Coordination 協調賽局

Joseph Tao-yi Wang (王道一) Lecture 10, EE-BGT

Coordination

Outline

- Why is coordination so important?
- Matching Games
 - Pure Coordination Game
 - ► GAMES magazine (1989)
 - Mehta et al. (AER 1994)
 - Assignment Games
 - Mehta et al. (T&D 1994)
 - Bacharach and Bernasconi (GEB 1997)

Games w/ Asymmetric Payoffs

- Battle of Sexes
 - Cooper et al. (AER 1990)
 - Blume et al.(AER98/GEB01)
- Market Entry Games
- Games w/ Asymmetric Equilib.
 - Stag Hunt: Cooper et al. (AER90')
 - Weak-Link Game: Van Huyck et al. (AER90')
- Applications to Market Adoption and Culture:
 - Clemons & Weber (InfoSysR96), Camerer & Weber (MS 2003)

- Which Equilibrium to Select Among Many?
 - This requires Coordination!
- Examples of Coordination in Daily Life:
 - Language
 - Trading in Markets (Liquidity)
 - Industry Concentration

- Equilibrium Selection in Game Theory
- 1. Desirable Features Approach:
 - Payoff-Dominance, Risk Dominance, etc.
- 2. Convergence via Adaptation/Learning
 - ▶ Weibull (1995), Fudenberg and Levine (1998)
- 3. Empirical Approach: Infer Principles by
 - Putting people in experiments and observe actual behavior/outcome

- Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
 - "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver
 - any more than one can prove,
 - by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
 - Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams
 - Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- ▶ US railroad tracks is 4 feet and 8.5 inch
 - Because English wagons were about 5 feet (width of two horses), and lead to
- Space Shuttle Rockets smaller than ideal
 since they need to be shipped back by train...
- Industries are concentrated in small areas
 Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
 - ▶ I want to live where others (like me) live

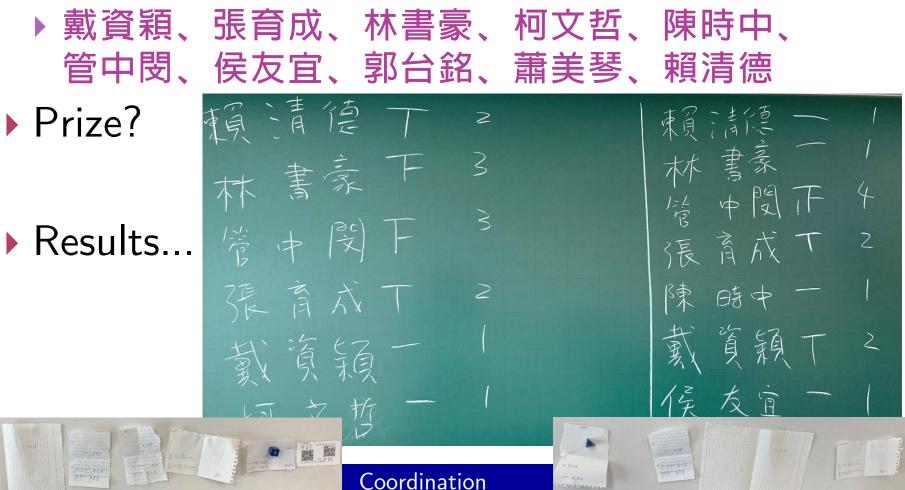
Examples of Coordination Impact:

Drive on Left/Right side of the Road

- Right: Asia, Europe (Same continent!)
- Left: Japan, UK, Hong Kong (Islands!)
- Sweden switched to Right (on Sunday morning)
- What about America? Right, to avoid
 - Hitting others with the whip on your right hand!
- Bolivians switch to Left in mountainous area
 - To see outer cliffside from (left) driver seat
- ▶ Pittsburgh left: 1st left-turner goes 1st at green
 - on two-lane streets to avoid blocking traffic

<u>3 Types of Coordination Games</u>

- Matching Games
 - Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
 - Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture


Examples of Coordination Impact

- Categorizing Products
 - Where should you find MCU? Disney or Action?
 - Find your favorite item at a new Costco store
- Common Language:
 - Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better

- Pick one celebrity (out of 9) for President, another for Vice-President:
 - Oprah Winfrey, Pete Rose,
 - Bruce Springsteen, Lee laccoca,
 - Ann Landers, Bill Cosby,
 - Sly Stallone, Pee-Wee Herman,
 - Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one

Matching Game: Taiwanese Version

▶ For 2024 Presidential Election:

Taiwanese Version:

戴資穎、張育成、福原愛、瑞莎、趙婷、
 陳時中、潘忠政、詹順貴、黃士修、趙介佑

Prize?

Results...(of 2021)

1/2: 日子中 黄土修 福原爱 王高武 载贝颖 趙介佑 原時中 越皖 浙市

Taiwanese example:

▶ 戴資穎、周天成、羅志祥、周揚青、劉樂妍、 曾博恩、陳時中、黃秋生、陳建仁、黃安

Prize?

Results... (of 2020)

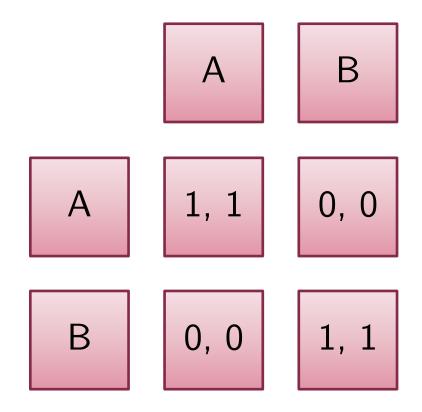
2023/5/3

PRB3+ T	陳建仁下
南南周一	日本 一
の東尾に下	展示中 正. 「割湯有 T
了了一下了手下	
	国天城
黄素	

Taiwanese example:

★ 戴資穎、陳偉殷、黃國昌、朱敬一、陳建仁、 林立青、李來希、舒淇、林志玲、林奕含

Prize?


Results...(of 2019)

朱敬-月桌了章 12 4 5 1 10 V 本本さまう 生物 本本人いする 内 ng

- US Results:
- 1. Bill Cosby (1489): successful TV show
- 2. Lee lacocca (1155): possible US candidate
- 3. Pee-Wee Herman (656): successful TV show
- 4. Oprah Winfrey (437): successful TV show
- 9. Shirley MacLaine (196): self-proclaimed reincarnate

. . .

Pure Coordination Game

Both get 1 if pick the same;

- Both get 0 if not
- Two pure NE,
- One mixed NE
- Which one will be played empirically?

Pure Coordination Game

- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
 - Win \$1 if your partner picks the same as you
- Difference between P and C = How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Pure Coordination Game									
Category	Group P (n=88)		Group C (n=90)						
	Response	%	Response	%					
Years	1971	8.0	1990	61.1					
Flowers	Rose	35.2	Rose	66.7					
Dates	Dec. 25	5.7	Dec. 25	44.4					
Numbers	7	11.4	1	40.0					
Colors	Colors Blue		Red	58.9					
Boy's Name	John	9.1	John	50.0					
Gender	Him	53.4	Him	84.4					
2023/5/3	Coordin	Coordination		Joseph Tao-yi Wang					

Pure Coordination Game: Follow-up 1

- Bardsley, Mehta, Starmer, Sugden (EJ 2010)
 - Incorporate (Replace?) Bardsley, et al. (wp 2001)
- 14 Games: One in choice set is distinctive
 EX: {Bern, Barbodos, Honolulu, Florida}
- Besides P and C, add:
 - Guess Condition (G): Guess partner's pick
- Design question: How do you avoid focality of physical location (first/last/top-left)?
 - Have things swim around the computer screen...

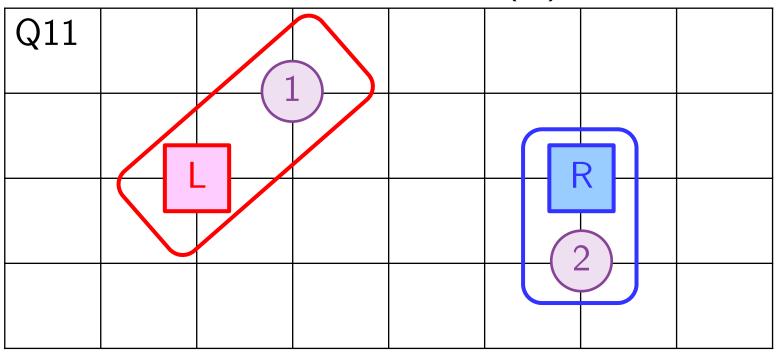
Pure Coordination Game: Follow-up 1


- EX: {Bern, Barbodos, Honolulu, Florida}
- 1. Choose Bern in C since Bern in P and G
 - Derivative Salience: P=G=C
 - (See how paper uses) Cognitive Hierarchy Model
- 2. Choose Bern in C, but Florida in P and G
 - Schelling Salience: P=G≠C
 - ► Team Reasoning: Pick distinctive choice only in C
- Coordinate on this: Even though I would not pick this and I know you would not pick this!

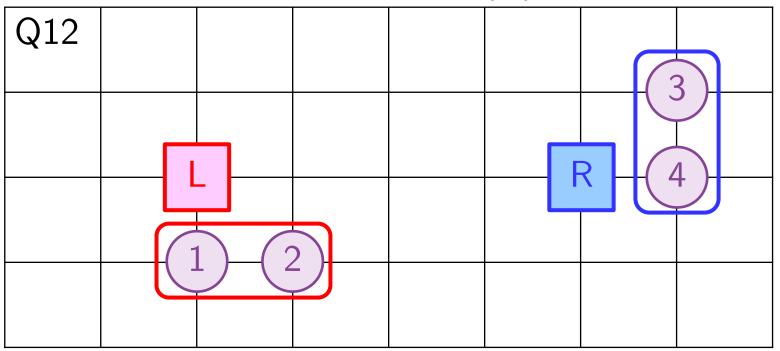
Pure Coordination Game: Follow-up 1

- Derivative Salience: P=G=C
- Schelling Salience: P=G≠C
- Schelling Salience wins here!
 - ▶ In 12 games (out of 14):
- Chose distinctive choice 60% in C (modal!)
 But less often in P and G
- EJ 2010: Follow-up w/ Nottingham subjects
 - Both saliences rejected with subtle design differences (used to coordinate)

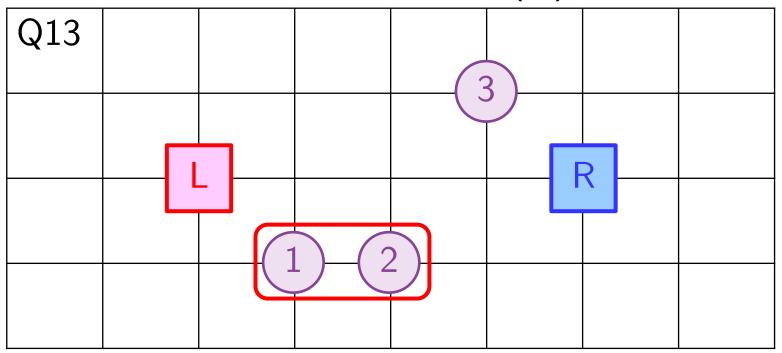
Assignment Game (Follow-up 2)


- Hume (1978/1740) Ownership conventions: spatial/temporal proximity, cultural, etc.
 - ▶ Mehta, Starmer and Sugden (T&D 1994)

2023/5/3


Coordination

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 1: Closeness (C)


- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 2: Equality (E)

2023/5/3

Coordination

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 3: Accession (A)

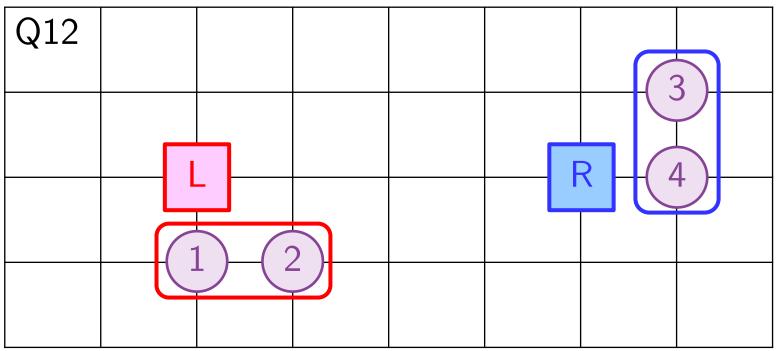
2023/5/3

Coordination

How would you assign the circles?

• What about this? (C = A = E)

In fact, 74% chose this!



How would you assign the circles?

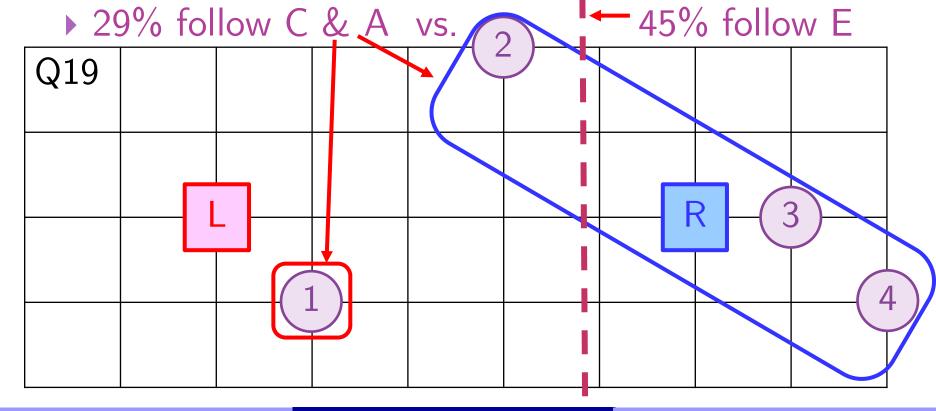
• What about this? (C = A = E)

In fact, 68% chose this!

2023/5/3

Coordination

- How would you assign the circles?
- What about this? (Accession!)
 - ▶ In fact, 70% chose this! (What does C/E say?)

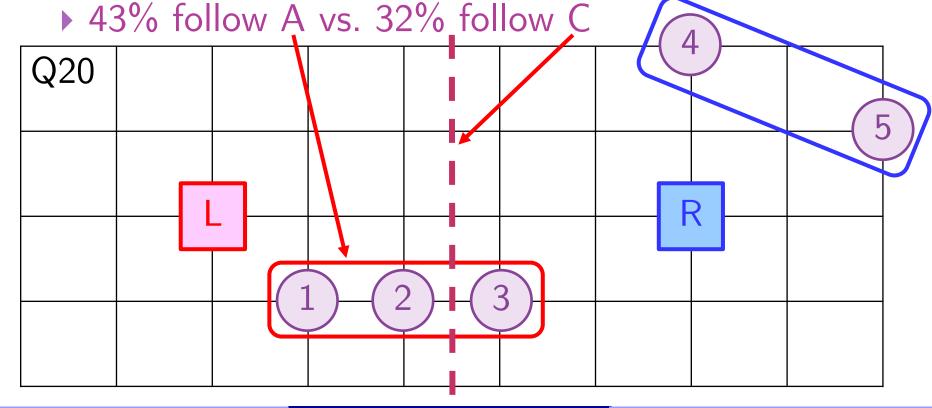


2023/5/3

Coordination

Assignment Game: C & A vs. Equality

- What does Closeness/Accession say?
- What does Equality say about this?

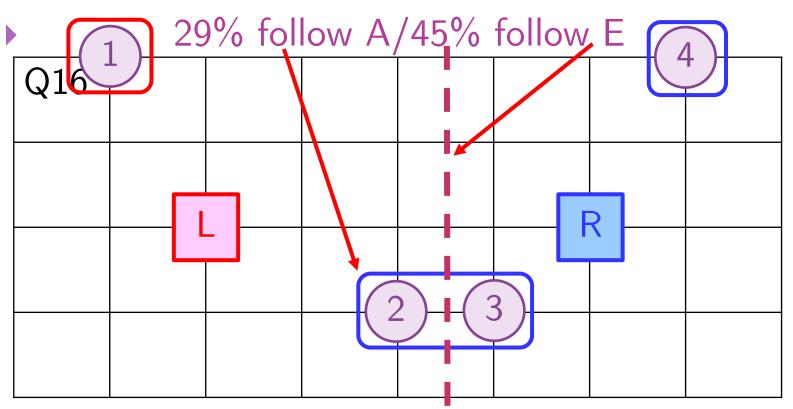


2023/5/3

Coordination

Assignment Game: Accession vs. Closeness

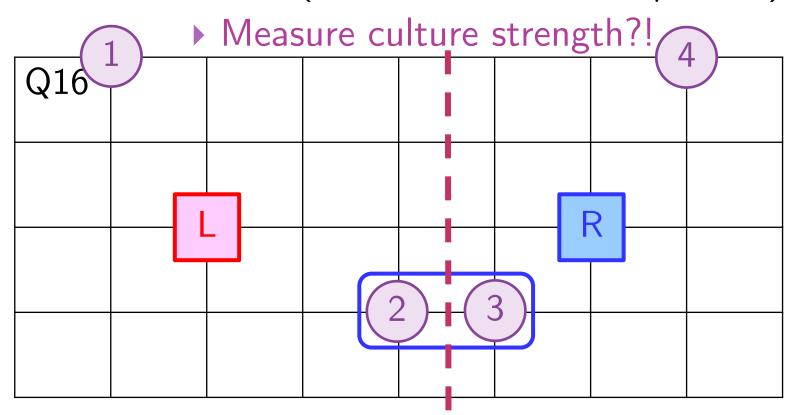
- What does Accession say about this?
- What does Closeness say about this?



2023/5/3

Coordination

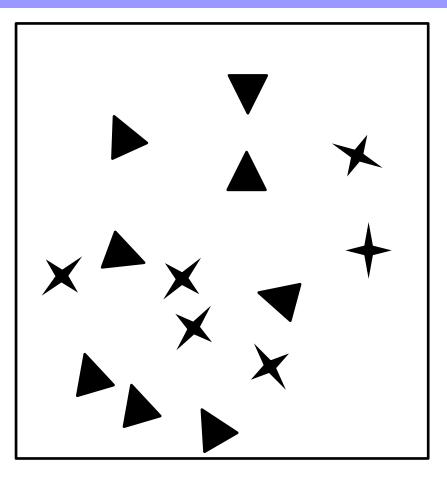
Assignment Game: Accession vs. Equality


- What does Accession say about this?
- What does Equality say about this?

2023/5/3

Equality > Accession > Closeness

- First Focal Principle: Equality
- Then Accession (if Equality satisfied/silent)



2023/5/3

Coordination

Unpacking Focality

- Bacharach and Bernasconi (GEB 1997)
- Visual matching game
 Pick one from picture:
- Test rarity preferences
 - ▶ 6 vs. 8
- Are Rare item chosen more frequently
 - As Rarity increases?
 - 6/8, 2/3, 6/18, 1/15

2023/5/3

Unpacking Focality: Test Rarity

Yes!

- As Rarity increases,
 - Frequency of rare choice increases!

	# of Rare/Frequent Items				
	6/8	2/3	6/18	1/15	
Rare Item	65%	76%	77%	94%	
Frequent Item	35%	24%	23%	6%	

Coordination

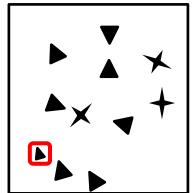
Unpacking Focality: Test Trade-offs

Rarity (r=3 vs. n=8)

against

- Oddity (size or color)
 - p(F) = prob. of notice
 - Would you choose Oddity if p(F) > 1/r ?

Obvious Treatments:

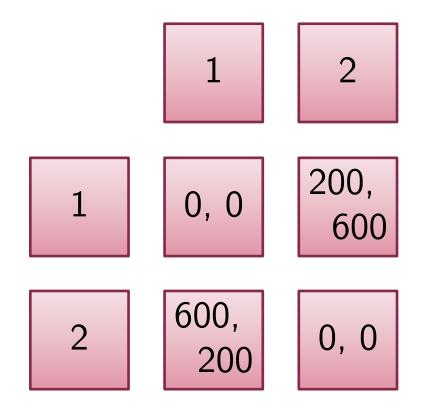

▶ *p*(F)=0.94 >> 1/3

Subtle Treatments:

▶ p(F) = 0.40 > 1/3

Unpacking Focality: Test Trade-offs

- Violate p(F) > 1/r Proportion to Diff!
 - Mostly chose Obvious Oddity
 - Less than half chose Subtle Oddity



r = # .	Obv	vious (Oddity	r (r)	Subtle Oddity (r)					
of Rare	2	3	4	5	2	3	4	5	6	
p(F)	0.95	0.91	0.95	0.93	0.55	0.40	0.62	0.25	0.25	
Diff	0.45	0.58	0.7	0.73	0.05	0.07	0.37	0.05	0.09	
Rare	14%	19%	9%	7%	77%	55%	45%	69%	55%	
Oddity	83%	79%	91%	88%	23%	31%	45%	19%	20%	
Other	2%	2%	0%	5%	0%	14%	10%	12%	25%	

Unpacking Focality

- Munro (wp 1999)
- Field study of coordination
- Narrow bike lanes in Japan
 - No center line
- Two bikes coming from opposite directions
 Both ride close to middle
- How they avoid colliding?
 - Both move Left!

Asymmetric Players: Battle of Sexes

- 100 lottery tickets =
 - ▶ 10% chance to win \$1/\$2
- ▶ Pure NE: (1,2) and (2,1)
 - Players prefer equilibrium where they play strategy 2
- Mixed NE:
 - ▶ (1/4, 3/4) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- **BOS**: Baseline (MSE mismatch 62.5%)
- BOS-300: Row player has outside option 300
 Forward induction predicts (2,1)
- BOS-100: Row player has outside option 100
 Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

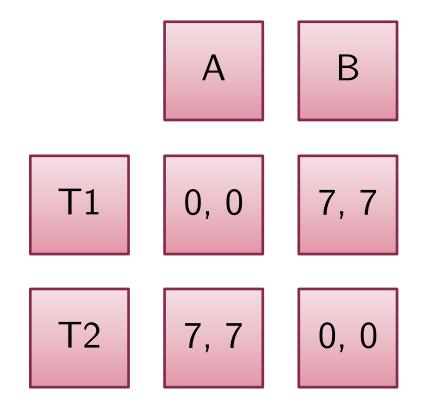
Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

Coordination

Asymmetric Players: Battle of Sexes

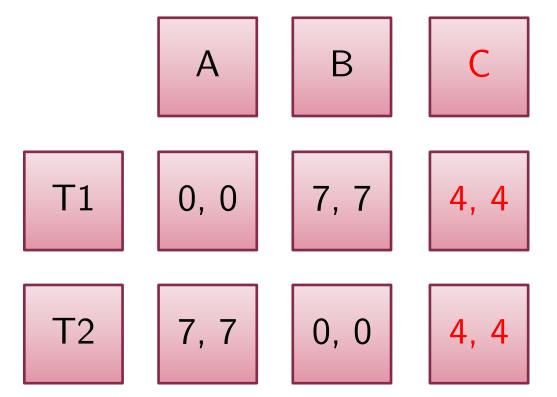
- Cooper, DeJong, Forsythe & Ross (AER 90')
- BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by Both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - Information set same as simultaneous move
 - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)


Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W	-	1(1%)	158(96%)	6(4%)	165
BOS-2W	-	49(30%)	47(28%)	69(42%)	165
BOS-SEQ	-	6(4%)	103(62%)	56(34%)	165

Coordination

Where Does Meaning Come From?


- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!
- Blume, DeJong, Kim & Sprinkle (AER 1998)
 See also BDKS (GEB 2001) which is better!

Evolution of Meaning: Game 1 (Baseline)

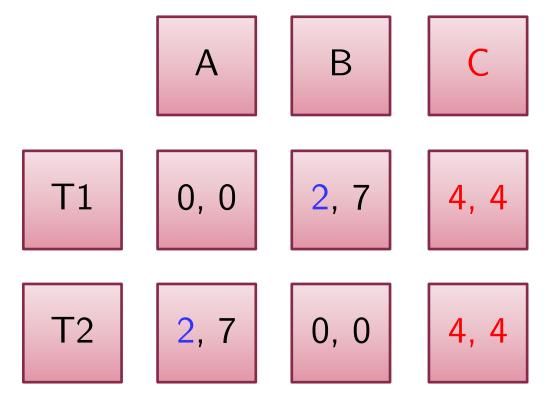
- Blume et al. (AER 1998)
- Sender has private type
 T1 or T2
- Sends message "*" or "#" to receiver
- Receiver chooses A or B (to coordinate type)

Evolution of Meaning: Game 2

Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2

Evolution of Meaning

- Blume et al. (AER 1998)
- Game 1: Baseline as above
- ► Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium


Percentage Consistent with Separating

Game \ Period	1	5	10	15	20
1st Session					
Game 1	48	65	74	89	95
2nd Session					
Game 1	49	72	61	89	100
Game 1NH	55	55	28	55	72
Game 2					
Separating	44	88	88	88	94
Pooling	39	05	00	05	05

2023/5/3

Coordination

Evolution of Meaning: Game 3

► Game 3: Coordinate payoffs become (2,7)

2023/5/3

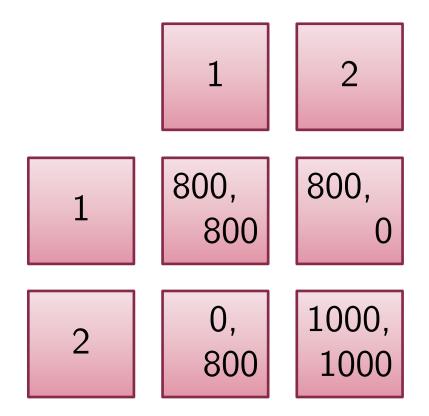
Coordination

Evolution of Meaning (Blume et al. AER 1998)

- Game 1: Baseline as above
- ► Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium
- ► Game 3: Coordinate payoffs become (2,7)
 - So sender wants to disguise types to force receiver to choose C (safe action)
 - Allowed to send 2 or 3 messages...

Results of Game 3: 2 vs. 3 messages							
<pre># of Messages- Equilibrium Played</pre>	1-10	11-20	21-30	31-40	41-50	51-60	
2-Separating	43	53	38	39			
2-Pooling	33	34	41	43	2 nd Se	ession	
3-Separating	43	38	33	24			
3 -Pooling	33	37	42	60			
2-Separating	39	27	23	24	24	23	
2-Pooling	39	48	51	60	63	61	
3-Separating	23	22	23	25	22	24	
3-Pooling	55	61	58	56	57	61	
					$1^{st} Se$	ession	

Example of Asymmetric Payoffs


- Market Entry Game
 - \blacktriangleright n players decide to enter market with capacity c
 - Payoffs declines as number of entrants increase
 - '' < 0 " if number > c (= market capacity)
- Sundali, Rapoport and Seal (OBHDP 1995)
 Number of Entrants: Predicted vs. Actual

Coordination

Market Entry Game Results										
Capacity	1	3	5	7	9	11	13	15	17	19
Predicted Number of Entrants										
MSE	0	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9
Actual Nu	Jmpe	er of	Ent	rants	5					
All Data	1.0	3.7	5.1	7.4	8.7	11.2	12.1	14.1	16.5	18.2
1 st Block	1.3	5.7	9.7	6.7	3.7	14.0	11.3	11.3	16.0	18.0

Kahneman (1988): Number close to equil.
"To a psychologist, it looks like magic."
See BI-SAW paper by Chen et al. (2012)...

Games with Asymmetric Equilibria

Stag Hunt
Cooper et al. (AER 1990)
100 lottery tickets =

10% chance to win \$1/\$2

Pure NE:

(1,1) & (2,2)

Which would you pick?

Coordination

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- CG-900: Row has outside option 900 each
 Forward induction predicts (2,2)
- ► CG-700: Row has outside option 700 each
 - Forward induction won't work
- ► CG-1W: 1 way communication by Row
- CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	(1,1)	(2,2)	Other	# Obs
CG	-	160(97%)	0(0%)	5(3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	-	26(16%)	88(53%)	51(31%)	165
CG-2W	-	0(0%)	150(91%)	15(9%)	165

Coordination

Weak-Link Game

- ▶ Van Huyck, Battalio and Beil (AER 1990)
- Each of you belong to a team of n players
- Each of you can choose effort $X_i = 1-7$
- Earnings depend on

2023/5/3

- Your own effort, and
- The smallest effort $\min\{X_i\}$ of your team
- Payoff = $60 + 20 * \min\{X_j\} 10 * X_i$

Team Project Payoff

Cost of Effort X_i

Weak-Link Game: Van Huyck et al. (AER 1990)

Payoff = 60 + 10 * min{ X_j } - 10 * ($X_i - min{X_j}$)
Team Minimum
Deviation from Min

- Payoff sensitive to weakest link in production chain:
- 1. Cobb-Douglas Production Function (Leontief)
- 2. All have to arrive for restaurant to seat your group
- 3. Each has to do their job for whole project to fly
 - Law firms, accounting firms, investment banks, etc.
- 4. Prepare an airplane for departure

V	Veak-	Link	Gam	e: Vai	n Huy	ck et a	I. (AE	R 1990)
	Weak-Link Game: Van Huyck et al. (AER 1990)> Payoff = $60 + 10 * \min\{X_j\} - 10 * (X_i - \min\{X_j\})$ Team MinimumDeviation from Min							
ſ	T	eam M						
	Your		S	mallest	$: X_j$ in t	he tear	n	
	X_i	7	6	5	4	3	2	1
	7	130	110	90	70	50	30	10
	6	-	120	100	80	60	40	20
	5	-	-	110	90	70	50	30
	4	-	_	-	100	80	60	40
	3	-	-	-	-	90	70	50
	2	-	_	-	-	-	80	60
20	1	-	-	_	-	-	-	70

Weak-Link Game: Van Huyck et al. (AER 1990)

- What is your choice when...
 - Group size = 2?
 - Group size = 3?
 - ► Group size = 20?
- Can some kind of communication help coordinate everyone's effort?

Let's conduct a classroom experiment first...

Classroom Experiment: 害群之馬

最弱環節賽局 (Weak-Link Game)

水經濟實驗: 害群之馬

Weak-Link Game (最弱環節賽局)

- ► Each DM chooses effort X=1-4
 - Spade = 4, Heart = 3, Diamond = 2, Club = 1
- DM (Decision Maker) = a team of two
 - ▶ 每組每回合都會有四張撲克牌,分別為黑桃(4)、 紅心(3)、方塊(2)、梅花(1)
 - ▶主持人會跟每組收一張牌
 - ▶ 交出來的花色代表你們花多少時間排練
 - ▶ 你們的努力程度: 黑桃 = 4小時、紅心 = 3小時、方 塊 = 2小時、梅花 = 1小時
 - ▶ 各組要討論屆時交出哪一張牌…

• Payoff = $3 * \min\{X_j\} - 1 * >$

Team Project Payoff

Cost of Effort X

▶ 「花最少時間排練那一組的排練時數」,每一小時的排練 大家都會得到3分。各組自己每花一小時排練,就少1分。

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	_	6	3	0		
2	-	-	4	1		
1	-	-	-	2		

水經濟實驗: 害群之馬

- 1. How much would you earn if all DM choose X=4?
 - 8!

如果所有各組都花四小時排練,這樣各組會拿幾分?8分!

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	-	-	2		

水經濟實驗: 害群之馬

2. How much would you earn if you choose X=3 while others choose X=4?

▶ 6 (< 8, not worth it!)</p>

如果別組都花四小時排練,但你們這組只花三小時排練,這樣你們會 拿幾分?你們這麼做值得嗎?6分!小於8分所以不值得!

Your X _i	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	_	_	2		

水經濟實驗: 害群之馬

- 3. How much would you earn if you choose X=2 while some other DM choose X=1?
 - ▶ 1 (< 2, if you also choose X=1!)</p>
 - 如果有某一組只花一小時排練,你們這組如果花兩小時排 練,值得嗎?不值得,因為只得1分,但如果也花一小時 就會跟他們一樣得到2分!

Your X _i	min{X _j } (最低那組時數)				
(本組時數)	4	3	2	1	
4	8	5	2	-1	
3	-	6	3	0	
2	-	-	4	1	
1	-	-	-	2	

2023/5/3

水經濟實驗: 害群之馬

Weak-Link Game (最弱環節賽局)

- Please decide now and we will see the results...
- 6. Are you satisfied with the results? How can you encourage cooperation next time?
 - 你對結果滿意嗎?如果你希望大家都更好,該怎麼鼓勵大家合作?讓我們再來做一次…

Your X _i	min{X _j } (最低那組時數)				
(本組時數)	4	3	2 1		
4	8	5	2	-1	
3	-	6	3	0	
2	-	-	4	1	
1	-	-	-	2	

Weak-Link Game (最弱環節賽局)

In reality, people would see each other's effort and increase effort gradually

Let's try again by committing hour-by-hour!

現實中你們彼此多半清楚大家的排練情況,而且時數可以 逐步加碼。這次我們採一小時、一小時逐步加碼方式進行

本組排練時數	最低那組排練時數					
	4	3	2	1		
4	8	5	2	-1		
3	-	6	3	0		
2	-	-	4	1		
1	-	-	-	2		

Back to Van Huyck et al. (AER 1990)...

Your	Smallest X_j in the team							
X_i	7	6	5	4	3	2	1	
7	130	110	90	70	50	30	10	
6	-	120	100	80	60	40	20	
5	-	-	110	90	70	50	30	
4	-	-	-	100	80	60	40	
3	-	-	-	-	90	70	50	
2	-	-	-	-	-	80	60	
1	-	-	-	-	-	-	70	

2023/5/3

Coordination

Weak-Link Game: Van Huyck et al. (AER 1990)

▶ 7 Large Group (n=14-16) sessions (Table 7.25)

• X_i starts at 4-7, but quickly drop to 1-2!

Coordination

Choices in 7 Large Group Sessions										
X_i			Ro	Round (group size <i>n</i> =14-16)						
Λ_i	1	2	3	4	5	6	7	8	9	10
7	33	13	9	4	4	4	6	3	3	8
6	10	11	7	-	1	2	_	-	-	-
5	34	24	10	12	2	2	24	1	-	1
4	17	23	24	18	15	5	3	3	2	2
3	5	18	25	25	17	9	8	3	4	2
2	5	13	17	23	31	35	39	27	26	17
1	2	5	15	25	37	50	47	70	72	77
(2 modes in red/pink) Table 7.25, Camerer (BGT 2003)										
2023/5/3					oordinatio	on		Joseph T	ao-yi Wa	ang

Weak-Link Game: Van Huyck et al. (AER 1990)

- ▶ 7 Large Group (n=14-16) sessions (Table 7.25)
 - X_i starts at 4-7, but quickly drop to 1-2!
- Extensions in Van Huyck et al. (AER 1990):
 - ▶ No penalty above min: 83% choose 7 in round 1
 - See effort distribution: Accelerate race to bottom
- ▶ 1 Small Group (n=2) Session (Table 7.26)
 - X_i starts at 1 or 7, but quickly converges to 7!
 - If choose X_i = 7 first, will wait a couple rounds for partner to follow...

Choices in Small Group Session

V		Rou	nd	(group size $n=2$)						
X_i	1	2	3	4	5	6	7			
7	9	13	13	17	19	19	21			
6	0	1	4	2	1	1	0			
5	4	1	1	1	0	0	0			
4	0	1	2	0	1	1	0			
3	1	2	1	1	0	0	0			
2	1	2	0	0	0	0	1			
1	8	4	3	3	3	3	2			
		(2 moo	les in <mark>rec</mark>	/pink)	Table	e 7.26, Ca	amerer (

2023/5/3

Coordination

Weak-Link Game: Small Group Extension

- Van Huyck et al. (AER 1990) also did
- ▶ Small Group (*n*=2) + Random Matching:
 - Start high (4-7), but drop to 1!
- Small group size not enough
 - Need stability/mutual adjustment of fixed pairing!
- Clark and Sefton (wp 1999)
 - Replicate random-matching results in stag hunt
 - Still unpublished: Difficult to publish replications?
- Group Size Meta-Study (Table 7.27)

Round 1 Group Minima

Group		Distribution of $\min\{X_j\}$									
size n	1	2	3	4	5	6	7	Obs.			
2	43%	<u>7%</u>	<u>7%</u>	7%	29%	-	7%	14			
3	25%	5%	<u>35%</u>	15%	5%	—	15%	20			
6	<u>73%</u>	16%	11%	-	-	-	-	19			
9	-	<u>100%</u>	-	-	-	_	-	2			
12	<u>100%</u>	-	-	-	-	-	-	2			
14-16	28%	<u>28%</u>	14%	28%	-	_	-	7			

(<u>Median</u> underlined; 2 modes in red/pink)

Middle Panel of Table 7.27, Camerer (BGT 2003)

2023/5/3

Coordination

Round 5 Group Minima

Group		Distribution of $\min\{X_j\}$									
size n	1	2	3	4	5	6	7	Obs.			
2	14%	_	_	-	-	-	86%	14			
3	30%	15%	<u>20%</u>	15%	-	-	20%	20			
6	<u>80%</u>	10%	10%	_	-	_	-	19			
9	<u>100%</u>	-	_	-	-	-	-	2			
12	-	_	_	-	-	_	-	-			
14-16	<u>100%</u>	-	_	-	-	-	-	7			

(<u>Median</u> underlined; 2 modes in red/pink)

Bottom Panel of Table 7.27, Camerer (BGT 2003)

2023/5/3

Coordination

Weak-Link Game: Group Size Meta-Study

- Large Group size $(n \ge 6)$:
 - ▶ 1st period $\min\{X_j\} \le 4$
 - 5th period $\min\{X_j\}$ mostly 1
- Small Group size (n = 2-3):
 - ▶ 1st period $min{X_i}$ only partly in 5-7
 - ▶ 5th period min{ X_j } mostly (86%) reaches 7 if n=2
- But 1st period median $X_i = 4-5$ for all n!
 - Why? Maybe subjects think they play against representative opponent (and clone for large n)

Roun	d 1	<u>1 Choices (Median Underlined)</u>											
Group		Distribution of X_i											
size n	1	2	3	4	5	6	7	Obs.					
2	28%	3%	3%	7%	<u>21%</u>	-	36%	28					
3	8%	5%	8%	17%	<u>7%</u>	2%	41%	60					
6	18%	7%	13%	<u>16%</u>	7%	7%	39%	114					
9	0%	11%	28%	<u>39%</u>	5%	-	17%	18					
12	25%	4%	13%	<u>8%</u>	16%	4%	29%	24					
14-16	2%	5%	5%	17%	<u>32%</u>	9%	31%	104					

(Median underlined; 2 modes in red/pink)

Top Panel of Table 7.27, Camerer (BGT 2003)

2023/5/3

Coordination

Weak-Link Game: Local Interaction

- Berninghaus, Erhart and Keser (GEB 2002)
 - 3-person weak-link game
- What does Game Theory say?
 - ▶ Inefficient Nash: Each earn 80 if (X, X, X)
 - Efficient Nash: Each earn 90 if (Y, Y, Y)

		0	Other Player Choices						
		Both X	One X, One Y	Both Y					
Row	Х	80	60	60					
Player	Υ	10	10	90					
2023/5/3 Coordination Joseph Tao-yi Wang									

Weak-Link Game: Local Interaction

- Baseline: Play 20 rounds w/ same opponents
 - See opponent choices (but not who made what)
- Local Interaction: 8 subjects form a circle to play the 2 neighbors next to you

Contagion: Can spread Equilibrium around circle

		Other Player Choices						
		Both X	One X, One Y	Both Y				
Row	Х	80	60	60				
Player	Υ	10	10	90				
2023/5/3		Co	ordination	Joseph Tao-yi Wang				

Weak-Link Game: Local Interaction

- Baseline: 75% initially play Y
 - ▶ 7 of 8 groups converge to all-Y equilibrium
- Local Interaction: half initially play Y
 - Drop to None play Y in round 20
 - Because 64% play X if one neighbor played X

		Other Player Choices						
		Both X	One X, One	Y Both Y				
Row	Х	80	60	60				
Player	Υ	10	10	90				
2023/5/3 Coordination Joseph Tao-yi Wang								

Weak-Link Game: Mergers

- Camerer and Knez (SMJ 1994):
 - Two groups each play 3-person weak-link game
 - ▶ Then merge into one 6-person group
- Two Possible Predictions:
 - Mergers Fail: Large group size reduces efficiency
 - Mergers Restart: Coordinate on good equilibrium
- Results: Mergers Fail! (Table 7.29)
 - Group Minima mostly 1 in Round 1 and 5
 - Regardless knowing other group minimum or not

Group Minima Before/After Mergers

Know Other Group Minimum Don't Know Other Minimum

Before		Afte	er	Before		Aftei	•
Round	5	1	5	Round	5	1	5
Session 1	(1,2)-	→ (1,2) → 1	1	Session 1	(2,4)-	→(1,2)→1	1
Session 2	(1,4)-	→ (1,1) → 1	1	Session 2	(7,3)-	→(7,1)→1	1
Session 3	(1,1)-	→(1,2)→1	1	Session 3	(3,2)-	→(3,1)→1	2
Session 4	(4,1)-	→ (4,1)→1	1	Session 4	(7,3)-	→ (7,3) → 3	3
Session 5	(1,7)-	→(1,7) → 1	1	Session 5	(7,3)-	→ (7,2) → 2	1
(.,.) show 1 3-person g		min of	6-person	group	Table 7.29	, Camerer (BG⁻	Г 2003)

2023/5/3

Coordination

Weak-Link Game: Bonus

- Camerer and Knez (SMJ 1994): 2nd Treatment
 - Announce a bonus of \$0.20/\$0.50 if all choose 7
 - Additional bonus + announcement (beyond implicit gains if all choose 7)
- Results: 90% choose 7 in next period
 - Compared to 85% choose 1-2 last period
- Confirms Knez and Simester (JLE 2001)
 - Why group-level bonuses work so well

<u>Weak-Link Game: Leadership</u>

- Weber, Camerer, Rottenstreich & Knez (OS 2001)
- ▶ Play in large (*n*=8-10) or small (*n*=2) group
 - Each choose $s_i = 0, 1, 2, 3$
 - ▶ Payoff = $2.50 + 1.25 \times [\min s_i 1] s_i$ - 0.25 × 1{min s_i = 0}
- After 2 rounds, randomly select a leader
 Makes short speech to encourage more effort
 Then, rate leader before/after 5 more rounds
- Attribute success to leadership personalities?

Weak-Li	Weak-Link Game: Leadership											
Effort	La	arge (1	n=8-1	0)			Small ((<i>n</i> =2)				
Level	0	1	2	3		0	1	2	3			
Round 1-2	25%	24%	20%	32%		5%	24%	26%	45%			
Leadership	Ratir	ıg (be	fore)	5.88		Ratir	fore)	5.80				
Round 3-8	47%	4%	-	49%								
Leadership	Rati	ng (af	ter)	4.53		Rati	ing (af	ter)	6.17			

Table 7.30, Camerer (BGT 2003)

- Confirm Nisbett and Ross (bk 1991)
 - Attribute too much cause of success/failure to leadership personalities

Median-Action Game

- ▶ Van Huyck, Battalio and Beil (QJE 1991)
- In a team of n = 9, you choose effort $X_i = 1-7$
- Earnings depend on your own effort, and
 The median effort *M* of your team
- Payoff = 70 + 10 × $(M 1) 5 × (X_i M)^2$


Team Project Payoff Cost of Non-Conformity

- Situations where players prefer to conform
 - Example: Prefer to not work too hard or too little

▶ Maximin $X_i = 3$ vs. Payoff-dominant $X_i = 7$

Ν	Median-Action Game: Van Huyck et al. (QJE1991)												
	▶ Payoff (¢) = 70 + 10 × $(M-1) - 5 × (X_i - M)^2$												
I	Team Median Deviation from M												
	Your		Median Value of X_j in the team										
	X_i	7	6	5	4	3	2	1					
	7	130	115	90	55	10	-45	-110					
	6	125	120	105	80	45	0	-55					
I	5	110	115	110	95	70	35	-10					
	4	85	100	105	100	85	60	25					
	3	50	75	90	95	90	75	50					
	2	5	40	65	80	85	80	65					
20	1	-50	-5	30	55	70	75	70					

Median-Action Game Results

2023/5/3

Coordination

\mathbf{N}	Median-Action Game (γ): Original													
	► Payoff (¢) = 70 + 10 × $(M - 1) - 5 × (X_i - M)^2$ Team Median Deviation from M													
	Your		Median Value of X_j in the team											
	X_i	7	6	5	4	3	2	1						
	7	130	115	90	55	10	-45	-110						
	6	125	120	105	80	45	0	-55						
	5	110	115	110	95	70	35	-10						
	4	85	100	105	100	85	60	25						
	3	50	75	90	95	90	75	50						
	2	5	40	65	80	85	80	65						
20	1	-50	-5	30	55	70	75	70						

Median-Action Game (ω): non-BR $\pi = 0$ Maximin no longer $X_i = 3$

Your		Median Value of X_j in the team										
X_i	7	6	5	4	3	2	1					
7	130	0	0	0	0	0	0					
6	0	120	0	0	0	0	0					
5	0	0	110	0	0	0	0					
4	0	0	0	100	0	0	0					
3	0	0	0	0	90	0	0					
2	0	0	0	0	0	80	0					
1	0	0	0	0	0	0	70					

Median-Action Game Results: Round 1								
	Game (<i>Y</i>)		Game (a)	Game (ϕ)			
X_i	Principle	round 1	Principle	round 1	Principle	round 1		
7	Payoff-Dom.	15%	Payoff-Dom.	52%	-	8%		
6	-	7%	-	4%	-	11%		
5	-	28%	-	33%	-	33%		
4	-	35%	-	11%	Maximin	41%		
3	Maximin	15%	-	-	-	8%		
2	-	-	-	-	-	-		
1	-	-	-	-	-	-		
	(2 modes in red/pink) Table 7.33, Camerer (BGT 2003)							
2023/5/3			Coordination		Joseph Tao-yi Wang			

Median-Action Game (γ): Original										
	• Payoff (ϕ) = 70 + 10 × (M - 1) - 5 × ($X_i - M$) ²									
	Your		Median Value of X_j in the team							
	X_i	7	6	5	4	3	2	1		
	7	130	115	90	55	10	-45	-110		
	6	125	120	105	80	45	0	-55		
	5	110	115	110	95	70	35	-10		
	4	85	100	105	100	85	60	25		
	3	50	75	90	95	90	75	50		
	2	5	40	65	80	85	80	65		
20	1	-50	-5	30	55	70	75	70		

Median-Action Game (ϕ)

20

• Payoff (¢) = 70 + $\frac{10 \times (M-1)}{M}$ -	$-5 \times (X_i - M)^2$
	Deviation from M

Your	Median Value of X_j in the team								
X_i	7	6	5	4	3	2	1		
7	70	65	50	25	-10	-55	-110		
6	65	70	65	50	25	-10	-55		
5	50	65	70	65	50	25	-10		
4	25	50	65	70	65	50	25		
3	-10	25	50	65	70	65	50		
2	-55	-10	25	50	65	70	65		
1	-110	-55	-10	25	50	65	70		

Median-Action Game Results: Round 1								
	Game (γ)	Game (w)	Game (ϕ)			
X_i	Principle	round 1	Principle	round 1	Principle	round 1		
7	Payoff-Dom.	15%	Payoff-Dom.	52%	_	8%		
6	-	7%	-	4%	-	11%		
5	In hotwoon	28%	-	33%	_	33%		
4	In-between	35%	-	11%	Maximin	41%		
3	Maximin	15%	-	-	- 1	8%		
2	-	-			- Duin sinles	-		
1	-	-	FOIIOW	Singi	e Principles			
	(2 modes in red/pink) Table 7.33, Camerer (BGT 2003)							
2023/	/5/3		Coordination	Joseph Tao-yi Wang				