Signaling 鶴立雞群賽局

Joseph Tao-yi Wang (王道一) Lecture 12, EE-BGT

Signaling

Joseph Tao-yi Wang

- What have we learned up to now?
 - Camerer (BGT 2003) report Game Theory Experiments (test theory/inspire new theory)
- 1. Mixed-Strategy Nash Equil. (MSE)
- 2. Subgame Perfect Equilibrium (SPE)
- 3. Bayesian Nash Equil. (BNE/Auction) 🙂 🙁
- 4. Sequential Equilibrium (SE) [today] 🙂 🙁
 - Why theory works well in **some** situations?

- Why theory works well in simple situations?
- 1. Learning to play Nash?
- 2. Limited strategic reasoning
 - Backward Induction fails!
- 3. Initial response (level-k reasoning)
- 4. Cannot detect deviations
- 5. Coordination/pre-game Communication

- Camerer (BGT 2003) purposely reported various classes of game theory experiments
- Games of Social Preferences (Ch. 2)
- Mixed-Strategy Equilibrium (MSE; Ch. 3)
- Bargaining (Ch. 4)
- Dominant Solvable Games (SPE; Ch. 5)
 Learning (Ch. 6)
- Coordination (Ch. 7)
- Signaling and Reputation (SE; Ch. 8)

- ► We also saw Risk and Time Preferences...
 - What about Market Behavior? Applications?
- 1. Auction (auction chapter in EL)
- 2. Cheap Talk Games (and Lying)
- 3. Voting Games (special case of MSE!)
- 4. Market Design
- 5. Field Experiments
- 6. Prediction Markets and Bubbles

Signaling 鶴立雞群賽局

Joseph Tao-yi Wang (王道一) Lecture 12, EE-BGT

Signaling

Joseph Tao-yi Wang

What Makes a Signal Work?

- A Signal must be affordable by certain types of people
 - Cost < Benefit (if receivers decodes it)</p>
- A signal must be too expensive for players of the wrong type to afford
 - Cost > Benefit (even if receivers decodes it)
- Separating Equilibrium: Those who buy and those who don't are different types

What Makes a Signal Work?

- Separating Equilibrium consists of a circular argument:
- Signal senders
 - buy signal anticipating receivers decode it
- Receivers
 - get assurance about sender types from the signal and act different with/without it
- This is a self-fulfilling prophecy
 - Spence (Dissertation 1974)

Theory of Signaling

- Harsanyi (MS 1967-68) defines one's Type as privately observing a move of Nature
- Bayesian-Nash Equilibrium (simultaneous)
- Perfect-Bayesian Equilibrium (sequential)
 - Separating Equilibrium
 - Pooling Equilibrium
 - Semi-pooling Equilibrium

Refinements: Sequential, Intuitive, Divine, Universal Divine, Never-Weak-BR, Stable

2023/5/16

Signaling

Joseph Tao-yi Wang

Screening Experiment

- 1. CHT Telecom has 2 cell phone plans:
 - Plan A: NT\$1 per minute
 - Plan B: NT\$168 for 300 min., NT\$1.5 beyond
- 2. Your monthly usage (via card received):
 - ► ◆ Spades: 0-100 minutes
 - ▶ ♡ Hearts: 200-300 minutes
 - Diamonds: 400-500 minutes
 - Clubs: 600-700 minutes

2023/5/16

3. Which plan would you choose? Why?

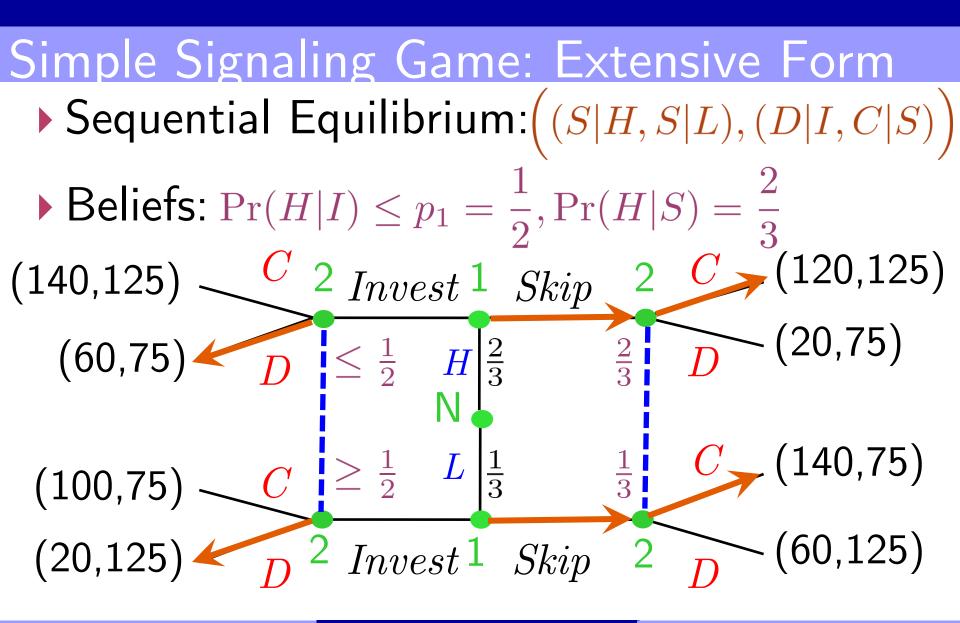
Signaling

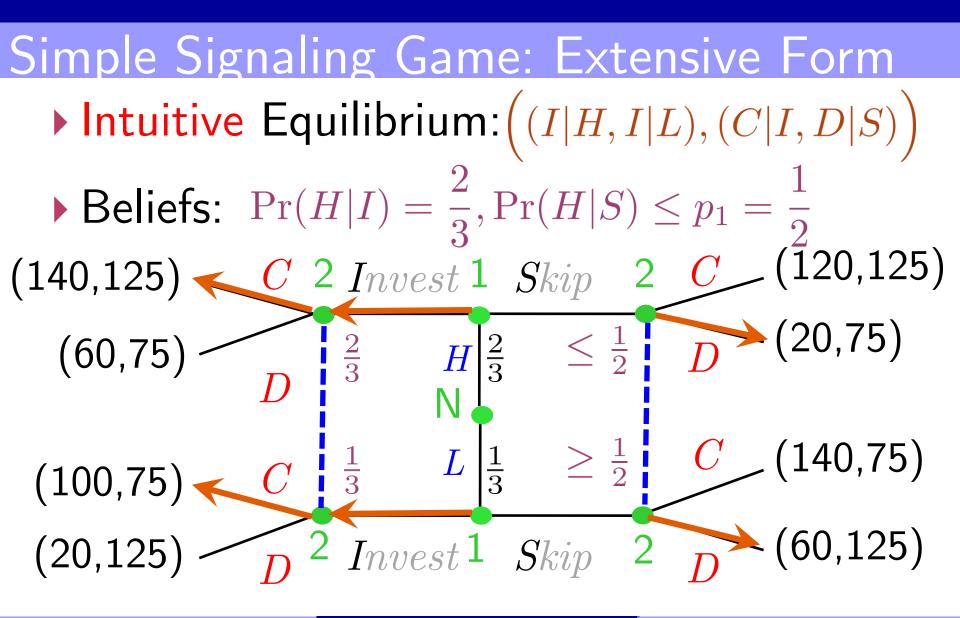
Joseph Tao-yi Wang

Signaling Experiment

- 1. Suppose you are in...
 - National iDaiwan University: Graduates earn 35k
 - Private So-What University: Graduates earn 22k
- 2. In your senior year, you can choose to:
 - Apply for masters program at National iDaiwan University: Graduates earn 40k, but need to repay tuition/cram school loans 5k monthly
- 3. Would you choose apply for a master? Why or why not?

Simple Signaling Game


- Brandts and Holt (AER 1992)
- Worker Types are H or L with (2/3, 1/3)
- Seeing own type, Workers can choose to Skip or Invest (in education)
- Seeing this action, Employer assign the worker to a *Dull* or *Challenging* job
- Employer payoffs are 125 if she assigns D to L types and C to H types


Simple Signaling Game

- \blacktriangleright Workers get 100 doing C and 20 doing D
 - ▶ *L* types get additional 40 for choosing *Skip*
 - ▶ *H* types get 40 if choose *Invest*, 20 if *Skip*

Туре	Action seeing Skip		Action seeing Invest		
	C^{S}	D^S	C^{I}	D^{I}	
Type <u>L</u>	140, 75	60, 125	100, 75	20, 125	
Type H	120, 125	<mark>40</mark> , 75	140, 125	60,75	

2023/5/16

2023/5/16

Signaling

Joseph Tao-yi Wang

Simple Signaling Game

- Two Pooling Equilibria:
- 1. Sequential Equilibrium
 - \blacktriangleright Both Types choose Skip, Employers assign C
 - ▶ Out-of-equil. Belief: choosing *Invest* means *L*
 - ▶ Hence, Employers assign *D* if they see *Invest*
- 2. Intuitive Equilibrium
 - \blacktriangleright Both Types choose $\mathit{Invest},$ Employers assign C
 - Out-of-equil. Belief: choosing *Skip* means *L*
 - ▶ Hence, Employers assign *D* if they see *Skip*

Simple Signaling Game						
	Message Type		Action Message		Equilibrium Predictions	
Periods	$I \mid H$	$I \mid L$	$C \mid I$	$D \mid S$	Intuit.	Seq.
1-4	100	25	100	74	100	0
5-8	100	58	100	100	100	0
9-12	100	75 🕇	98	60	100	0
Suggest Actions: $C \mid S, D \mid I$						
1-4	50	13	60	46	100	0
5-8	75	33 🗸	33	67	100	0
2023/5/16			Signaling	J	oseph Tao-yi	Wang

- Banks, Camerer and Porter (GEB 1994)
 - Design 7 games, separating pooling equil. of:
 - Nash vs. non-Nash
 - Sequential vs. Nash
 - Intuitive vs. Sequential
 - Divine vs. Intuitive
 - Universal Divine vs. Divine
 - NWBR vs. Universal Divine
 - Stable vs. NWBR

Table X of Banks et al. (GEB1994)

Game	More Refined	Less Refined	Non-Nash	N
1 Nash	56% → 76%	-	44% → 24%	150
2Sequentia	$a 61\% \rightarrow 71\%$	13% → 24%	26% → 5%	150
3 Intuitive	53% → 68%	$13\% \rightarrow 4\%$	34% → 28%	180
4 Divine	28% → 38%	$16\% \rightarrow 8\%$	56% → 54%	120
5 Universal	31% → 27%	36% → 36%	33% → 37%	90
6 MAR	30% → 15%	30% → 33%	40% → 52%	120
7 Stable	59% → 56%	$13\% \rightarrow 7\%$	28% → 37%	300
2023/5/16		Signaling	Joseph Tao-yi W	ang

- Results: Subjects do converge to the more refined equilibrium up to intuitive
- After that, subjects conform to neither
 Except for possibly Stable vs. NWBR
- Is this a test of <u>refinements</u>, or a test of <u>equilibrium selection</u>?
 - Exercise: Show that equilibria in Table 8.3 (adopted from Banks, Camerer and Porter, 1994) satisfy corresponding refinements

- In game 2-6, different types send different messages (violating pooling equilibrium!)
 - No simple decision rule explains this
 - But weak dominance and 1-round IEDS hold
- Are people just level-1?

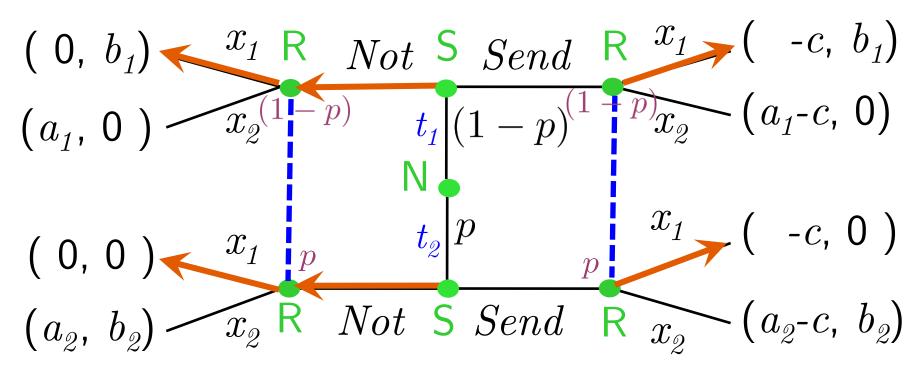
Also, how does the convergence work?

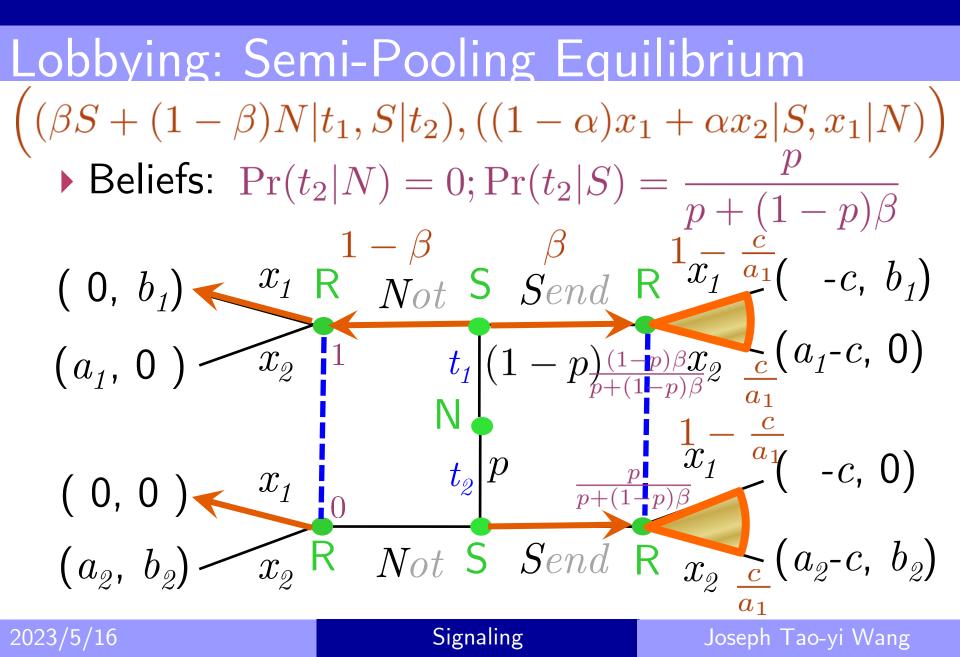
- More studies on learning:
- Brands and Holt (IJGT 1993)
 - Subjects lead to play less refined equilibrium
 - Why? Initial random play produces history that supports the non-intuitive equilibrium
- Anderson and Camerer (ET 2000)
 - EWA yields $\delta = 0.54 (0.05)$;
 - Do better than choice reinforcement ($\delta = 0$) and weighted fictitious play ($\delta = 1$)

- Potters and van Winden (IJGT 1996)
 - Lobbying
- Cadsby, Frank & Maksimovic (RFS 1990)
 - Corporate Finance
- Cooper, Kagel, Lo and Gu (AER 1999)
 - Ratchet Effect
- Cooper, Garvin and Kagel (Rand/EJ 1997)
 - Belief Learning in Limit Pricing Signaling
 Games

Lobbying: Potters & van Winden (IJGT 1996)

- Lobbyist is type t_1 or t_2 with (1-p, p)
- Lobbyist can send a signal (cost c)
 - Politician chooses action x_1 or x_2 (match type)


Туре	No Signal		Costly Signal		
гуре	x_1	x_{2}	x_1	x_{2}	
$t_{1}(1-p)$	0 , <i>b</i> ₁	<i>a</i> ₁ , 0	$-c$, b_1	<i>a</i> ₁ - <i>c</i> , 0	
$t_2(p)$	0, 0	$a_{\scriptscriptstyle \! 2}$, $b_{\scriptscriptstyle \! 2}$	- <i>c</i> , 0	a_2 - c , b_2	


2023/5/16

Joseph Tao-yi Wang

Lobbying: Pooling Equilibrium

- Equilibrium: $((Not|t_1, Not|t_2), (x_1|Send, x_1|Not))$
- Beliefs: $Pr(t_2|Not) = p = Pr(t_2|Send)$

Lobbying

• If $\beta = \frac{pb_2}{(1-p)b_1} < 1$; there are 2 equilibrium:

Pooling: Both lobbyists do not send signal • Politician ignores signal and chooses x_1 Intuitive, divine, but not universally divine Semi-pooling: type t_2 always sends signal ▶ Politicians mix x_1/x_2 (1- c/a_1 , c/a_1) if signal • type t_1 mixes/sends signal with prob. β Universally divine

Lobbying							
Treat	Signal Freq. (t_1, t_2)			x_2 Freq. (no sig., sig)			
ment	β	Actual	Pred.	c/a_1	Actual	Pred.	
1	0.25	38%, 76%	25%, 100%	0.25	2%, 5%	0%, 25%	
2(2c)	0.75	46%,100%	75% , 100%	0.25	3%, 79%	0%, 25%	
2a(6c)	0.75	83%, 93%	75% , 100%	0.25	11%, 54%	0%, 25%	
3	0.25	16%, 85%	25%, 100%	0.75	0%, 53%	0%, <mark>75%</mark>	
4	0.75	22%, 83%	75% , 100%	0.75	5%, 80%	0%, 75%	
Aver.	0.25	27%, 81%	25%, 100%	0.25	5%, 46%	0%, 25%	
Aver.	0.75	50%, 92%	75% , 100%	0.75	2%, 66%	0%, 75%	
2023/5/16			Signaling		Joseph Tao-y	/i Wang	

Lobbying

- Supporting universally divine equilibrium
- Fictitious Play Learning:
- 1. $r(m)_{t-1} = past frequency of x_2 after signal$
 - Lobbyist should signal if $[r(m)_{t-1} a_1 c] > 0$
 - ▶ Subjects signal 46% if >0, 28% if <0
- 2. Can do same calculation for politician
 - Subjects choose x_2 77% if >0, 37% if <0
- Potters and van Winden (JEBO 2000)

Replicate results w/ professionals (+ students)

Corporate Finance

- Cadsby, Frank & Maksimovic (RFS 1990)
- Firms are either H or L with (50%, 50%)
 - \blacktriangleright Worth $B_{H},~B_{L}$ if carry project
 - \blacktriangleright Worth $A_{\it H}\!\!\!\!,~A_{\it L}$ if pass
- ▶ Need capital *I* to finance the project
- Investors can put up I and get S shares
- Exercise: When will there be pooling, separating, and semi-separating equilibria?

Corporate Finance

- Example: (Session E)
 - ▶ *L* types worth 375/50 with/without project
 - ► *H* types worth 625/200 with/without project
- Capital I = 300
- Separating equilibrium: S = 0.80
- Pooling equilibrium: S = 0.60
- Semi-pooling equilibrium: S = 0.68
- Exercise: Show that these are equilibria!

Corporate Finance

- ► Cadsby et al. ran 10 sessions (Table 8.11)
- Results Support (Pooling) Equilibrium
 - Unique Pooling: all firms offer shares
 - Unique Separating: Initially, both offer (pool), but H types learn not to offer (separate)
 - Multiple Equilibrium: Converge to pooling
- Cadsby, Frank & Maksimovic (RFS 1998)

Add costly signals (see Table 8.12 for results)

Ratchet Effect

- Cooper, Kagel, Lo and Gu (AER 1999)
- Firms are either H or L with (50%, 50%)
- Choose output level 1-7
- Planner choose easy or tough target
 - ▶ Set easy if $Pr(L \mid output) > 0.325$
- Pooling: L chooses 1 or 2; H pools with L
- Myopic K firms: Pick 5 (Naïve/get tough) <u>Exercise</u>: Prove these w/ payoffs in Table 8.13

Ratchet Effect

- ▶ 70-90% *L* firms choose 2
- Most H firms choose 2 or 5
 - ▶ Period 1-12: 54-76% myopic →80% tough
 - Period 13-36: Convergence to pooling
- Big context effect only for Chinese manager
 Provide language for learning from experience

Limit-Pricing Signaling Games

- Cooper, Garvin and Kagel (RAND 1997)
 - Belief Learning in Limit Pricing Signaling
- Monopolist A has cost M_H or M_L (50-50)
 - ▶ Sets price & corresponding Q=1-7 (deter entry)
- Entrant *B* only sees Q (not M_H/M_L)
 - Chooses OUT (earn 250) or IN
 - ▶ Treatment I: IN earns 300/74 if cost is M_H/M_L
- ▶ Risk neutral *B* choose IN if $Pr(M_H) \ge 0.78$

Limit-Pricing Signaling: Monopolist Profit						
A's				fit if cost M_L		
Choice Q	$\mathbb{N}(X)$	Out (Y)	IN(X)	Out (Y)		
1	150	426	250	542		
2	168	444 BR		568		
3	150	426 B	act 330	606		
4	132	408 to		628		
5	56	182	334	610		
6	-188	-38	316	592		
7	-292	-126	213	486		
2023/5/16		Signaling	JO	seph Tao-yi Wang		

	B's	B's profit (Treatment I)		
Limit D	Choice Q	if A is M_H	A is M_I	EV
Myoni	IN(X)	300	74	187
	Out (Y)	250	250	250
Limit-PIN (X) 30074187• MyopiIN (X) 30074187• M_H Out (Y) 250250250• M_L Monopolist A chooses Q=4BR if B not react to Q• Separating Equilibrium:				
► M_H Monopolist A chooses Q=2 (vs. B: IN)				
$\blacktriangleright M_L$ N	Ionopolist	A chooses	Q=6/7 (vs. <i>B</i> : OUT)

Pooling Equilibrium:

• M_H / M_L Monopolist A chooses same Q (=1-5)

Entrant choose OUT since EV=187 < 250</p>

Lir	nit-Pr	ricing Signal	ing: Treat	ment l
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	ound 1-12 (Ine	xperienced Su	ubjects)
	1	2%	1%	33%
	2	69% (Med	ian) 4%	57%
	3	6%	5%	30%
	4	21%	76% _{(Med}	dian) ^{13%}
	5	2%	6%	0%
	6	-	3%	33%
0000	7	_	3%	0%
2023	/ 5/ 10	ာ ၁	ignaling	Joseph Lao-yi wang

Lir	<u>mit-Pr</u>	ricing Signal	ing: Treati	ment l
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	und 13-24 (Ine	experienced S	ubjects)
	1	3%	-	67%
	2	50% (Med	ian) -	64%
	3	10%	2%	74%
	4	36%	86%(Mec	lian) 10%
	5	1%	8%	15%
	6	_	2%	50%
0002	7	_	2%	0%
-2023	/ 3/ 10	ى ت	ignaling	Joseph Tao-yi wang

Lir	nit-Pr	ricing Signal	ing: Treatr	ment l
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	und 25-36 (Ine	experienced Su	ubjects)
	1	6%	-	33%
	2	38%	-	64%
	3	10%(Medi	an) 1%	30%
	4	47%	91%(Med	lian) 9%
	5	_	6%	25%
	6	_	1%	0%
0000	7	_	1%	0%
2023	/ 3/ 10	ာ ၁	ignaling	Joseph Tao-yr vvang

	B's	B's profit (Treatment I)		
Limit-P	Choice Q	if A is M_H	A is M_L	EV
LIMIL-PI	IN(X)	300	74	187
	Out (Y)	250	250	250
Start	with Myo	pic Maxim		if B not
$\blacktriangleright M_H$ N	Aonopolist	A chooses	Q=2 reac	t to Q
$\blacktriangleright M_L$ N	/lonopolist	A chooses	Q=4	
Learn	to play P	ooling Equ	uilibrium:	
$\blacktriangleright M_H$ /	• M_H / M_L Monopolist A chooses same Q=4			
• Entrant choose OUT since $EV=187 < 250$				
Expe	rienced Su	bjects: Stro	onger Conv	ergence!

Lir	mit-Pr	ricing Signal		
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	R	Cound 1-12 (Ex	perienced Sub	ojects)
	1	2%	_	100%
	2	41%	_	59%
	3	2%	_	100%
	4	55% (Med	100%	3%
	5	- (11160	-	-
	6	_	_	-
0000	7	_	_	-
-2023	/ 5/ 10	Э	Ignanng	Joseph Tao-yr vvang

Lir	nit-Pr	ricing Signal	ing: Treatr	ment l
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	R	ound 13-24 (E	xperienced Su	bjects)
	1	2%	_	0%
	2	28%	_	91%
	3	2%	2%	50%
	4	68% (Med	98%	6%
	5	- (IVIEU	-	-
	6	_	-	-
0000	7	_	_	-
-2023	/ 5/ 10	3	Ignaling	Joseph rao-yr vvang

Lir	<u>mit-Pr</u>	ricing Signal	ing: Treatr	ment l
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	ound 25-36 (Ex	xperienced Su	bjects)
	1	3%	-	100%
	2	23%	2%	70%
	3	5%	-	50%
	4	69% (Med	98%	6%
	5	- (10160	-	-
	6	_	-	_
2022	7	-	-	-
2023	/3/10	ာ ျ <u>ား</u>	ignaling	Joseph Tao-yi wang

	B's	B's profit (Treatment II		
limit D	Choice Q	if A is $M_{\!H}$	A is M_L	EV
Limit-P	IN(X)	500	200	350
	Out (Y)	250	250	250
Image:				
_		A chooses		
$\blacktriangleright M_L$ N	/lonopolist	A chooses	Q = 6/7 (vs	s. <i>B</i> : OUT)
▶ Poolin	ng <mark>No Lo</mark> r	i <mark>ger</mark> Equili	brium:	
• M_H / M_L Monopolist A chooses same Q (=1-5)				
► Entra	ant choose	IN since E\	/=350 > 2	250
2023/5/16		Signaling	Josep	h Tao-yi Wang

Lir	nit-Pr	ricing Signal	ing: Treat	ment II
		A's Q if M_H		
	Ro	ound 1-12 (Ine	xperienced Su	ıbjects)
	1	6%	1%	80%
	2	71% (Med	ian) 7%	88%
	3	12%	3%	60%
	4	11%	72% _{(Mec}	lian) 53%
	5	-	9%	40%
	6	_	6%	50%
0000	7	_	2%	0%
2023	/ 3/ 10	ు స	ignaling	Joseph Tao-yi wan g

Lir	nit-Pr	ricing Signal	ing: Treati	ment II
	Q	A's Q if M_H		
	Ro	und 13-24 (Ine	experienced Si	ubjects)
	1	6%	_	100%
	2	39%	4%	91%
	3	6% (Med	ian) 8%	83%
	4	48%	67% _{(Med}	lian) 52%
	5	_	15%	44%
	6	1%	6%	33%
0000	7	_	_	_
2023	/ 5/ 10	J	ignaling	Joseph Tao-yr vvang

Limit-Pricing Signaling: Treatment				
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	und 25-36 (Ine	experienced Si	ubjects)
	1	-	-	-
	2	33%	12%	94%
	3	13%	6%	100%
	4	54%(Medi	an) 67%(Med	lian)63%
	5	_	_	-
	6	_	15%	33%
0000	7	_	_	_
2023	/ 5/ 10	3	ignanng	Joseph Lao-yi vvang

Limit-Pricing Signaling: Treatment II

- Start with Myopic Maxima
 - ▶ M_H Monopolist A chooses Q=2
 - ▶ M_L Monopolist A chooses Q=4
- Learn to Separate

- ▶ M_H Monopolist A chooses Q=4 to mimic M_L
- M_L Monopolist A start to chooses Q=6
- Experienced converge to Separating EQ
 - ▶ M_H Monopolist A chooses Q=2 (vs. B: IN)

▶ M_L Monopolist A chooses Q=6 (vs. B: OUT)

Li	mit-Pr	ricing Signal	ing: Treat	ment II
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	R	ound 1-12 (<mark>E</mark> x	perienced Su	bjects)
	1	3%	_	100%
	2	43%	4%	95%
	3	13% (Med	ian) 2%	100%
	4	41%	37%	79%
	5	_	9% (Mec	lian) 0%
	6	_	48%	14%
	7	_	_	_
2023	75/10	3	ignaling	Joseph Tao-yi vvang

Lir	mit-Pr	ricing Signal	ing: Treat	ment II
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	ound 13-24 (Ex	xperienced Su	ıbjects)
	1	5%	_	100%
	2	40%	-	100%
	3	5%	5%	100%
	4	5% 40% (Medi	22%	85%
	5	10%	7%	57%
	6	_	66% (Me	dian) 7%
0000	7	_	_	-
2023	75/10	ు	Ignaling	Joseph Lao-yi wang

Lii	mit-Pr	ricing Signal	ing: Treat	ment II
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	Ro	ound 25-36 (Ex	xperienced Su	ubjects)
	1	8%	_	100%
	2	49% (Med	ian) –	100%
	3	4%	3%	100%
	4	32%	14%	80%
	5	6%	3%	100%
	6	_	80% (Me	edian) ^{12%}
0000	7	_	_	_
2023	75/10	Э	ignaling	Joseph Tao-yr wang

Limit-Pricing Signaling Game: Follow-Up

- Follow-up Study vary Treatment II:
 - Cooper, Garvin and Kagel (EJ 1997)
 - ▶ Treatment II: Q=6-7 give M_H negative profit
- 1. 0% Anticipation:
 - ▶ Q=6-7 give M_H monopolist positive profit
 - \blacktriangleright Not obvious M_{H} monopolist will not choose it
- 2. 100% Anticipation:
 - ▶ Q=6-7 not allowed for M_H
 - \blacktriangleright Obvious M_{H} monopolist will not choose it

Treatme	Treatment II: Q=6-7 Very Bad for M_H				
A's	A's profit	if cost M_H	A's profit	if cost M_L	
Choice Q	$\mathbb{IN}(X)$	Out (Y)	$\mathbb{IN}(X)$	Out (Y)	
1	150	426	250	542	
2	168	444	276	568	
3	150	426	330	606	
4	132	408	352	628	
5	56	182	334	610	
6	-188	-38	316	592	
7	-292	-126	213	486	
2023/5/16		Signaling	Joseph	n Tao-yi VVang	

0% Anti	0% Anticipation: $Q=6-7$ Positive Profit					
A's	A's profit	if cost M_H	A's profit	if cost M_L		
Choice Q	$\mathbb{N}(X)$	Out (Y)	$\mathbb{IN}(X)$	Out(Y)		
1	150	426	250	542		
2	168	444	276	568		
3	150	426	330	606		
4	132	408	352	628		
5	56	182	334	610		
6	38	162	316	592		
7	20	144	213	486		
2023/5/16		Signaling	Joseph	i Tao-yi VVang		

100% A	100% Anticipation: Q=6-7 Not Allowed				
A's	A's profit	if cost M_H	A's profit	if cost M_L	
Choice Q	$\mathbb{IN}(X)$	Out (Y)	$\mathbb{IN}(X)$	Out (Y)	
1	150	426	250	542	
2	168	444	276	568	
3	150	426	330	606	
4	132	408	352	628	
5	56	182	334	610	
6	Х	Х	316	592	
7	X	Х	213	486	
2023/5/16		Signaling	Joseph	i Tao-yi VVang	

Cooper, Garvin and Kagel (EJ 1997)

- ▶ 100% Anticipation Results:
 - Experienced Subjects swiftly converge to Separating Equilibrium:
 - ▶ M_H Monopolist A chooses Q=2 (vs. B: IN)
 - ▶ M_L Monopolist A chooses Q=6 (vs. B: OUT)
- ▶ 0% Anticipation Results:
 - Even Experienced Subjects Stay at Pooling Equilibrium:
 - ► All Monopolists choose Q=4

100% Anticipation					
	Q	A's Q if M_H	A's Q if M_L	B's IN%	
	R	ound 1-12 (<mark>E</mark> x	perienced Sul	ojects)	
	1	_	-	-	
	2	56% (Med	ian) –	96%	
	3	2%	_	100%	
	4	38%	26%	63%	
	5	3%	-	50%	
	6	_	75% (Me	dian) ^{8%}	
	7	_	_ (_	
2023	/ 5/ 10	5	ignaning	Joseph Tao-yi vvang	

100% Anticipation				
			A's Q if M_L	B's IN%
	Ro	ound 13-24 (Ex	xperienced Su	bjects)
	1	9%	-	100%
	2	76% (Med	ian) 2%	100%
	3	4%	-	100%
	4	12%	13%	92%
	5	-	-	-
	6	_	84% (Med	dian) <mark>0%</mark>
2023	7		-	_

202375710

Signaling

10	100% Anticipation					
	Q	A's Q if M_H	A's Q if M_L	B's IN%		
	Ro	ound 25-36 (Ex	xperienced Su	ıbjects)		
	1	2%	-	0%		
	2	78% (Med	ian) -	100%		
	3	7%	3%	100%		
	4	15%	12%	92%		
	5	_	-	_		
	6	_	88% (Me	dian) 5%		
0002	7	_	_	-		
2023	75/10	ى ب	ignaling	Joseph Lao-yi wang		

0%	6 Anti	cipation		
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	R	Cound 1-12 (Ex	perienced Sul	ojects)
	1	2%	5%	100%
	2	38%	5%	95%
	3	11% (Med	ian) 22%	67%
	4	49%	68%(Med	(an) 42%
	5	-	3%	100%
	6	_	_	_
0000	7	_	4%	?
2023	/ 3/ 10	3	ignanng	Joseph Tao-yr vvang

0% Anticipation				
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	R	ound 13-24 (Ex	xperienced S	ubjects)
	1	2%	-	100%
	2	26%	2%	92%
	3	18%	9%	56%
	4	51%(Medi	an) ^{33%} (Me	dian) ^{69%}
	5	3%	28%	17%
	6	1%	6%	50%
0000	7	_	9%	33%
2023	/ 5/ 10	ာ	ignaling	Joseph Lao-yi wang

0% Anticipation				
	Q	A's Q if M_H	A's Q if M_L	B's IN%
	R	ound 25-36 (E	xperienced Su	bjects)
	1	2%	-	100%
	2	38%	-	94%
	3	23% (Med	ian) 8%	86%
	4	33%	52%(Mec	lian) 72%
	5	4%	30%	47%
	6	-	-	-
2022	7	_	9%	50%
2023	01 \C \	ى ت	ignaling	Joseph Lao-yr wang

Reputation Formation

- Camerer and Weigelt (Econometrica 1988)
- ▶ 8 period trust game
- Borrower Type: Normal (X) or Nice (Y)
- (New) Lender each period: Lend or Don't
- Borrower chooses to *Default* or *Repay*
 - ► Normal types *Default*; Nice types *Repay*

Reputation Formation

Lender	Borrower	Lender	Borrower Payoff			
Strategy	Strategy	Payoff	Normal (X)	Nice (Y)		
Lend	Default	-100	150	0		
	Repay	40	60	60		
Don't	_	10	10	10		

Signaling

Reputation Formation

- What does the equilibrium look like?
- Last Period:
 - \blacktriangleright Lend if $\mathrm{P}_8(\mathrm{Nice}) > \tau = 0.79$
 - ▶ Normal borrowers *Default*; Nice ones *Repay*
- Period 7:
 - Normal borrowers weigh between Default now (and reveal) and Default later

Conditional Frequency of Lending										
Round		1	2	3	4	5	6	7	8	
3-5	Predict	100	100	100	100	64	64	64	64	
	Actual									
6.0	Predict	100	100	100	64	64	64	64	64	
6-8	Actual									
9- 10	Predict	100	100	100	64	64	64	64	64	
	Actual									

Signaling

Conditional Frequency of Lending										
Round		1	2	3	4	5	6	7	8	
2 г	Predict								64	
3-5	Actual	94	96	96	91	72	59	38*	67	
6-8	Predict	100	100	100	64	64	64	64	64	
0-0	Actual	96	99	100	95*	85*	72	58	47	
9- 10	Predict	100	100	100	64	64	64	64	64	
	Actual	93	92	83	70	63	72	77	33	

Conditional Frequency of Repay (by X)									
Round		1	2	3	4	5	6	7	8
2 г	Predict	100	100	100	81	65	59	44	0
3-5	Actual								
6-8	Predict	100	100	73	68	58	53	40	0
0-0	Actual								
9- 10	Predict	100	100	73	67	63	56	42	0
	Actual								

Conditional Frequency of Repay (by X)										
R	ound	1	2	3	4	5	6	7	8	
2 5	Predict	100	100	100	81	65	59	44	0	
3-5	Actual	95	97	98	95*	86*	72	47	14	
6-8	Predict	100	100	73	68	58	53	40	0	
	Actual	97	95	97*	92*	85*	70*	48	0	
9- 10	Predict	100	100	73	67	63	56	42	0	
	Actual	91	89	80	77	84*	79*	48	29	

Follow-up Studies

- Neral and Ochs (Econometrica 1992)
 - Similar repeated trust games
- Jung, Kagel and Levin (Rand 1994)
 - Entry deterrence in chain-store paradox
- Camerer, Ho and Chong (JET 2002)
 - Sophisticated EWA (strategic teaching!)

Conclusion

Cooper, Garvin and Kagel (EJ 1997)

We do not suggest that game theory be abandoned, but rather as a descriptive model that it needs to incorporate more fully how people actually behave."

Possible improvements:

- QRE, level-k or Cognitive Hierarchy
- Learning (EWA or belief learning)

The End

Signaling

Joseph Tao-yi Wang

Applying for Economics Graduate School

An Example of Signaling

Signaling

Joseph Tao-yi Wang

Questions

- 1. Which to apply? MBA or Econ PhD?
- 2. Most important factor for admission?
- 3. Are foreigners/females discriminated against?
- 4. Is mathematics needed in graduate school?
- 5. Is MA (at NTU) required before PhD?
- 6. How should I prepare myself now?

What Program Should I Apply?

- MBA or Econ PhD?
 - This depends on Your Career Interest
- But, MBA is not for newly graduates
 - MBA is designed for people who worked for years and are heading for top management
- Teach undergraduate Economics, but:
 - 1. Tie it with actual working experience
 - 2. Socializing with other CEO-to-be's is a plus

What Program Should I Apply?

Econ PhD provides rigorous training to modern economic analysis techniques

This is used by

- Academics (Economics, Public Policy, Law...)
- Data Scientist (Amazon, Google, Facebook...)
- Economics Consulting Firms
- Public Policy Evaluation
- Financial Companies (like Investment Banks)

International Organizations (APEC, IMF...)

2023/5/16

Signaling

Joseph Tao-yi Wang

Most Important Factor

- What is the Most Important Factor when I Apply for Graduate School?
 - Petersons Guide surveyed both students and admission committee faculty members
- They find that both agree No.1 factor is:
 Letter from someone the committee knows
- Why is this No.1?
- Credible Signaling!

Most Important Factor

- ▶ No.1:
 - Letter from someone the committee knows
- Who are the people committees know?
- What if I cannot find someone to write?
- Find Other Credible Signals!
 - ► GPA?
 - ► GRE or TOEFL?
 - Other Distinct Features (like AWA≥5.0)?

Discrimination and Gender

- ► Are Foreigners or Females Discriminated?
- Foreigners: Program policy differs!
 - UCLA (8/35) vs. MIT (25/30)
- Women: Only 16% Faculty are Female
 - Does the market favor women? Maybe...
 - Comparison: 33% Math Professors are female
- ▶ <u>AEA-PP</u>: CSWEP mentorship RCT to help
 - ▶ <u>JEP</u>: Other strategies at every stage

Is Mathematics Needed?

- Advice for Econ PhD Applicants:
 - Take a heavy dose of mathematics during undergraduate.
 Peterson's Guide
- So, the answer is generally yes.
 - Due to gap between undergrad & graduate
- But ability to find economic intuition behind the math is even more essential
 - My first year micro comp. exam experience
 - They need <u>Bilingual</u> People!

What Kind of Mathematics is Needed?

- Mastering these better than jack of all traits:
- 1. MATH2213/2214 (分析導論一二)
 - Introduction to Mathematical Analysis (I),(II)
 - Thinking process to score A+ is essential!
- 2. MATH1103/1104 (線性代數一二)
 - Linear Algebra (I),(II): Tools of Econometrics
- 3. STAT5004/5005 (統計理論一二)
 - Theory of Statistics (I),(II): Casella and Berger (2002) = first part of graduate Econometrics

What Kind of Mathematics is Needed?

- 1. MATH2213/2214 (分析導論一二)
- 2. MATH1103/1104 (線性代數一二)
- 3. STAT5004/5005 (統計理論一二)
- Note: STAT5004/5005 is a master-level required course and should be taken only after you took the other two courses
 - Also consider MATH1211/1210 (微積分一二) which uses the Courant and John textbook:
 Introduction to Calculus and Analysis, Vol.1&2

Is MA required before I enter PhD?

- No. Most Top-10 have only PhD program
 Chicago: Give you a master if you can't finish
- But you may not survive studying both math and economics in English...
- Hence, a MA might help since:
 - MA classes are similar to PhD classes
 - You may not be sure if you want to a PhD
 - Condition on passing 1st year, MA is

unnecessary, but you may want to hedge...

How Should I Prepare Myself Now?

- Create Credible Signals!
- Such As:
- GPA 4.0, ranked 1/160
- Good References
- A Published Research Paper
- Take a Heavy Dose of Mathematics
- Take Graduate Courses in Economics
 Take Economics Courses Taught in English

What Makes a Signal Work?

- Exercise: Show which types of people can afford the following signals:
 - ▶ GPA 4.0, ranked 1/160
 - Good References
 - A Published Research Paper
 - Take a Heavy Dose of Mathematics
 - Take Graduate Level Courses in Economics
 - Take Economics Courses Taught in English
 - AWA 5.0+