Coordination

Joseph Tao-yi Wang (王道一) Lecture 10, EE-BGT

Coordination

Outline

- Why is coordination important?
- Matching Games
 - Pure Coordination Game
 - ► GAMES magazine (1989)
 - Mehta et al. (AER 1994)
 - Assignment Games
 - ▶ Mehta et al. (T&D 1994)
 - Bacharach & Bernasconi (GEB 1997)

Games with Asymmetric Payoffs

Battle of Sexes

- Cooper et al. (AER 1990)
- ▶ Blume et al. (AER 1998/GEB 2001)
- Market Entry Games
- Games w/ Asymmetric Equilibrium
 - Stag Hunt: Cooper et al. (AER90')
 - Weak-Link: Van Huyck et al. (AER90')
- Applications to Market Adoption and Culture:

Clemons and Weber (InfoSysR96), Camerer and Weber (MS 2003)

- Which Equilibrium to Select Among Many?
 - This requires Coordination!
- Examples of Coordination in Daily Life:
 - Language
 - Trading in Markets (Liquidity)
 - Industry Concentration

- Equilibrium Selection in Game Theory
- 1. Desirable Features Approach:
 - Payoff-Dominance, Risk Dominance, etc.
- 2. Convergence via Adaptation/Learning
 - ▶ Weibull (1995), Fudenberg and Levine (1998)
- 3. Empirical Approach: Infer Principles by
 - Putting people in experiments and observe actual behavior/outcome

- Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
 - "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver any more than one can prove,
 - by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
 - Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams
 - Speed Limits (useful because they reduce speed "variance," and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- ▶ US railroad tracks is 4 feet and 8.5 inch
 - Because English wagons were about 5 feet (width of two horses), and lead to
- Space Shuttle Rockets smaller than ideal
 - since they need to be shipped back by train...
- Industries are concentrated in small areas
 - Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
 - ▶ I want to live where others (like me) live

Coordination

Examples of Coordination Impact: Drive on Left/Right side of the Road

- Right: Asia, Europe (Same continent!)
- Left: Japan, UK, Hong Kong (Islands!)
- Sweden switched to Right (on Sunday morning)
- What about America? Right, to avoid
 - Hitting others with the whip on your right hand!
- Bolivians switch to Left in mountainous area
 - ► To see outer cliffside from (left) driver seat
- Pittsburgh left: 1st left-turner goes 1st at green
 - on two-lane streets to avoid blocking traffic

3 Types of Coordination Games

- Matching Games
 - Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
 - Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

- Categorizing Products
 - Where should you find MCU? Disney or Action?
 - Find your favorite item at a new Costco store
- Common Language:
 - Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better

Matching Game: GAMES magazine (1989)

- Pick one celebrity (out of 9) for President, another for Vice-President:
 - Oprah Winfrey, Pete Rose,
 - Bruce Springsteen, Lee laccoca,
 - Ann Landers, Bill Cosby,
 - ▶ Sly Stallone, Pee-Wee Herman,
 - Shirley MacLaine

One person is randomly awarded prize among those who picked most popular one

For 2024 Presidential Election:

- ★ 戴資穎、張育成、林書豪、柯文哲、陳時中、管中閔、侯友宜、 郭台銘、蕭美琴、賴清德

▶ Results...

Prize?

2024/4/18

Coordination

- ► Taiwanese Version:
 - 戴資穎、張育成、福原愛、 倉順貴、黃士修、趙介佑

Prize?

Results... (of 2021)

瑞莎、趙婷、陳時中、潘忠政、 VP: 福原爱 話抄 载货粮 趙介佑 時

Coordination

- Taiwanese example:
- ・戴資穎、周天成、羅志祥、周揚青、劉樂妍、曾博恩、陳時中、 → 黃秋生、陳建仁、黃安

 Prize?
- Results... (of 2020)

Coordination

- ► Taiwanese example:
- 、 戴資穎、陳偉殷、黃國昌、朱敬一、陳建仁、林立青、 李來希、舒淇、林志玲、林奕含
 Prize?

Results... (of 2019)

2024/4/18

Coordination

Matching Game: GAMES magazine (1989)

US Results:

- 1. Bill Cosby (1489): successful TV show
- 2. Lee lacocca (1155): possible US candidate
- 3. Pee-Wee Herman (656): successful TV show
- 4. Oprah Winfrey (437): successful TV show

9. Shirley MacLaine (196): self-proclaimed reincarnate

. . .

Pure Coordination Game

- Both get 1 if pick the same;
- Both get 0 if not
- Two pure NE,
- ► (A, A) and (B, B)
- One mixed NE
- (¼A + ½B, ½A + ½B)
 Which one will be played empirically?

Pure Coordination Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
 - ▶ Win \$1 if your partner picks the same as you
- Difference between P and C = How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Ρ	Category	Group P (n=88)		Group C (n=90)	
		Response	%	Response	%
	Years	1971	8.0	1990	61.1
	Flowers	Rose	35.2	Rose	66.7
	Dates	Dec. 25	5.7	Dec. 25	44.4
	Numbers	7	11.4	1	40.0
	Colors	Blue	38.6	Red	58.9
	Boy's Name	John	9.1	John	50.0
	Gender	Him	53.4	Him	84.4
2024/4/18		Coordination		Joseph Tao-yi Wang	

Pure Coordination Game: Follow-up 1

- Bardsley, Mehta, Starmer, Sugden (EJ 2010)
 - Incorporate (Replace?) Bardsley, et al. (wp 2001)
- ▶ 14 Games: One in choice set is distinctive
 - EX: {Bern, Barbodos, Honolulu, Florida}
- Add Guess Condition (G) to P/C: Guess partner's pick
- Design question: How do you avoid focality of physical location (first/last/top-left)?
 - Have things swim around the computer screen...

Pure Coordination Game: Follow-up 1

- EX: {Bern, Barbodos, Honolulu, Florida}
- 1. Choose Bern in C since Bern in P and G
 - ► Derivative Salience: P=G=C (via Cognitive Hierarchy Model!)
- 2. Choose Bern in C, but Florida in P and G
 - Schelling Salience: P=G≠C
 - ► Team Reasoning: Pick distinctive choice only in C
- Coordinate on this: Even though I would not pick this and I know you would not pick this!

Pure Coordination Game: Follow-up 1

- Derivative Salience: P=G=C vs. Schelling Salience: $P=G\neq C$
- Schelling Salience wins here!
 - ▶ In 12 games (out of 14):
- Chose distinctive choice 60% in C (modal!)
 - ▶ But less often in P and G
- ► EJ 2010: Follow-up with Nottingham subjects
 - Both saliences rejected with subtle design differences (used to coordinate)

Assignment Game and Visual Selection (Follow-up 2)

Hume (1978/1740) - Ownership conventions: spatial/temporal proximity, cultural, etc.

Mehta, Starmer and Sugden (T&D 1994)

Coordination

- Assign circles to L or R;
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 1: Closeness (C)

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 2: Equality (E)

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ▶ Focal Principle 3: Accession (A)

- How would you assign the circles?
- What about this? (C = A = E)

▶ In fact, 74% chose this!

- How would you assign the circles?
- What about this? (C = A = E)

▶ In fact, 68% chose this!

- How would you assign the circles?
- What about this? (Accession!)
 - ▶ In fact, 70% chose this! (What does C/E say?)

Assignment Game: Closeness and Accession vs. Equality

- What does Closeness/Accession say?
- What does Equality say about this?

2024/4/18

Coordination

Assignment Game: Accession vs. Closeness

- What does Accession say about this?
- What does Closeness say about this?

Assignment Game: Accession vs. Equality

- What does Accession say about this?
- What does Equality say about this?

Equality > Accession > Closeness

- First Focal Principle: Equality 🙂
- Then Accession (if Equality satisfied/silent)

Coordination

Unpacking Focality

- Bacharach and Bernasconi (GEB 1997)
- Visual matching game
 - Pick one from picture:
- Test rarity preferences
 - ▶ 6 vs. 8
- Are Rare item chosen more frequently
 - ► As Rarity increases?
 - ▶ 6/8, 2/3, 6/18, 1/15

Unpacking Focality: Test Rarity

- As Rarity increases,
 - Frequency of rare choice increases!

	# of Rare/Frequent Items				
	6/8	2/3	6/18	1/15	
Rare Item	65%	76%	77%	94%	
Frequent Item	35%	24%	23%	6%	

Coordination

Unpacking Focality: Test Trade-offs

- Rarity (r=3 vs. n=8) against
- Oddity (size or color)
 - ▶ p(F) = prob. of notice
 - Choose Oddity if p(F) > 1/r ?
- Obvious Treatments:
 - ▶ *p*(F)=0.94 >> 1/3
- Subtle Treatments:
 - ▶ *p*(F)=0.40 > 1/3

Unpacking Focality: Test Trade-offs

Violate p(F) > 1/r Proportion to Difference!

Mostly chose Obvious vs. Less than half chose Subtle

r = # of	Obvious Oddity (1/r)				Subtle Oddity (1/r)				
Rare	1/2	1/3	1/4	1/5	1/2	1/3	1/4	1/5	1/6
$p(\mathrm{F})$	0.95	0.91	0.95	0.93	0.55	0.40	0.62	0.25	0.25
Difference	0.45	0.58	0.7	0.73	0.05	0.07	0.37	0.05	0.09
Rare	14%	19%	9%	7%	77%	55%	45%	69%	55%
Oddity	83%	79%	91%	88%	23%	31%	45%	19%	20%
Other	2%	2%	0%	5%	0%	14%	10%	12%	25%

Unpacking Focality

- Munro (wp 1999)
- Field study of coordination
- Narrow bike lanes in Japan
 - No center line
- Two bikes coming from opposite directions
 - Both ride close to middle
- How they avoid colliding?
 - Both move Left!

Asymmetric Players: Battle of Sexes

- 100 lottery tickets =
 10% chance to win \$1/\$2
 Pure NE: (1,2) and (2,1)
 Players prefer equilibrium where they play strategy 2
- Mixed NE:
 - ▶ (1/4, 3/4) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- **BOS**: Baseline (MSE mismatch 62.5%)
- BOS-300: Row player has outside option 300
 Forward induction predicts (2,1)
- ► BOS-100: Row player has outside option 100
 - Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	_	37 (22%)	31 (19%)	97 (59%)	165
BOS-300	33	0 (0%)	119 (90%)	13 (10%)	165
BOS-100	3	5 (3%)	102 (63%)	55 (34%)	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

2024/4/18

Asymmetric Players: Battle of Sexes

- ► Cooper, DeJong, Forsythe & Ross (AER 90')
- ► BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by Both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - Information set same as simultaneous move
 - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	_	37(22%)	31 (19%)	97(59%)	165
BOS-300	33	0 (0%)	119 (90%)	13(10%)	165
BOS-100	3	5 (3%)	102 (63%)	55(34%)	165
BOS-1W	_	1 (1%)	158(96%)	6 (4%)	165
BOS-2W	_	49(30%)	47(28%)	69(42%)	165
BOS-SEQ	_	6 (4%)	103(62%)	56(34%)	165

2024/4/18

Coordination

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!

Blume, DeJong, Kim and Sprinkle (AER 1998)
 See also BDKS (GEB 2001) which is better!

Evolution of Meaning: Game 1 (Baseline)

- Game 1: Blume et al. (AER 1998)
- ▶ Sender has private type T1 or T2
- Sends message "*" or "#" to receiver
- Receiver chooses A or B (to coordinate type)
- Game 1NH: See only history of own match

Evolution of Meaning: Game 2

- Game 2:
- Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 Theory: Pooling or Separating Equilibrium

Evolution of Meaning

- Blume et al. (AER 1998)
- ► Game 1: Baseline as above
- ► Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 Theory: Peoling or Separating Equilibrium
 - Theory: Pooling or Separating Equilibrium

Percentage Consistent with Separating								
Game \ Period	1	5	10	15	20			
1st Session: Game 1	48	65	74	89	95			
2nd Session								
Game 1	49	72	61	89	100			
Game 1NH	55	55	28	55	72			
Game 2								
Separating	44	88	88	88	94			
Pooling	39	05	00	05	05			
2024/4/18 Coordination Joseph Tao-yi Wang					ri Wang			

Evolution of Meaning: Game 3

- ▶ Game 3: Coordinate payoffs become (2,7)
 - So sender wants to disguise types to force receiver to choose C (safe action)
 - Allowed to send 2 or 3 messages...

Evolution of Meaning (Blume et al. AER 1998)

- Game 1: Baseline as above
- ▶ Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium
- ► Game 3: Coordinate payoffs become (2,7)
 - Sender wants to disguise type so receiver picks C (safe action)
 - Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages									
# of Messages-Equil. Played	1-10	11-20	21-30	31-40	41-50	51-60			
2 nd Session: 2-Separating	43	53	38	39					
2-Pooling	33	34	41	43					
3-Separating	43	38	33	24					
3-Pooling	33	37	42	60					
1 st Session: 2-Separating	39	27	23	24	24	23			
2-Pooling	39	48	51	60	63	61			
3-Separating	23	22	23	25	22	24			
3 -Pooling	55	61	58	56	57	61			
2024/4/18	Coordina	ation		Joseph	i Tao-yi Wan	g			

Example of Asymmetric Payoffs

- Market Entry Game
 - \blacktriangleright n players decide to enter market with capacity c
 - Payoffs declines as number of entrants increase
 - `` < 0 " if number > c (= market capacity)
- Sundali, Rapoport and Seal (OBHDP 1995)
 Number of Entrants: Predicted vs. Actual

Market Entry Game: Results Close to Equilibrium										
Capacity	1	3	5	7	9	11	13	15	17	19
Predicted Number of Entrants										
MSE	0	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9
Actual Num	ber o	of Ei	ntrar	nts						
All Data	1.0	3.7	5.1	7.4	8.7	11.2	12.1	14.1	16.5	18.2
1 st Block	1.3	5.7	9.7	6.7	3.7	14.0	11.3	11.3	16.0	18.0
Kahneman (1988): "To a psychologist, it looks like magic."										
See BI-	SAW	/ pap	er by	Che	n et	al. (20	12)			

Games with Asymmetric Equilibria

Stag Hunt
Cooper et al. (AER 1990)
100 lottery tickets =

10% chance to win \$1/\$2

Pure NE:

- ▶ (1,1) and (2,2)
- Mixed NE?
- Which would you pick?

Games with Asymmetric Equilibria

- ► Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- ► CG-900: Row has outside option 900 each
 - ► Forward induction predicts (2,2)
- ▶ CG-700: Row has outside option 700 each
 - Forward induction won't work
- ▶ CG-1W: 1-way communication by Row
- CG-2W: 2-way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	(1,1)	(2,2)	Other	# Obs
CG	_	160(97%)	0(0%)	5(3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	_	26(16%)	88(53%)	51(31%)	165
CG-2W	_	0(0%)	150(91%)	15(9%)	165

Weak-Link Game

- ► Van Huyck, Battalio and Beil (AER 1990)
- \blacktriangleright Each of you belong to a team of n players
- Each of you can choose effort $X_i = 1-7$
- Earnings depend on
 - Your own effort X_i , and
 - The smallest effort $\min\{X_j\}$ of your team
- Payoff = $60 + 20 * \min\{X_i\} 10 * X_i$

Team Project Payoff

Cost of Effort X_i

Weak-Link Game: Van Huyck et al. (AER 1990)

Payoff = 60 + 10 *
$$\min\{X_j\} - 10 * (X_i - \min\{X_j\})$$
Team Minimum
Deviation from Min

- Payoff sensitive to weakest link in production chain:
- 1. Cobb-Douglas Production Function (Leontief)
- 2. All have to arrive for restaurant to seat your group
- 3. Each has to do their job for whole project to fly
 - Law firms, accounting firms, investment banks, etc.
- 4. Prepare an airplane for departure

Weak-Link Game: Van Huyck et al. (AER 1990)									
$m = \min\{X_i\}$	Your	Smallest X_j in the Team							
	X_i	7	6	5	4	3	2	1	
Team Minimum	7	130	110	90	70	50	30	10	
Payoff = 60 + 10 * m	6	-	120	100	80	60	40	20	
$+ 10 * m^{\mu}$	5	-	-	110	90	70	50	30	
$-10 * (X_i - m)$	4	-	-	-	100	80	60	40	
Deviation	3	_	-	-	-	90	70	50	
Deviation from Min	2	-	-	_	-	-	80	60	
	1	_	-	_	_	_	_	70	
2024/4/18		(oordination			Joseph	Lao-yi VVan	g	

Weak-Link Game: Van Huyck et al. (AER 1990)

- ▶ What is your choice when...
 - Group size = 2?
 - Group size = 3?
 - ► Group size = 20?
- Can some kind of communication help coordinate everyone's effort?

Let's conduct a classroom experiment first...

Classroom Experiment: 害群之馬

最弱環節賽局 (Weak-Link Game)

2024/4/18

水經濟實驗: 害群之馬

<u>Weak-Link Game (最弱環節賽局)</u>

- Each DM chooses effort $X_i = 1-4$
 - Spade = 4, Heart = 3, Diamond = 2, Club = 1
- ▶ DM (Decision Maker) = a team of two
 - ▶ 每組每回合都會有四張撲克牌,分別為黑桃(4)、紅心(3)、方塊(2)、梅花(1)
 - ▶ 主持人會跟每組收一張牌
 - ▶ 交出來的花色代表你們花多少時間排練
 - ▶ 你們的努力程度: 黑桃 = 4小時、紅心 = 3小時、方塊 = 2小時、梅花 = 1小時
 - ▶ 各組要討論屆時交出哪一張牌…

2024/4/18

水經濟實驗: 害群之馬

Payoff Calculation (記分方式)

- 1. How much would you earn if all DM choose
 - $X_i = 4?$

8!
如果所有各組 都花四小時排 練,這樣各組
會拿幾分?

▶ 8分!

Your X_i	$\min\{X_j\}$ (最低那組時							
(本組時數)	4	3	2	1				
4	8	5	2	-1				
3	-	6	3	0				
2	_	_	4	1				
1	_	_	_	2				

水經濟實驗: 害群之馬

Payoff Calculation (記分方式)

- 2. How much would you earn if you choose $X_i = 3$ while others choose $X_j = 4$?
 - ▶ 6 (< 8)</p>
 - Not worth it!
 - 如果別組都花四 小時排練,但你 們這組只花三小 時排練,這樣你 們會拿幾分?這 麼做值得嗎?
 - ▶ 6分! 小於8分所 以不值得!

Your X_i								
(本組時數)	4	3	2	1				
4	8	5	2	-1				
3	-	6	3	0				
2	_	_	4	1				
1	-	_	-	2				

2024/4/18

水經濟實驗: 害群之馬

Pavoff Calculation (記分方式)

- How much would you earn if you choose $X_i = 2$ 3. while some other DM choose $X_i = 1$?
- ▶ 1 (< 2) Your X_i $\min\{X_i\}$ (最低那組時數) If you also choose (本組時數) 4 3 2 $X_{i} = 1!$ 2 -1 8 5 4 ▶ 如果有某一組只花一小時 排練, 你們這組如果花兩 3 6 3 小時排練, 值得嗎? 2 ▶ 不值得,因只得1分,但 如果也花一小時就會跟他 2 們一樣得到2分! 水經濟實驗: 害群之馬 Joseph Tao-yi Wang

2024/4/18

<u>Weak-Link Game (最弱環節賽局)</u>

- Please decide now and we will see the results...
- 6. Are you satisfied with the results? How can you

encourage cooperation next time?

你對結果滿意嗎?如 果你希望大家都更好, 該怎麼鼓勵大家合作?

▶ 讓我們再來做一次…

Your X_i	$\min\{X_j\}$ (最低那組時數)						
(本組時數)	4	3	2	1			
4	8	5	2	-1			
3	-	6	3	0			
2	_	_	4	1			
1	_	-	-	2			

水經濟實驗:害群之馬

<u>Weak-Link Game (最弱環節賽局)</u>

- In reality, people would see each other's effort and increase effort gradually
- Let's try again by committing hour-by-hour!
 - 現實中你們彼此多半 清楚大家的排練情況, 而且時數可以逐步加 碼。這次我們採一小時、一小時逐步加碼 方式進行

	Your X_i	$\min\{X_j\}$ (最低那組時數)							
	(本組時數)	4	3	2	1				
	4	8	5	2	-1				
,	3	-	6	3	0				
	2	_	_	4	1				
	1	_	-	_	2				

2024/4/18

水經濟實驗:害群之馬

Back to Van Huyck et al. (AER 1990)									
$m = \min\{X_i\}$	Your	Smallest X_j in the Team							
	X_i	7	6	5	4	3	2	1	
Team Minimum	7	130	110	90	70	50	30	10	
Payoff = 60 + 10 * m	6	-	120	100	80	60	40	20	
+ 10 * m^{μ}	5	-	-	110	90	70	50	30	
$-10 * (X_i - m)$	4	-	-	-	100	80	60	40	
Deviation	3	-	-	-	-	90	70	50	
Deviation from Min	2	-	-	_	-	-	80	60	
	1	-	-	_	_	-	_	70	
2024/4/18 Coordination Joseph Lao-yi Wang							g		

Weak-Link Game: Large Group (Extensions)

- ▶ 7 Large Group (n = 14-16) sessions (Table 7.25)
 - X_i starts at 4-7, but quickly drop to 1-2!

Choices in 7 Large Group Sessions												
	V_{-}	Round			(group size $n = 14-16$)							
	X_i	1	2	3	4	5	6	7	8	9	10	
	7	33	13	9	4	4	4	6	3	3	8	
	6	10	11	7	-	1	2	-	-	-	-	
	5	34	24	10	12	2	2	24	1	-	1	
	4	17	23	24	18	15	5	3	3	2	2	
	3	5	18	25	25	17	9	8	3	4	2	
	2	5	13	17	23	31	35	39	27	26	17	(2 modes in <mark>red/pink</mark>) Table 7.25 of Camerer
	1	2	5	15	25	37	50	47	70	72	77	(BGT 2003)
2024/4/18 Coordination Jose									ph Tao-yi Wang			

Weak-Link Game: Large Group (Extensions)

- ▶ 7 Large Group (n = 14-16) sessions (Table 7.25)
 - X_i starts at 4-7, but quickly drop to 1-2!
- Extensions in Van Huyck et al. (AER 1990):
 - ▶ No penalty above min: 83% choose 7 in round 1
 - See effort distribution: Accelerate race to bottom
- ▶ 1 Small Group (n=2) Session (Table 7.26)
 - X_i starts at 1 or 7, but quickly converges to 7!
 - If choose X_i = 7 first, will wait a couple rounds for partner to follow...

(2 modes in red/pink) Table 7.26, Camerer (BGT 2003)

Weak-Link Game: Small Group Extension ► Van Huyck et al. (AER 1990) also did

- ► Small Group (*n*=2) + Random Matching:
 - Start high (4-7), but drop to 1!
- Small group size not enough
 - Need stability/mutual adjustment of fixed pairing!
- Clark and Sefton (wp 1999)
 - Replicate random-matching results in stag hunt
 - Still unpublished: Difficult to publish replications?
- Group Size Meta-Study (Table 7.27)

Round 1 Group Minima

Group		Distribution of $\min\{X_j\}$										
size n	1	2	3	4	5	6	7	Obs.				
2	43%	<u>7%</u>	<u>7%</u>	7%	29%	-	7%	14				
3	25%	5%	<u>35%</u>	15%	5%	_	15%	20				
6	<u>73%</u>	16%	11%	-	-	-	-	19				
9	-	<u>100%</u>	-	-	-	-	-	2				
12	<u>100%</u>	-	-	-	-	-	-	2				
14-16	28%	<u>28%</u>	14%	28%	-	-	-	7				

(Median underlined; 2 modes in red/pink) Middle Panel of Table 7.27, Camerer (BGT 2003)

Round 5 Group Minima

Group		Distribution of $\min\{X_j\}$										
size n	1	2	3	4	5	6	7	Obs.				
2	14%	-	-	-	-	-	86%	14				
3	30%	15%	<u>20%</u>	15%	-	-	20%	20				
6	80%	10%	10%	-	-	-	_	19				
9	<u>100%</u>	-	-	-	-	-	-	2				
12	-	-	-	-	-	_	_	-				
14-16	<u>100%</u>	-	-	-	-	-	-	7				

(Median underlined; 2 modes in red/pink) Bottom Panel of Table 7.27, Camerer (BGT 2003)

Weak-Link Game: Group Size Meta-Study

- Large Group size $(n \ge 6)$:
- ▶ 1st period min{X_j} ≤ 4 vs. 5th period min{X_j} mostly 1
 ▶ Small Group size (n = 2-3):
 - ▶ 1st period $min{X_i}$ only partly in 5-7
 - ▶ 5th period min{ X_i } mostly (86%) reaches 7 if n=2
- But 1st period median $X_i = 4-5$ for all n!
 - Why? Maybe subjects think they play against representative opponent (and clone for large n)

Ro	und 1	1 Choices (Median Underlined)											
	Group		Distribution of X_i										
	size n	1	1 2 3 4 5 6 7										
	2	28%	3%	3%	7%	<u>21%</u>	-	36%	28				
	3	8%	5%	8%	17%	<u>7%</u>	2%	41%	60				
	6	18%	7%	13%	<u>16%</u>	7%	7%	39%	114				
	9	0%	11%	28%	<u>39%</u>	5%	-	17%	18				
	12	25%	4%	13%	<u>8%</u>	16%	4%	29%	24				
	14-16	2%	5%	5%	17%	<u>32%</u>	9%	31%	104				

(Median underlined; 2 modes in red/pink) Top Panel of Table 7.27, Camerer (BGT 2003)

2024/4/18

Weak-Link Game: Local Interaction

- Berninghaus, Erhart and Keser (GEB 2002)
 - 3-person weak-link game

2024/4/18

- What does Game Theory say?
 - ▶ Inefficient Nash: Each earn 80 if (X, X, X)
 - ▶ Efficient Nash: Each earn 90 if (Y, Y, Y)

		Other Player Choices								
Both X One X, One Y Both Y										
Row X		80	60	60						
Player	Y	10	10	90						

ng

Weak-Link Game: Local Interaction

- Baseline: Play 20 rounds w/ same opponents
 - See opponent choices (but not who made what)
- Local Interaction: 8 subjects form a circle to play the
 - 2 neighbors next to you

2024/4/18

Contagion: Can spread Equilibrium around circle

		Other Player Choices								
	Both X One X, One Y Both Y									
Row	Х	80	60	60						
Player	Y	10	10	90						

Weak-Link Game: Local Interaction

- **Baseline**: 75% initially play Y
 - ▶ 7 of 8 groups converge to all-Y equilibrium
- Local Interaction: half initially play Y
 - Drop to None play Y in round 20

2024/4/18

Because 64% play X if one neighbor played X

		Other Player Choices							
Both X One X, One Y Both Y									
Row	Х	80	60	60					
Player	Υ	10	10	90					

Weak-Link Game: Mergers

- Camerer and Knez (SMJ 1994):
 - Two groups each play 3-person weak-link game
 - ▶ Then merge into one 6-person group
- Two Possible Predictions:
 - Mergers Fail: Large group size reduces efficiency
 - Mergers Restart: Coordinate on good equilibrium
- Results: Mergers Fail! (Table 7.29)
 - ▶ Group Minima mostly 1 in Round 1 and 5
 - Regardless knowing other group minimum or not

Group Mi	nima	Before/	After	Mergers			
Know Ot	ther Gro	oup Minim	num	Don't K	now Ot	her Minim	um
Befor	e	Afte	er	Befor	re	Afte	r
Round	5	1	5	Round	5	1	5
Session 1	(1,2)-	(1,2)→1	1	Session 1	(2,4) -	→(1,2)→1	1
Session 2	(1,4)-	(1,1)→1	1	Session 2	(7,3)-	→ (7,1) → 1	1
Session 3	(1,1)-	(1,2)→1	1	Session 3	(3,2)-	→(3,1)→1	2
Session 4	(4,1)-	• (4,1)→1	1	Session 4	(7,3)-	<mark>→</mark> (7,3)→3	3
Session 5	(1,7)-	(1,7)→1	1	Session 5	(7,3)-	→(7,2)→2	1
(.,.) show min	ı of 3-per	rson group		f 6-person gro	DUP Table	e 7.29, Camerer (E	3GT 2003)
2024/4/18			Coordin	nation	Jo	oseph Tao-yi Wang	5

Weak-Link Game: Bonus

- ► Camerer and Knez (SMJ 1994): 2nd Treatment
 - Announce a bonus of \$0.20/\$0.50 if all choose 7
 - Additional bonus + announcement (beyond implicit gains if all choose 7)
- Results: 90% choose 7 in next period
 - Compared to 85% choose 1-2 last period
- Confirms Knez and Simester (JLE 2001)
 - Why group-level bonuses work so well

Weak-Link Game: Leadership

- ▶ Weber, Camerer, Rottenstreich & Knez (OS 2001)
- ▶ Play in large (n=8-10) or small (n=2) group
 - Each choose $s_i = 0, 1, 2, 3;$
 - ▶ Payoff = $$2.50 + $1.25 \times [\min s_i 1] s_i 0.25 \times 1_{\{\min s_i = 0\}}$
- After 2 rounds, randomly select a leader
 - Makes short speech to encourage more effort
 - Then, rate leader before/after 5 more rounds
- Attribute success to leadership personalities?

Weak-Link Game: Leadership											
	Effort	La	arge (1	n=8-1	0)		Small (n=2)				
	Level	0	1	2	3		0	1	2	3	
	Round 1-2	25%	24%	20%	32%		5%	24%	26%	45%	
	Leadership	Rati	ng (be	fore)	5.88		Rating (before) 5.80				
	Round 3-8	47%	4%	-	49%		6%	6%	6%	83%	
	Leadership	Rat	Rating (after) 4.53 Rating (after) 6.17								
	Confirm	Nisb	ett ar	nd Ro	ss (bl	k	1991) Ta	ble 7.30,	Camerer	

Attribute too much cause of success/failure to leadership personalities

Median-Action Game: Van Huyck, Battalio and Beil (QJE 1991)

- In a team of n = 9, you choose effort $X_i = 1-7$
- Earnings depend on your own effort, and
 - \blacktriangleright The median effort M of your team

- Situations where players prefer to conform
- Example: Prefer to not work too hard or too little
- Maximin $X_i = 3$ vs. Payoff-dominant $X_i = 7$

Median-Action Game: Van Huyck et al. (QJE1991)

Team Median	Your		Media	n Valu	e of $X_{\underline{x}}$	j in the	e team	1
▶ Payoff (¢)	X_i	7	6	5	4	3	2	1
Payoff (¢) = 70	7	130	115	90	55	10	-45	-110
$+ 10 \times (M - 1)$	6	125	120	105	80	45	0	-55
$-5 \times (X_i - M)^2$	5	110	115	110	95	70	35	-10
	4	85	100	105	100	85	60	25
Deviation from M	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
	1	-50	-5	30	55	70	75	70

2024/4/18

Coordination

Joseph Tao-yi Wang

Median-Action Game (2): Original

Team Median	Your		Mediar	n Valu	e of X	j in the	e team	1
▶ Payoff (¢)	X_i	7	6	5	4	3	2	1
Payoff (¢) = 70	7	130	115	90	55	10	-45	-110
$+ 10 \times (M - 1)$	6	125	120	105	80	45	0	-55
$-5 \times (X_i - M)^2$	5	110	115	110	95	70	35	-10
	4	85	100	105	100	85	60	25
Deviation from M	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
2024/4/10	1	-50	-5	30	55	70	75	70

Median-Action Game (ω): non-BR $\pi = 0$

Maximin no longer $X_i = 3$

Your		Median Value of X_j in the team										
X_i	7	6	5	4	3	2	1					
7	130	0	0	0	0	0	0					
6	0	120	0	0	0	0	0					
5	0	0	110	0	0	0	0					
4	0	0	0	100	0	0	0					
3	0	0	0	0	90	0	0					
2	0	0	0	0	0	80	0					
1	0	0	0	0	0	0	70					

Me	Median-Action Game Results: Round 1											
	Game	() X	Game ((ω)	Game (ϕ)							
X_i	Principle	Round 1	Principle	Round 1	Principle	Round 1						
7	Payoff-Dom.	15%	Payoff-Dom.	52%	-	8%						
6	_	7%	_	4%	-	11%						
5	_	28%	_	33%	-	33%						
4	-	35%	_	11%	Maximin	41%						
3	Maximin	15%	_	-	-	8%						
2	_	_	_	-	_	_						
1	$(2 \mod d)$	s in rod/ni	nk); Table 7.33,	Comercer (F	SCT 2003)	_						
2024/	4/18 (Z IIIOUE	s in icu/pi	\mathbf{M} , Table 1.33,			Wang						

Median-Action Game (2): Original

Team Median	Your	Median Value of X_j in the team						
▶ Payoff (¢)	X_i	7	6	5	4	3	2	1
Payoff (¢) = 70 + $10 \times (M-1)$	7	130	115	90	55	10	-45	-110
	6	125	120	105	80	45	0	-55
$-5 \times (X_i - M)^2$	5	110	115	110	95	70	35	-10
	4	85	100	105	100	85	60	25
Deviation from M	3	50	75	90	95	90	75	50
	2	5	40	65	80	85	80	65
2024/4/10	1	-50	-5	30	55	70	75	70

Median-Action Game (ϕ)

	Your	Median Value of X_j in the team						
▶ Payoff (¢)	X_i	7	6	5	4	3	2	1
$= 70$ $+ \frac{10 \times (M-1)}{(X_i - M)^2}$ $- 5 \times (X_i - M)^2$ Deviation from M	7	70	65	50	25	-10	-55	-110
	6	65	70	65	50	25	-10	-55
	5	50	65	70	65	50	25	-10
	4	25	50	65	70	65	50	25
	3	-10	25	50	65	70	65	50
	2	-55	-10	25	50	65	70	65
2024/4/18	1	-110	-55	-10	25	50	65	70

Me	Median-Action Game Results: Round 1								
	Game (y)		Game	(ω)	Game (ϕ)				
X_i	Principle	Round 1	Principle	Round 1	Principle	Round 1			
7	Payoff-Dom.	15%	Payoff-Dom.	52%	_	8%			
6	_	7%	-	4%	-	11%			
5	In hotwoon	28%		33%	_	33%			
4	In-between	35%	-	11%	Maximin	41%			
3	Maximin	15%	Follow Single	Dringinles	-	8%			
2	-	_	Follow Single	Principles	_	-			
1		_		(-	-			
(2 modes in red/pink); Table 7.33, Camerer (BGT 2003) Wang									