Dominance-Solvable Games (優勢可解賽局實驗)

Joseph Tao-yi Wang (王道一) EE-BGT, Lecture 7

Dominance

- Strategy A dominates strategy B (B dominated by A)
 - Strategy A gives you better payoffs than Strategy B regardless of opponent strategy
- Dominance Solvable
 - ▶ A game that can be solved by iteratively deleting dominated strategy
- Do people obey dominance?
- Will you bet on others obeying dominance?

Dominance

- Do people obey dominance?
 - ▶ Looking both sides to cross a 1-way street
 - "If you can see this, I can't see you."
 - ▶ Guess above 67 in the p-Beauty Contest (with p = 2/3)
- Will you bet on others obeying dominance?
 - Workers respond to incentives rationally
 - Companies do not use optimal contracts
- ▶ SOPH: Knowing other's steps of reasoning

Belief of Iterated Dominance

- 1. Obey Dominance,
- 2. Believe that others obey dominance,
- 3. Believe that others believe you will obey dominance,
- 4. Believe that others believe that you believe they obey dominance,
- 5. Believe that others believe that you believe that they believe you obey dominance,
- etc.

Outline

- ▶ A Simple Test: Beard and Beil (MS 1994)
- Centipede:
 - ▶ McKelvey and Palfrey (ECMA 1992)
- Mechanism Design:
 - ▶ Sefton and Yavas (GEB 1996)
- Dirty Face:
 - ▶ Weber (EE 2001)

A Simple Test: Beard and Beil (MS 1994)

Iterated Dominance Game							
Player 1 Move	Player 2 Move						
I layer I wiove	l	r					
L	9.75, 3						
R	3, 4.75	10, 5					

A Simple Test: Beard and Beil (MS 1994)

Treatment	Pay	yoffs fror	n	Frequ	uency	N	Threshold	
TTEALITIETT	(L, l)	(R, <i>l</i>)	(R, 7	r	L	r R	IN	$P(r \mid R)$
1 (baseline)	(9.75,3)	(3, 4.75)	(10, 5	5)	66%	83%	35	97%
2 (less risk)	(<u>9</u> , 3)	(3, 4.75)	(10, 5	5)(65%	100%	31	85%
3 (even less risk)	(<u>Z</u> , 3)	(3, 4.75)	(10, 5	5)(20%	100%	25	57%
4 (more assurance)	(9.75,3)	(3, <u>3</u>)	(10, 5	5)(47%	100%	32	97%
$5 (more\ resentment)$	(9.75, <u>6</u>)	(3, 4.75)	(10, 5	5)(86%	100%	21	97%
6(less risk, more reciprocity)	(9.75, 5)	(5, 9.75)	(10, 10)	0)(31%	100%	26	95%
7 (1/6 payoff)	(58.5,18)	(18, 28.5)	(60,30	<u>0</u>)	67%	100%	30	97%

A Simple Test: Beard and Beil (MS 1994)

- ▶ Player 2 mostly do obey dominance
- ▶ Player 1 is inclined to believe this
 - ▶ Though they can be convinced if incentives are strong for the other side to comply
- ▶ Follow-up studies show similar results:
 - ▶ Goeree and Holt (PNAS 1999)
 - Schotter, Weigelt and Wilson (GEB 1994)

Follow-up	#:	1: Goere	ee-Holt (PNAS 19	999)
Condition	NI	Threshold		Payoffs	
	IN	$ P(r \mid R) $	(L, l)	(R, <i>l</i>)	(R, r)
Baseline 1	25	33%	(70, 60)	(60.10)	(90. 50

(80, 50)

33%

85%

25

15

25

Lower

Assurance

Baseline 2

Low

Assurance

Very Low

Assurance

Frequency

(90, 50)

(90, 70)

(90, 70)

48)

(60,

(20, 10)

(20, 68)

(400,250) (100,348) (450,350)

12%

13%

 $r \mid \mathsf{R}$

100%

53%

100%

75%

#2: Schotter-Weigelt-Wilson (GEB 1994)

Normal Form	Player 2		Game 1N	1	
Player 1	l		Frequency	/	
L	<u>4</u> , <u>4</u>	4, <u>4</u>	(57%)		
R	0, 1	<u>6</u> , <u>3</u>	(43%)		
Frequency	(20%)	(80%)	Sequenti	al Form	Game 1S
		L	4, 4		(8%)
				r	
	R		0, 1	6, 3	(92%)
2024/4/16	Freq	uency	(2%)	(98%)	

						_		
Normal Form		Player 2				Game	3M	
Player 1	t	m),	l	b	Freque	ncy	
Т	4, 4	4,	4	4,	4	(82%		
M	0, 1	1 6, 3		0,	0	(16%		
В	0, 1	0,	0	3,	6	(2%)		
Frequency	(70%)	(269	%)	$(4^\circ$	%)	Sequent	ial Form	Game 3S
	Т	4, 4		t				(70%)
			0,	. 1		m	b	
					M	6, 3	0, 0	(100%)
					В	0, 0	3, 6	(0%)
2024/4/16	Frequ	uency	(13	3%)		(31%)	(69%)	

#2: Schotter-Weigelt-Wilson (GEB 1994)

- Schotter et al. (1994)'s conclusion:
- Limited evidence of iteration of dominance (beyond 1-step), or SPE, forward induction
 - ▶ Can more experience fix this?
- ▶ <u>No</u> for forward induction in 8 periods...
 - ▶ Brandts and Holt (1995)
- ▶ But, Yes for 3-step iteration in 160 periods
 - ▶ Rapoport and Amaldoss (1997): Patent Race

Centipede Game: 4-Move SPNE

McKelvey and Palfrey (Econometrica 1992)

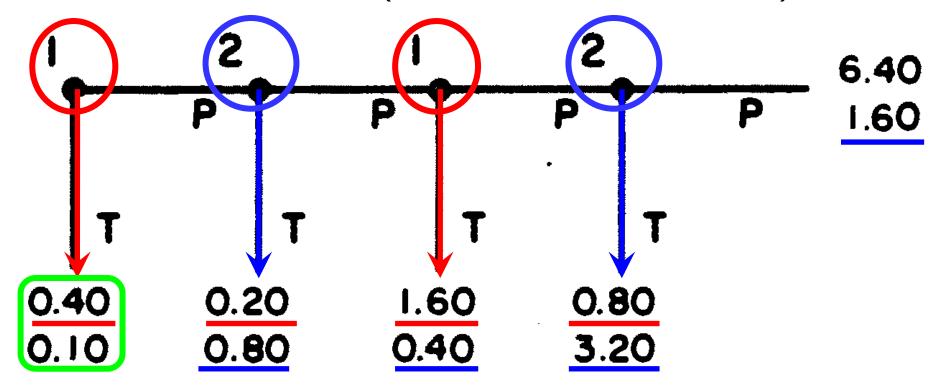


FIGURE 1.—The four move centipede game.

Centipede Game: 6-Move SPNE

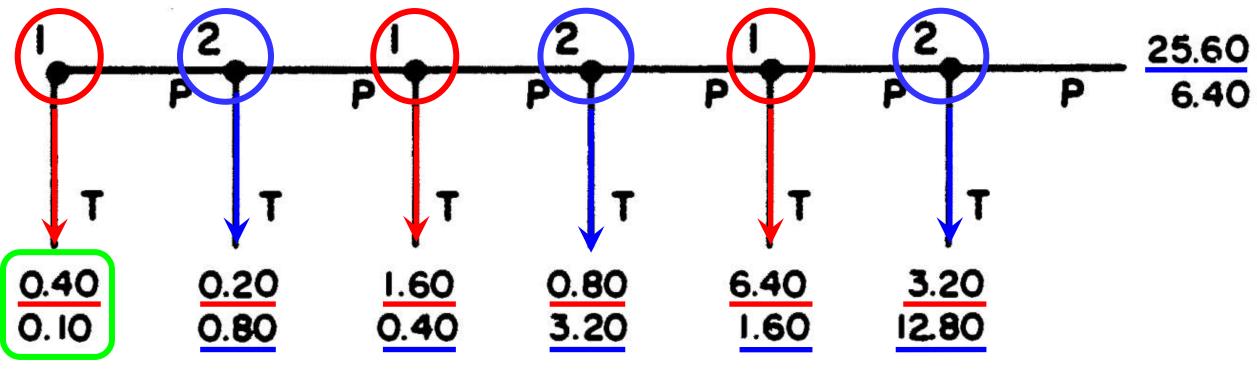


FIGURE 2.—The six move centipede game.

Centipede Game: Outcome

TABLE IIA
PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE

		Session	N	f_1	f_2	f_3	f_4	f_5	f_6	f_7
	1	(PCC)	100	.06	.26	.44	.20	.04		
Four	2	(PCC)	81	.10	.38	.40	.11	.01		
Move	3	(CIT)	100	.06	.43	.40 .28	.14	.09		
	Total	1–3	281	.071	.356	.370	.153	.049		
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050		
	5	(CIT)	100	.02	.09	.39	.28	.20	.01	.01
Six	6	(PCC)	81	.00	.02	.04	.46	.35	.11	.02
Move	7	(PCC)	100	.00	.07	.14	.43	.23	.12	.01
-	Total	5-7	281	.007	.064	.199	.384	.253	.078	.014

Centipede Game: Pr(Take)

IMPLIED TAKE PROBABILITIES FOR THE CENTIPEDE GAME

	Session	p_1	p_2	<i>p</i> ₃	p_4	p ₅	p_6
	1 (PCC)	.06	.28	.65	.83		
Four	2 (PCC)	(100) .10	(94) .42	(68) .76	(24) .90		
Move	2(100)	(81)	(73)	(42)	(10)		
	3 (CIT)	.06	.46	.55	.61		
		(100)	(94)	(51)	(23)		
	Total 1-3	.07	.38	.65	.75		
		(281)	(261)	(161)	(57)		
High	4 (CIT)	.15	.44	.67	.69		
Payoff		(100)	(85)	(48)	(16)		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 (CIT)	.02	.09	.44	.56	.91	.50
		(100)	(98)	(89)	(50)	(22)	(2)
Six	6 (PCC)	.00	.02	.04	.49	.72	.82
Move	- />	(81)	(81)	(79)	(76)	(39)	(11)
	7 (PCC)	.00	.07	.15	.54	.64	.92
		(100)	(100)	(93)	(79)	(36)	(13)
	Total 5-7	.01	.06	.21	.53	.73	.85
		(281)	(279)	(261)	(205)	(97)	(26)

2024/4/16

Wang

Centipede Game

TABLE IIIB

IMPLIED TAKE PROBABILITIES COMPARISON OF EARLY VERSUS LATE PLAYS IN THE LOW PAYOFF CENTIPEDE GAMES

Treatment	Game	p_1	<i>p</i> ₂	<i>p</i> ₃ .	<i>p</i> ₄	p ₅	<i>p</i> ₆
Four Move	1–5 6–10	.06 (145) .08 (136)	.32 (136) .49 (125)	.57 (92) .75 (69)	.75 (40) .82 (17)		
Four Move	1–5 6–10	.00 (145) .01 (136)	.06 (145) .07 (134)	.18 (137) .25 (124)	.43 (112) .65 (93)	.75 (64) .70 (33)	.81 (16) .90 (10)

Centipede Game: Mimic Model

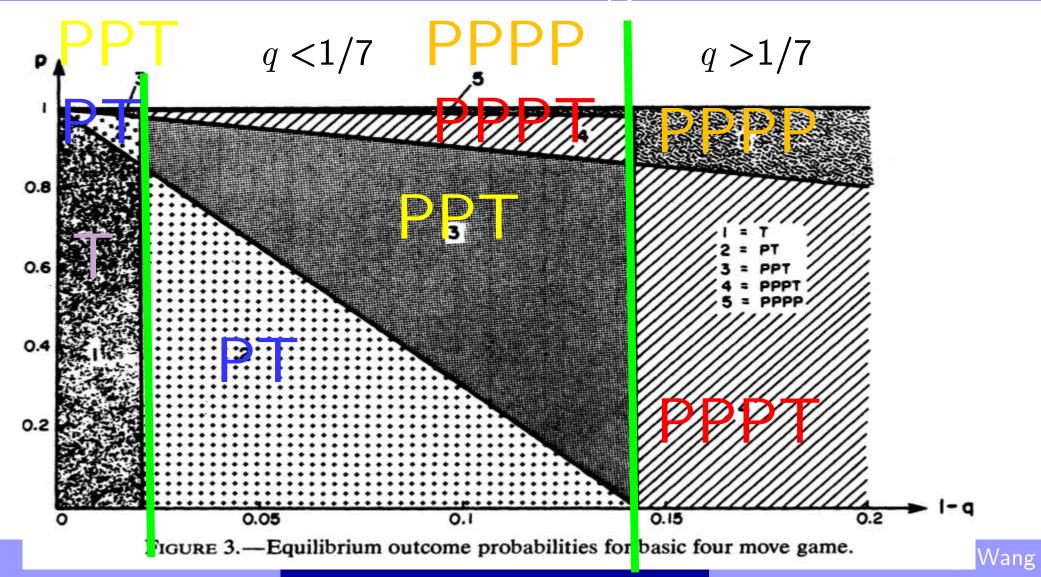
- What theory can explain this?
- Altruistic Types (1-q=7%): Prefer to Pass
- ▶ Selfish Types (q):
 - Mimic altruistic types up to a point (to gain)
- Unraveling: error rate shrinks over time

Centipede Game: Mimic Model

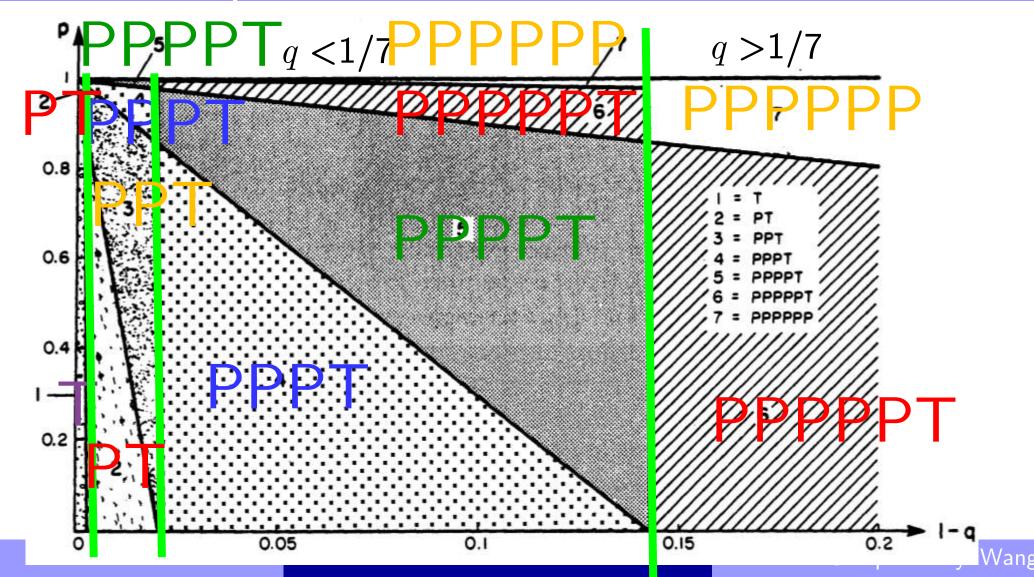
- Selfish guys sometimes pass (mimic altruist)
- Imitating an altruist might lure an opponent into passing at the next move
 - ▶ Raising one's final payoff in the game
- ▶ Equilibrium imitation rate depends directly on beliefs about the likelihood (1 q) of a randomly selected player being an altruist
 - ▶ The more likely players believe there are altruists, the more imitation there is

Mimic: Predictions for Normal Types

1. On the last move, Player 2 TAKE for any q


- 2. If 1-q>1/7, both Player 1 and 2 PASS
 - ▶ Except on the last move Player 2 always TAKE

3. If $0 < 1 - q < 1/7 \rightarrow Mixed Strategy Equilibrium$


4. If 1 - q = 0 both Player 1 & Player 2 TAKE

Mimic: Predictions for Normal Types

2024/4/16

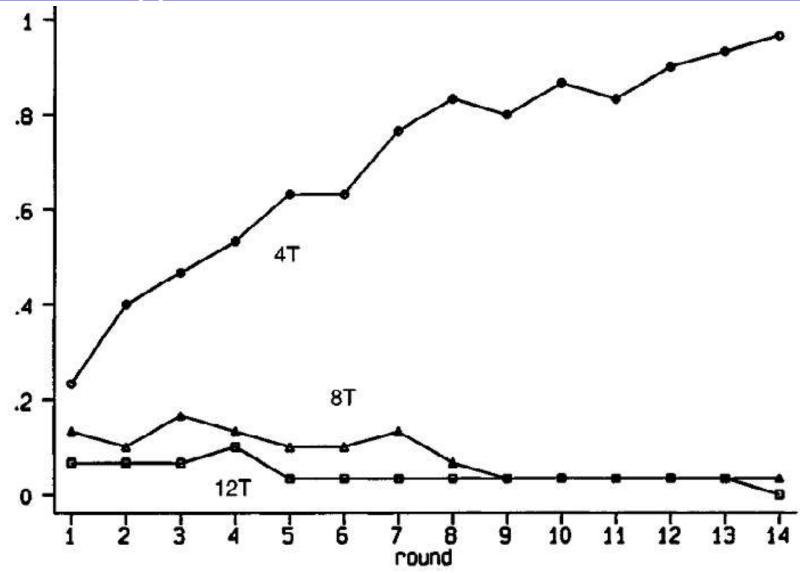
Mimic Model Equilibrium Outcome

Centipede: Mimic Model Add Noisy Play

- ▶ We model noisy play in the following way.
- In game t, at node s, if p^* is the equilibrium probability of TAKE
- Assume player actually chooses TAKE with probability $(1-\varepsilon_{\rm t})p^*,$ and makes a random move with probability

$$\epsilon_t = \epsilon e^{-\delta(t-1)}$$

Explains further deviation from mimic model


Centipede: Mimic Model Add Noisy Play

- ▶ Fey, McKelvey and Palfrey (IJGT 1996)
 - Use constant-sum to kill social preferences
 - ▶ Take 50% at 1st, 80% at 2nd
- Nagel and Tang (JMathPsych 1998)
 - ▶ Don't know other's choice if you took first; take half way
- Rapoport et al. (GEB 2003)
 - ▶ 3-person & high stakes: Many take immediately
 - ▶ CH can explain this (but not QRE) see theory

- ▶ Pure coordination game with \$1.20 & \$0.60
- ▶ How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- ▶ Abreu and Matsushima (ECMA 1992)
 - ▶ Slice the game into *T* periods
 - ightharpoonup F: Fine paid by first subject to deviate
 - lacktriangle Will not deviate if $F>\$1.20/\mathit{T}$
 - ▶ Can set T = 1, F = \$1.20; more credible if T large

- ▶ Glazer and Rosenthal (ECMA 1992)
 - Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- ▶ Abreu and Matsushima (ECMA 1992)
 - ▶ Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of fines.'"
- ▶ This invites an experiment!

- ▶ Sefton and Yavas (GEB 1996)
- F = \$0.225
- T = 4, 8, or 12
 - ▶ Theory: Play inferior NE at T = 8, 12, not T = 4
- Results: Opposite, and diverge...
- ▶ Why? Choose only 1 switch-point in middle
 - ▶ Goal: switch soon, but 1 period after opponent

- ▶ Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- ▶ Katok, Sefton and Yavas (JET 2002)
 - Does not work either
- Can any approximately rational explanation get this result?
 - ▶ Maybe "Limited steps of IDDS + Learning"?

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- ▶ Why doesn't B realize C is laughing at her?
- ▶ Heavens! / must be laughable.
 - Littlewood (1953), A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp Econ 2001)

- ▶ Independent Types: X or O
 - Pr(X) = 0.8, Pr(O) = 0.2 (X is like "dirty face")
- Commonly told: At least one player is type X.
 - ▶ $P(XX) = 0.64 \rightarrow 2/3$, $P(XO) = 0.32 \rightarrow 1/3$
- Observe other's type
- Choose Up/Down (figure out one is type X)
 - If nobody chooses Down, reveal other's choice and play again

Dirty Face Game: Weber (Exp Econ 01')

		Ту	/pe
		X	O
Proba	ability	0.8	0.2
Action	Up	\$0	\$0
ACTION	Down	\$1	-\$5

- ▶ Case XO: Players play (Up, Down) since
- ▶ Type X player thinks:
 - ▶ I know that "at least one person is type X"
 - ▶ I see the other person is type O
- ▶ So, I must be type $X \rightarrow$ Chooses Down
- ► Type O player thinks:
 - ▶ I know that "at least one person is type X"
 - ▶ I see the other person is type X: No inference \rightarrow Chooses Up

- Case XX First round:
 - ▶ At least one is type X, but the other guy is type X
- No inference → Both choose Up
- Case XX Second round:
- Seeing UU in first
 - ▶ The other is not sure about his type
 - ▶ He must see me being type X
- ▶ I must be Type X → Both choose Down

		Tria	al 1	Trial 2	
		XO	XX	XO	XX
	UU	0	<u>7*</u>	1	<u>7*</u>
Round 1	DU	<u>3*</u>	3	4*	1
	DD	0	0	0	0
	UU	-	1	-	2
Round 2	DU	-	5	-	2
(after UU)	DD	-	<u>1*</u>	-	<u>3*</u>
	Other	_	-	1	-

2024/4/16

Dominance-Solvable Games

Joseph Tao-yi Wang

- Results: 87% rational in XO, but only 53% in 2nd round of XX
- Significance:
- Choices reveal limited reasoning, not pure cooperativeness
 - ▶ More iteration is better here...
- Upper bound of iterative reasoning
 - ▶ Even Caltech students cannot do 2 steps!

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Compare with Theories of Initial Responses
 - ▶ Level-k: Stahl-Wilson95, CGCB01, CGC06
 - ▶ Cognitive Hierarchy: CHC04