between P and $C=$ How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Category	Group P $(\mathrm{n}=88)$	Group C $(\mathrm{n}=90)$		
	Response	$\%$	Response	$\%$
Years	1971	8.0	1990	61.1
Flowers	Rose	35.2	Rose	66.7
Dates	Dec. 25	5.7	Dec. 25	44.4
Numbers	7	11.4	1	40.0
Colors	Blue	38.6	Red	58.9
Boy's Name	John	9.1	John	50.0
Gender	Him	53.4	Him	84.4

- Bardsley, Mehta, Starmer, Sugden (EJ 2010)
- Incorporate (Replace?) Bardsley, et al. (wp 2001)
- 14 Games: One in choice set is distinctive
- EX: \{Bern, Barbodos, Honolulu, Florida\}
- Add Guess Condition (G) to P/C: Guess partner's pick
- Design question: How do you avoid focality of physical location (first/last/top-left)?
- Have things swim around the computer screen...
- EX: \{Bern, Barbodos, Honolulu, Florida\}

1. Choose Bern in C since Bern in P and G

- Derivative Salience: $\mathrm{P}=\mathrm{G}=\mathrm{C}$ (via Cognitive Hierarchy Model!)

2. Choose Bern in C, but Florida in P and G

- Schelling Salience: $\mathrm{P}=\mathrm{G} \neq \mathrm{C}$
- Team Reasoning: Pick distinctive choice only in C
- Coordinate on this: Even though I would not pick this and I know you would not pick this!

Pure Coordination Game: Follow-up 1

- Derivative Salience: $P=G=C$ vs. Schelling Salience: $P=G \neq C$
- Schelling Salience wins here! - In 12 games (out of 14):
- Chose distinctive choice 60% in C (modal!)
- But less often in P and G
- EJ 2010: Follow-up with Nottingham subjects
- Both saliences rejected with subtle design differences (used to coordinate)

Assignment Game and Visual Selection (Follow-up 2)

- Hume (1978/1740) - Ownership conventions: spatial/temporal proximity, cultural, etc.
- Mehta, Starmer and Sugden (T\&D 1994)

Assignment Game and Visual Selection

- Assign circles to L or R;
- Earn \$\$ if all circles match partner assignment
- Focal Principle 1: Closeness (C)

Assignment Game and Visual Selection

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- Focal Principle 2: Equality (E)

Assignment Game and Visual Selection

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- Focal Principle 3: Accession (A)

Assignment Game and Visual Selection

- How would you assign the circles?
-What about this? $(C=A=E)$
- In fact, 74\% chose this!

Assignment Game and Visual Selection

- How would you assign the circles?
-What about this? $(C=A=E)$
- In fact, 68\% chose this!

Assignment Game and Visual Selection

- How would you assign the circles?

What about this? (Accession!)

- In fact, 70\% chose this! (What does C/E say?)

Assignment Game: Closeness and Accession vs. Equality

- What does Closeness/Accession say?
- What does Equality say about this? :-)
- 29% follow C and A vs. 2

Assignment Game: Accession vs. Closeness

- What does Accession say about this? :)
- What does Closeness say about this?

Assignment Game: Accession vs. Equality

- What does Accession say about this?
- What does Equality say about this? ()

Equality > Accession > Closeness

- First Focal Principle: Equality ;
- Then Accession (if Equality satisfied/silent)

Unpacking Focality

- Bacharach and Bernasconi (GEB 1997)
- Visual matching game
- Pick one from picture:
- Test rarity preferences
- 6 vs. 8
- Are Rare item chosen more frequently
- As Rarity increases?
- 6/8, 2/3, 6/18, 1/15

Unpacking Focality: Test Rarity

- Yes!
- As Rarity increases,
- Frequency of rare choice increases!

\# of Rare/Frequent Items		
$6 / 8$	$2 / 3$	$6 / 18$
65%	$1 / 15$	
35%	77%	94%

Frequent Item 35\% 24\% 23\% 6\%

Unpacking Focality: Test Trade-offs

- Rarity ($\mathrm{r}=3$ vs. $\mathrm{n}=8$) against
- Oddity (size or color) - $p(\mathrm{~F})=$ prob. of notice
- Choose Oddity if $p(\mathrm{~F})>1 / \mathrm{r}$?
- Obvious Treatments: - $p(\mathrm{~F})=0.94 \gg 1 / 3$
- Subtle Treatments:

$$
\text { - } p(\mathrm{~F})=0.40>1 / 3
$$

Unpacking Focality: Test Trade-offs

$r=\#$ of	Obvious Oddity $(1 / r)$			Subtle Oddity $(1 / r)$				
Rare	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$
$1 / 6$								
$p(\mathrm{~F})$	0.95	0.91	0.95	0.93	0.55	0.40	0.62	0.25
0.25								
Difference	0.45	0.58	0.7	0.73	0.05	0.07	0.37	0.05
Rare	14%	19%	9%	7%	77%	55%	45%	69%
Oddity	83%	79%	91%	88%	23%	31%	45%	19%
Other	2%	2%	0%	5%	0%	14%	10%	12%

Unpacking Focality

- Munro (wp 1999)
- Field study of coordination
- Narrow bike lanes in Japan
- No center line
- Two bikes coming from opposite directions
- Both ride close to middle
- How they avoid colliding?
- Both move Left!

Asymmetric Plavers: Battle of Sexes

- 100 lottery tickets =
- 10% chance to win $\$ 1 / \$ 2$
- Pure NE: $(1,2)$ and $(2,1)$
- Players prefer equilibrium where they play strategy 2
- Mixed NE:
- ($1 / 4,3 / 4$) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe \& Ross (AER 90')
- BOS: Baseline (MSE mismatch 62.5\%)
- BOS-300: Row player has outside option 300
- Forward induction predicts $(2,1)$
- BOS-100: Row player has outside option 100
- Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

Game	Outside	$(1,2)$	$(2,1)$	Other	\# Obs
BOS	-	$37(22 \%)$	$31(19 \%)$	$97(59 \%)$	165
BOS-300	33	$0.0 \%)$	$119(90 \%)$	$13(10 \%)$	165
BOS-100	3	$5(3 \%)$	$102(63 \%)$	$55(34 \%)$	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

Asymmetric Plavers: Battle of Sexes

- Cooper, DeJong, Forsythe \& Ross (AER 90')
- BOS-1W: 1 way communication by Row
-BOS-2W: 2 way communication by Both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
- Information set same as simultaneous move - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

Game	Outside	$(1,2)$	$(2,1)$	Other	\# Obs
BOS	-	37(22\%)	31 (19\%)	97(59\%)	165
BOS-300	33	0 (\%)	119 (90\%)	13(10\%)	165
BOS-100	3	5 (3\%)	102 (63\%)	$55\left(34^{\circ}\right)$	165
BOS-1W	-	1 (1\%)	158(96\%)	6 (4\%)	165
BOS-2W	-	49(30\%)	47(28\%)	69(42\%)	165
BOS-SEQ		6 (4\%)	103(62\%)	$56(34 \%)$	165

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!
, Blume, DeJong, Kim and Sprinkle (AER 1998) - See also BDKS (GEB 2001) which is better!

Evolution of Meaning: Game 1 (Baseline)

- Game 1: Blume et al. (AER 1998)
- Sender has private type T1 or T2
- Sends message "*" or "\#" to receiver
- Receiver chooses A or B (to coordinate type)
- Game 1NH: See only history of own match

Evolution of Meaning: Game 2

- Game 2:
- Receiver can choose C (safe action) that gives $(4,4)$ regardless of $\mathrm{T} 1 / \mathrm{T} 2$ - Theory: Pooling or Separating Equilibrium

T2
7,7
0, 0
4, 4

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives $(4,4)$ regardless of $\mathrm{T} 1 / \mathrm{T} 2$
- Theory: Pooling or Separating Equilibrium

Percentage Consistent with Separating Game \Period
1st Session: Game 1
2nd Session

Game 1 Game 1NH Game 2	49	75	52	61	89
Separating	44	88	55	100	
Pooling	39	05	88	88	94

Evolution of Meaning: Game 3

- Game 3: Coordinate payoffs become $(2,7)$
- So sender wants to disguise types to force receiver to choose C (safe action)
- Allowed to send 2 or 3 messages...

Evolution of Meaning (Blume et al. AER 1998)

- Game 1: Baseline as above
- Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives $(4,4)$ regardless of T1/T2
- Theory: Pooling or Separating Equilibrium
- Game 3: Coordinate payoffs become $(2,7)$
- Sender wants to disguise type so receiver picks C (safe action)
- Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages

\# of Messages-Equil. Played	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$
2nd Session: 2-Separating	43	53	38	39		
2-Pooling	33	34	41	43		
3-Separating	43	38	33	24		
3-Pooling	33	37	42	60		
1	st					
Session: 2-Separating	39	27	23	24	24	23
2-Pooling	39	48	51	60	63	61
3-Separating	23	22	23	25	22	24
3-Pooling	55	61	58	56	57	61

Example of Asymmetric Payoffs

- Market Entry Game
- n players decide to enter market with capacity c
- Payoffs declines as number of entrants increase
, " < 0 " if number > c (= market capacity)
- Sundali, Rapoport and Seal (OBHDP 1995)
- Number of Entrants: Predicted vs. Actual

Market Entry Game: Results Close to Equilibrium

Capacity	1	3	5	7	9	11	13	15	17	19

Predicted Number of Entrants
$\begin{array}{llllllllllll}\text { MSE } & 0 & 2.1 & 4.2 & 6.3 & 8.4 & 10.5 & 12.6 & 14.7 & 16.8 & 18.9\end{array}$
Actual Number of Entrants
$\begin{array}{lllllllllll}\text { All Data } & 1.0 & 3.7 & 5.1 & 7.4 & 8.7 & 11.2 & 12.1 & 14.1 & 16.5 & 18.2\end{array}$ $1^{\text {st }}$ Block $1.3 \begin{array}{llllllllllll} & 5.7 & 9.7 & 6.7 & 3.7 & 14.0 & 11.3 & 11.3 & 16.0 & 18.0\end{array}$

- Kahneman (1988): "To a psychologist, it looks like magic." - See BI-SAW paper by Chen et al. (2012)...

Games with Asymmetric Equilibria

- Stag Hunt
- Cooper et al. (AER 1990)
- 100 lottery tickets $=$
- 10% chance to win $\$ 1 / \$ 2$
- Pure NE:
- $(1,1)$ and $(2,2)$
- Mixed NE?
- Which would you pick?

2

0. 800

1000,
1000

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- CG-900: Row has outside option 900 each
- Forward induction predicts $(2,2)$
- CG-700: Row has outside option 700 each
- Forward induction won't work
-CG-1W: 1-way communication by Row
- CG-2W: 2-way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	$(1,1)$	$(2,2)$	Other
\# Obs				
CG	-	$160(99 \%))$	$0(0 \%)$	$5(3 \%)$
CG-900	65	$2(2 \%)$	$77_{(77 \%)}$	$21(21 \%)$
CG-700	20	$119(82 \%)$	165	
CG-1W	-	$26(16 \%)$	$26(18 \%)$	165
CG-2W	-	$08(53 \%)$	$51(31 \%)$	165

Weak-Link Game

- Van Huyck, Battalio and Beil (AER 1990)

- Each of you belong to a team of n players
- Each of you can choose effort $X_{i}=1-7$
- Earnings depend on
- Your own effort X_{i}, and

Cost of Effort X_{i}

- The smallest effort $\min \left\{X_{j}\right\}$ of your team
- Payoff $=60+20^{*} \min \left\{X_{j}\right\}-10 * X_{i}$

Team Project Payoff

Weak-Link Game: Van Huyck et al. (AER 1990)

- Payoff $=60+10 * \min \left\{X_{j}\right\}-10 *\left(X_{i}-\min \left\{X_{j}\right\}\right)$

Team Minimum

Deviation from Min

- Payoff sensitive to weakest link in production chain:

1. Cobb-Douglas Production Function (Leontief)
2. All have to arrive for restaurant to seat your group
3. Each has to do their job for whole project to fly

- Law firms, accounting firms, investment banks, etc.

4. Prepare an airplane for departure

Weak-Link Game: Van Huyck et al. (AER 1990)

$m=\min \left\{X_{j}\right\}$	Your	Smallest X_{j} in the Team						
Team Minimum	X_{i}	7	6	5	4	3	2	1
Payoff $=60$	7	130	110	90	70	50	30	10
$+10 * m$	6	-	120	100	80	60	40	20
$-10 *\left(X_{i}-m\right)$	5	-	-	110	90	70	50	30
	4	-	-	-	100	80	60	40
Deviation	3	-	-	-	-	90	70	50
from Min	2	-	-	-	-	-	80	60

Weak-Link Game: Van Huyck et al. (AER 1990)

- What is your choice when...
- Group size $=2$?
- Group size $=3$?
- Group size $=20$?
- Can some kind of communication help coordinate everyone's effort?
- Let's conduct a classroom experiment first...

Classroom Experiment：害群之馬

最弱環節賽局

（Weak－Link Game）

－Each DM chooses effort $X_{i}=1-4$
－Spade $=4$ ，Heart $=3$ ，Diamond $=2$ ，Club $=1$
－DM（Decision Maker）＝a team of two

- 每組每回合都會有四張撲克牌，分別為黑桃（4），紅心（3），方塊（2），梅花（1）
- 主持人會跟每組收一張牌
- 交出來的花色代表你們花多少時間排練
- 你們的努力程度：黑桃 $=4$ 小時，紅心 $=3$ 小時，方塊 $=2$ 小時，梅花 $=1$ 小時
- 各組要討論屆時交出哪一張牌．．

Pavoff Calculation（㑇分方式）

－Payoff $=3$＊ $\min \left\{X_{j}\right\}-1^{*} X_{i} \longleftarrow$ Cost of Effort X

Team Project Payoff

－ $\min \left\{X_{j}\right\}=$ 「花最少時間排練那一組的排練時數」，
－每一小時的排練大家都會得到3分
－各組自己每花一小時排練，就少1分

Your X_{i}	$\min \left\{X_{j}\right\}$			（最諙那組時數）
（本組時數）	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Pavoff Calculation（詞分方式）

1．How much would you earn if all DM choose $X_{i}=4$ ？
－8！
－如果所有各組都花四小時排練，這樣各組會拿幾分？
－8分！

Your X_{i}	$\min \left\{X_{j}\right\}$（最低那組時數）			
（本組時數）	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Pavoff Calculation（詞分方式）

2．How much would you earn if you choose $X_{i}=3$ while others choose $X_{j}=4$ ？
－ $6(<8)$
－Not worth it！
－如果別組都花四小時排練，但你們這組只花三小時排練，這樣你們會拿幾分？這麼做値得嗎？
－6分！小於8分所以不値得！

Your X_{i}	$\min \left\{X_{j}\right\}$（最低那組時數）			
（本組時數）	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Pavoff Calculation（詞分方式）

3．How much would you earn if you choose $X_{i}=2$ while some other DM choose $X_{i}=1$ ？
－ $1(<2)$
－If you also choose $X_{i}=1$ ！
－如果有某一組只花一小時排練，你們這組如果花兩小時排練，値得嗎？
－不値得，因只得 1 分，但如果也花一小時就會跟他們一樣得到2分！

YourX_{i}	$\min \left\{X_{j}\right\}$（聂低那組時數）			
	4	3	2	1
4	8	5	2	-1
4	-	6	3	0
3	-	-	4	1
2	-	-	-	2
1				

Weak－Link Game（最弱環節謇局）

－Please decide now and we will see the results．．．
6．Are you satisfied with the results？How can you encourage cooperation next time？
－你對結果滿意嗎？如
果你希望大家都更好，該怎麼鼓勵大家合作？
－讓我們再來做一次．．．

Your X_{i}	$\min \left\{X_{j}\right\}$（最低那組時數）			
	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Weak－Link Game（最弱環節㹂同）

－In reality，people would see each other＇s effort and increase effort gradually
－Let＇s try again by committing hour－by－hour！
－現實中你們彼此多半清楚大家的排練情況，而且時數可以逐步加碼。這次我們採一小時，一小時逐步加碼方式進行

YourX_{i}	$\min \left\{X_{j}\right\}$（最但那組時數）			
	4	3	2	1
4	8	5	2	-1
4	-	6	3	0
3	-	-	4	1
2	-	-	-	2
1				

Back to Van Huyck et al. (AER 1990)...

$m=\min \left\{X_{j}\right\}$	Your X_{i}	Smallest X_{j} in the Team						
		7	6	5	4	3	2	1
Team Minimum	7	130	110	90	70	50	30	10
- Payoff $=60$	6	130	120	100	80	60	40	20
+10 * ${ }^{\prime}$	5	-	-	110	90	70	50	30
-10 * $\left(X_{i}-m\right)$	4	-	-	-	100	80	60	40
<	3	-	-	-	-	90	70	50
Deviation from Min	2	-	-	-	-	-	80	60
	1	-	-	-	-	-	-	70

Weak-Link Game: Large Group (Extensions)

- 7 Large Group ($n=14-16$) sessions (Table 7.25) - X_{i} starts at 4-7, but quickly drop to 1-2!

Choices in 7 Large Group Sessions

X_{i}	Round			(group size $n=14-16)$						
	1	2	3	4	5	6	7	8	9	10
7	33	13	9	4	4	4	6	3	3	8
6	10	11	7	-	1	2	-	-	-	-
5	34	24	10	12	2	2	24	1	-	1
4	17	23	24	18	15	5	3	3	2	2
3	5	18	25	25	17	9	8	3	4	2
2	5	13	17	23	31	35	39	27	26	17

Weak-Link Game: Large Group (Extensions)

- 7 Large Group ($n=14$-16) sessions (Table 7.25)
- X_{i} starts at 4-7, but quickly drop to 1-2!
- Extensions in Van Huyck et al. (AER 1990):
- No penalty above min: 83% choose 7 in round 1
- See effort distribution: Accelerate race to bottom
- 1 Small Group ($n=2$) Session (Table 7.26)
- X_{i} starts at 1 or 7 , but quickly converges to 7 !
- If choose $X_{i}=7$ first, will wait a couple rounds for partner to follow...

Choices in Small Group Session

X_{i}	Round		(group size $n=2$)				
	1	2	3	4	5	6	7
7	9	13	13	17	19	19	21
6	0	1	4	2	1	1	0
5	4	1	1	1	0	0	0
4	0	1	2	0	1	1	0
3	1	2	1	1	0	0	0
2	1	2	0	0	0	0	1
1	8	4	3	3	3	3	2

(2 modes in red/pink)
Table 7.26,
Camerer (BGT 2003)

Weak-Link Game: Small Group Extension

- Van Huyck et al. (AER 1990) also did
- Small Group ($n=2$) + Random Matching:
- Start high (4-7), but drop to 1 !
- Small group size not enough
- Need stability/mutual adjustment of fixed pairing!
- Clark and Sefton (wp 1999)
- Replicate random-matching results in stag hunt
- Still unpublished: Difficult to publish replications?
- Group Size Meta-Study (Table 7.27)

Round 1 Group Minima

Group size n	1	2	3	4	5	6	7	Obs.
2	43%	$\underline{7 \%}$	$\underline{7 \%}$	7%	29%	-	7%	14
3	25%	5%	$\underline{35 \%}$	15%	5%	-	15%	20
6	$\underline{73 \%}$	16%	11%	-	-	-	-	19
9	-	$\underline{100 \%}$	-	-	-	-	-	2
12	$\underline{100 \%}$	-	-	-	-	-	-	2
$14-16$	28%	$\underline{28 \%}$	14%	28%	-	-	-	7

(Median underlined; 2 modes in red/pink) Middle Panel of Table 7.27, Camerer (BGT 2003)

Round 5 Group Minima

Group size n	1	2	3	4	5	6	7	Obs.
2	14%	-	-	-	-	-	86%	14
3	30%	15%	20%	15%	-	-	20%	20
6	$\underline{80 \%}$	10%	10%	-	-	-	-	19
9	$\underline{100 \%}$	-	-	-	-	-	-	2
12	-	-	-	-	-	-	-	-
$14-16$	100%	-	-	-	-	-	-	7

(Median underlined; 2 modes in red/pink) Bottom Panel of Table 7.27, Camerer (BGT 2003)

Weak-Link Game: Group Size Meta-Study

- Large Group size ($n \geq 6$):
- $1^{\text {st }}$ period $\min \left\{X_{j}\right\} \leq 4$ vs. $5^{\text {th }}$ period $\min \left\{X_{j}\right\}$ mostly 1
- Small Group size ($n=2-3$):
- $1^{\text {st }}$ period $\min \left\{X_{j}\right\}$ only partly in 5-7
- $5^{\text {th }}$ period $\min \left\{X_{j}\right\}$ mostly (86%) reaches 7 if $n=2$
- But $1^{\text {st }}$ period median $X_{i}=4-5$ for all n !
- Why? Maybe subjects think they play against representative opponent (and clone for large n)

Round 1 Choices (Median Underlined)

Group size n	1	2	3	4	5	6	7	Obs.
	28%	3%	3%	7%	$\underline{21 \%}$	-	36%	28
3	8%	5%	8%	17%	$\underline{7 \%}$	2%	41%	60
6	18%	7%	13%	$\underline{16 \%}$	$\underline{7 \%}$	7%	39%	114
9	0%	11%	28%	$\underline{39 \%}$	5%	-	17%	18
12	25%	4%	13%	$\underline{8 \%}$	16%	4%	29%	24
$14-16$	2%	5%	5%	$\underline{17 \%}$	$\underline{32 \%}$	9%	31%	104

(Median underlined; 2 modes in red/pink) Top Panel of Table 7.27, Camerer (BGT 2003)

Weak-Link Game: Local Interaction

- Berninghaus, Erhart and Keser (GEB 2002)
- 3-person weak-link game
-What does Game Theory say?
- Inefficient Nash: Each earn 80 if (X, X, X)
- Efficient Nash: Each earn 90 if (Y, Y, Y)

Other Player Choices

Both X One X, One Y Both Y

		Other Player Choices		
		Both X	One X, One Y	
Both Y				
Row	X	80	60	
Player	Y	10	10	

80
60
60

Weak-Link Game: Local Interaction

- Baseline: Play 20 rounds w/ same opponents
- See opponent choices (but not who made what)
- Local Interaction: 8 subjects form a circle to play the 2 neighbors next to you
- Contagion: Can spread Equilibrium around circle

		Other Player Choices		
	Both X	One X, One Y	Both Y	
Row	X	80	60	60
Player	Y	10	10	90

Weak-Link Game: Local Interaction

- Baseline: 75% initially play Y
- 7 of 8 groups converge to all-Y equilibrium
- Local Interaction: half initially play Y
- Drop to None play Y in round 20
- Because 64% play X if one neighbor played X

		Other Player Choices		
	Both X	One X, One Y	Both Y	
Row	X	80	60	
Player	Y	10	10	

Weak-Link Game: Mergers

- Camerer and Knez (SMJ 1994):
- Two groups each play 3-person weak-link game
- Then merge into one 6-person group
- Two Possible Predictions:
- Mergers Fail: Large group size reduces efficiency
- Mergers Restart: Coordinate on good equilibrium
- Results: Mergers Fail! (Table 7.29)
- Group Minima mostly 1 in Round 1 and 5
- Regardless knowing other group minimum or not

Group Minima Before/After Mergers

Know Other Group Minimum
 Don't Know Other Minimum

Before
After Before

After

Round	5	1	5	Round	5	1	5

Session $1 \quad(1,2) \rightarrow(1,2) \rightarrow 1 \quad 1 \quad$ Session $1 \quad(2,4) \rightarrow(1,2) \rightarrow 1 \quad 1$
Session $2 \quad(1,4) \rightarrow(1,1) \rightarrow 1 \quad 1 \quad$ Session $2 \quad(7,3) \rightarrow(7,1) \rightarrow 1 \quad 1$

Session 3
$(1,1) \rightarrow(1,2) \rightarrow 1 \quad 1 \quad$ Session 3
$(3,2) \rightarrow(3,1) \rightarrow 1 \quad 2$
Session 4
$(4,1) \rightarrow(4,1) \rightarrow 1 \quad 1 \quad$ Session 4
$(7,3) \rightarrow(7,3) \rightarrow 3 \quad 3$
Session 5
$(1,7) \rightarrow(1,7) \rightarrow 1 \quad 1 \quad$ Session 5
$(7,3) \rightarrow(7,2) \rightarrow 2 \quad 1$

$(.,$.$) show min of 3$-person group
min of 6-person group Table 7.29, Camerer (BGT 2003)

Weak-Link Game: Bonus

- Camerer and Knez (SMJ 1994): $2^{\text {nd }}$ Treatment - Announce a bonus of $\$ 0.20 / \$ 0.50$ if all choose 7
- Additional bonus + announcement (beyond implicit gains if all choose 7)
- Results: 90% choose 7 in next period
- Compared to 85\% choose 1-2 last period
- Confirms Knez and Simester (JLE 2001)
- Why group-level bonuses work so well

Weak-Link Game: Leadership

- Weber, Camerer, Rottenstreich \& Knez (OS 2001)
- Play in large $(n=8-10)$ or small $(n=2)$ group
- Each choose $s_{i}=0,1,2,3 ;$

Payoff $=\$ 2.50+\$ 1.25 \times\left[\min s_{i}-1\right]-s_{i}-0.25 \times 1_{\left\{\min s_{i}=0\right\}}$

- After 2 rounds, randomly select a leader
- Makes short speech to encourage more effort
- Then, rate leader before/after 5 more rounds
- Attribute success to leadership personalities?

Weak-Link Game: Leadership

Effort	Large $(n=8$-10)			Small $(n=2)$				
Level	0	1	2	3	0	1	2	3

Round 1-2 25\% 24\% 20\% 32\% 5\% 24\% 26\% 45\%
Leadership Rating (before) 5.88 Rating (before) 5.80

Round 3-8	47%	4%	-					
Leadership	49%							
Rating (after)	4.53			\quad	6%	6%	6%	83%
:---:	:---:	:---:	:---:					
Rating (after)	6.17							

- Confirm Nisbett and Ross (bk 1991)

Table 7.30, Camerer (BGT 2003)

- Attribute too much cause of success/failure to leadership personalities

Median-Action Game: Van Huyck, Battalio and Beil (QJE 1991)

- In a team of $n=9$, you choose effort $X_{i}=1-7$
- Earnings depend on your own effort, and
- The median effort M of your team
- Payoff $=70+10 \times(M-1)-5 \times\left(X_{i}-M\right)^{2}$

> Team Project Payoff

Cost of Non-Conformity

- Situations where players prefer to conform
- Example: Prefer to not work too hard or too little
- Maximin $X_{i}=3$ vs. Payoff-dominant $X_{i}=7$

Median-Action Game: Van Huyck et al. (QJE1991)

Team Median - Payoff ($¢$)	$\begin{gathered} \text { Your } \\ X_{i} \end{gathered}$	Median Value of X_{j} in the team						
		7	6	5	4	3	2	1
$=70$	7	130	115	90	55	10	-45	-110
$+10 \times(M-1)$	6	125	120	105	80	45	0	-55
$-5 \times\left(X_{i}-M\right)^{2}$	5	110	115	110	95	70	35	-10
,	4	85	100	105	100	85	60	25
Deviation from M	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
	1	-50	-5	30	55	70	75	70

Median-Action Game Results

	Round					(6 groups; 54 subjects)					(2 modes in red/pink) ${ }^{1-3}$ of groups in equilibrium
X_{i}	1	2	3	4	5	6	7	8	9	10	
7	8	2	2	-	-	1	1	-	-	-	
6	4	6	6	6	3	3	4	1	3	1	
5	15	15	22	19	22	20	20	$24{ }^{1}$	23^{1}	6^{2}	Table 7.32,
4	19	26	22	29^{1}	27^{1}	30^{2}	30^{2}	28^{2}	28^{3}	27^{3}	Camerer
3	8				-	-	-	1			(BGT 2003)
2	-		-								
1	-				L	k-in	: sam	e_gr	up	media	

Median-Action Game (γ): Original

Team Median	Your X_{i}	Median Value of X_{j} in the team						
Payoff (\ddagger)		7	6	5	4		2	1
$=70$	7	130	115	90	55	10	-45	-110
+ $10 \times(M-1)$	6	125	120	105	80	45	0	-55
$-5 \times\left(X_{i}-M\right)^{2}$	5	110	115	110	95	70	35	-10
-	4	85	100	105	100	85	60	25
Deviation from M	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
	1	-50	-5	30	55	70	75	70

Median-Action Game (ω): non-BR $\pi=0$

- Maximin no longer $X_{i}=3$
Your Median Value of X_{j} in the team

X_{i}	7	6	5	4	3	2	1
7	130	0	0	0	0	0	0
6	0	120	0	0	0	0	0
5	0	0	110	0	0	0	0
4	0	0	0	100	0	0	0
3	0	0	0	0	90	0	0
2	0	0	0	0	0	80	0
1	0	0	0	0	0	0	70

Median-Action Game Results: Round 1

Game (ν) Game (ω)
 Game (ϕ)

X_{i} Principle Round 1 Principle Round 1 Principle Round 1

7	Payoff-Dom.	15\%	Payoff-Dom.	52\%	-	8\%
6	-	7\%	-	4\%	-	11\%
5	-	28\%	-	33\%	-	33\%
4	-	35\%	-	11\%	Maximin	41\%
3	Maximin	15\%	-	-	-	8\%
2	-	-	-	-	-	-
	-(2 modes in ${ }^{\text {red }} / \mathrm{pink}$); Tab̄le 7.33, Camerer (BGT 2003)					-

Median-Action Game (γ): Original

Team Median	Your X_{i}	Median Value of X_{j} in the team						
Payoff (\ddagger)		7	6	5	4		2	1
$=70$	7	130	115	90	55	10	-45	-110
+ $10 \times(M-1)$	6	125	120	105	80	45	0	-55
$-5 \times\left(X_{i}-M\right)^{2}$	5	110	115	110	95	70	35	-10
-	4	85	100	105	100	85	60	25
Deviation from M	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
	1	-50	-5	30	55	70	75	70

Median-Action Game (ϕ)

Payoff (¢)	Your	Median Value of X_{j} in the team						
	X_{i}	7	6	5	-	仡	2	1
$=70$	7	70	65	50	25	-10	-55	-110
$+10 \times\left(\begin{array}{ll}\text { M }\end{array} 1\right)$	6	65	70	65	50	25	-10	-55
$-5 \times\left(X_{i}-M\right)^{2}$	5	50	65	70	65	50	25	-10
1	4	25	50	65	70	65	50	25
viation from	3	-10	25	50	65	70	65	50
	2	-55	-10	25	50	65	70	65
	1	-110	-55	-10	25	50	65	70

Median-Action Game Results: Round 1

Game (ν) Game (ω)
 Game (ϕ)

X_{i} Principle Round 1 Principle Round 1 Principle Round 1

7	Payoff-Dom	15\%	Payoff-Dom.	52\%	-	8\%
6	-	7\%	-	4\%	-	11\%
5		28\%	-	33\%	-	33\%
4	In-between	35\%	-	11\%	Maximin	41\%
3	Maximin	15\%	S		T	8\%

$1 \quad \overline{\text { - }}$ (2 modes in red/pink); Tab̄le 7.33, Camērer (BGT 20003)

