Learning: Reinforcement, Fictitious Play and EWA 學習理論: 制約、計牌與EWA

Joseph Tao-yi Wang (王道一) Lecture 9, EE-BGT

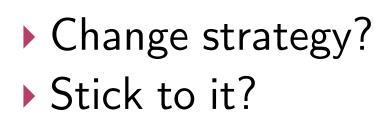
Learning in Games

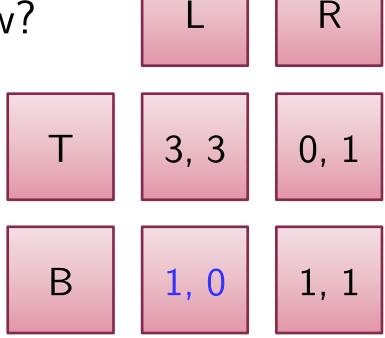
Outline: Learning

- 1. Learning: What you do after you see "results"...
- 2. What we know now: (various learning rules)
 - 1. Reinforcement
 - 2. Belief learning
 - 3. EWA: a hybrid of reinforcement and belief learning
 - 4. Others: Evolutionary, anticipatory learning, imitation, learning direction theory, rule learning,...
- 3. Further research:
 - 1. Beyond: New direction for research in learning
 - 2. Application: How can we use these tools?

<u>What you do after you see...</u>

- Suppose you are playing Stag Hunt
- (B, L) happened last time
- What would you do now?





Learning in Games

What you do after you see...

- A robot (pre-programmed) would stick to it
 - Evolutionary approach
- But humans think twice
- How would you switch?
- Reinforcement:
 - Choices "reinforced" by previous payoffs
 - Very bad" reasoning



Reinforcement Learning

 Update attractions (tendency to play a certain strategy) after given history

Reinforcement:

- Choices "reinforced" by previous payoffs
- \blacktriangleright Allow spillovers to "neighboring strategies" ϵ
- Example: (cumulative reinforcement)

$$\underline{A^B(t)} = \varphi \underline{A^B(t-1)} + (1-\epsilon) \cdot \mathbf{1}$$
$$\underline{A^T(t)} = \varphi \underline{A^T(t-1)} + \epsilon \cdot \mathbf{1}$$

Reinforcement Learning

(More General) Cumulative Reinforcement:

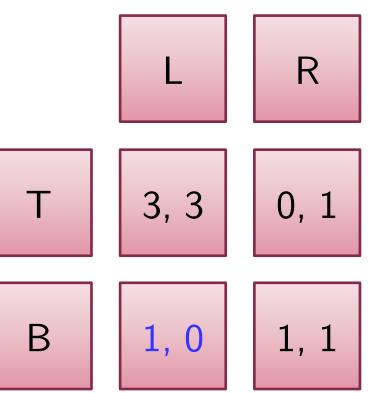
$$A^B(t) = \varphi A^B(t-1) + (1-\epsilon) \cdot 1 \cdot [1-\rho(t-1)]$$
$$A^T(t) = \varphi A^T(t-1) + \epsilon \cdot 1 \cdot [1-\rho(t-1)]$$

- Alternatively,
- Weighted Average Reinforcement

$$\frac{A^B(t)}{A^T(t)} = \varphi A^B(t-1) + (1-\varphi) \cdot (1-\epsilon) \cdot 1$$
$$\frac{A^T(t)}{A^T(t)} = \varphi A^T(t-1) + (1-\varphi) \cdot \epsilon \cdot 1$$

What "else" could you do...

- Would you update your beliefs about what others do"?
 - Belief learning models
- Fictitious Play
 - Keep track of frequency
 - Ex: rock-paper-scissors
- Cournot Best-Response
 - What you did last time is what you'll do now



Weighted Fictitious Play

- Other weights? Weighted fictitious play
 - Fictitious play: weigh all history equally ($\rho = 1$)
 - Cournot: focus only on the last period ($\rho = 0$)
- Prior:
 - ▶ $P_{t-1}(L) = 3/5$, $P_{t-1}(R) = 2/5$

Posterior:

- P_t(L) = (3 ρ + 1) / (5 ρ + 1)
 P_t(R) = (2 ρ + 0) / (5 ρ + 1)
- $\rho = \text{decay factor}$

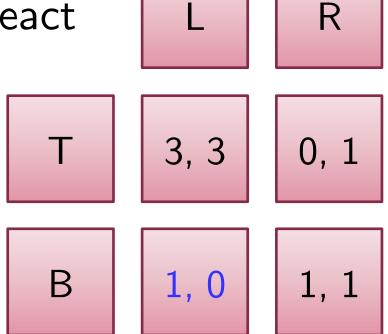
Weighted Fictitious Play

- Posterior:
 - $P_t(L) = (3 \rho + 1) / (5 \rho + 1)$ • $P_t(R) = (2 \rho + 0) / (5 \rho + 1)$
- Use this belief to compute payoffs and use them as attractions:
 - A^T(t) = [3 (3 ρ + 1) + 0 (2 ρ + 0)] / (5 ρ + 1)
 A^B(t) = [1 (3 ρ + 1) + 1 (2 ρ + 0)] / (5 ρ + 1)

Note: Actually payoff received play no role

Could you being doing both?

- Reinforcement does not update beliefs
 - But people do update!
- Fictitious play doesn't react to actual payoffs
 - But people do respond
- EWA: a hybrid of two
 - Camerer and Ho (Econometrica, 1999)



Learning in Games

Experience-Weighted Attraction

- N(t): Experience Weight (weakly increasing) $N(t) = \varphi(1-\kappa)N(t-1) + 1, N(t) \le \frac{1}{1-\varphi(1-\kappa)}$
- Attraction (for chosen action B)
 - $A^{B}(t) = [\varphi N(t-1)A^{B}(t-1) + 1]/N(t)$
- For unchosen action T, add δ :
 - Weight players give to foregone payoffs from unchosen strategies
 - Law of effect vs. Law of simulated effect $A^{T}(t) = [\varphi N(t-1)A^{T}(t-1) + 3\underline{\delta}]/N(t)$

EWA Special Case: Reinforcement

- $A^B(t) = [\varphi N(t-1)A^B(t-1) + \pi(B,L)]/N(t)$
- $A^T(t) = [\varphi N(t-1)A^T(t-1) + \pi(T,L)\underline{\delta}]/N(t)$ where $N(t) = \varphi(1-\kappa)N(t-1) + 1$
- Becomes Reinforcement if $\delta = 0, N(0) = 1$
- (Simple) cumulative reinforcement: $\kappa = 1$
 - N(t) = 1 for all t
- (Weighted) average reinforcement: $\kappa = 0$

• Weights are $\frac{\varphi}{\varphi+1}$ and $\frac{1}{\varphi+1}$

EWA Special Case: W. Fictitious Play

- $A^B(t) = [\varphi N(t-1)A^B(t-1) + \pi(B,L)]/N(t)$
- $A^T(t) = [\varphi N(t-1)A^T(t-1) + \pi(T,L)\underline{\delta}]/N(t)$ where $N(t) = \varphi(1-\kappa)N(t-1) + 1$
- \blacktriangleright Weighted Fictitious Play if $\delta=1,\kappa=0$
 - Good Homework exercise...
 - Hint: Since $N(t) = 1 + \varphi + \varphi^2 + \dots + \varphi^{t-1}$
 - Posterior is

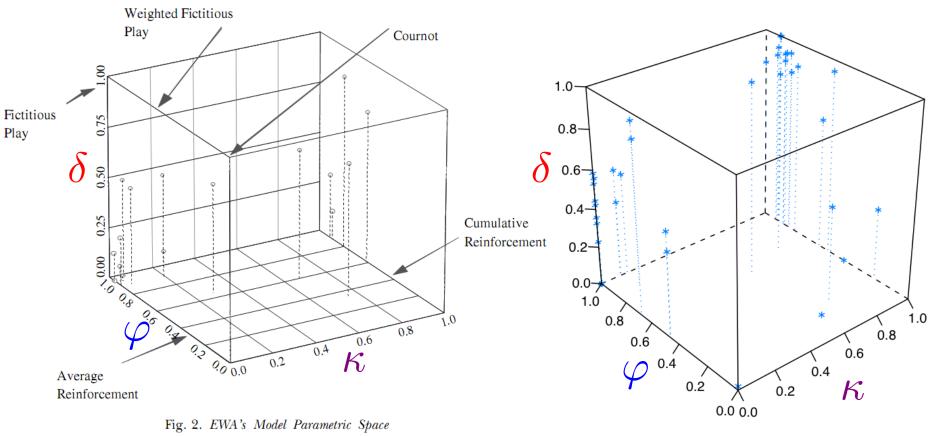
$$P_t(L) = \frac{I(L, h(t)) + (\varphi + \cdots \varphi^{t-1}) \cdot P_{t-1}(L)}{1 + \varphi + \cdots \varphi^{t-1}}$$

EWA Special Case: W. Fictitious Play

- $A^B(t) = [\varphi N(t-1)A^B(t-1) + \pi(B,L)]/N(t)$
- $A^T(t) = [\varphi N(t-1)A^T(t-1) + \pi(T,L)\underline{\delta}]/N(t)$ where $N(t) = \varphi(1-\kappa)N(t-1) + 1$
- \blacktriangleright Weighted Fictitious Play if $\delta=1,\kappa=0$
 - Fictitious Play: $\varphi = 1$
 - Cournot best-response: $\varphi = 0$

Learning in Games

EWA Cube: Camerer, Wang, Ho (EJ 08) vs. Wang, Knoepfle, Camerer (JEEA 09)



• δ : Attraction weight on foregone payoffs

• φ : Decay of previous attractions; κ : Growth rate of attractions

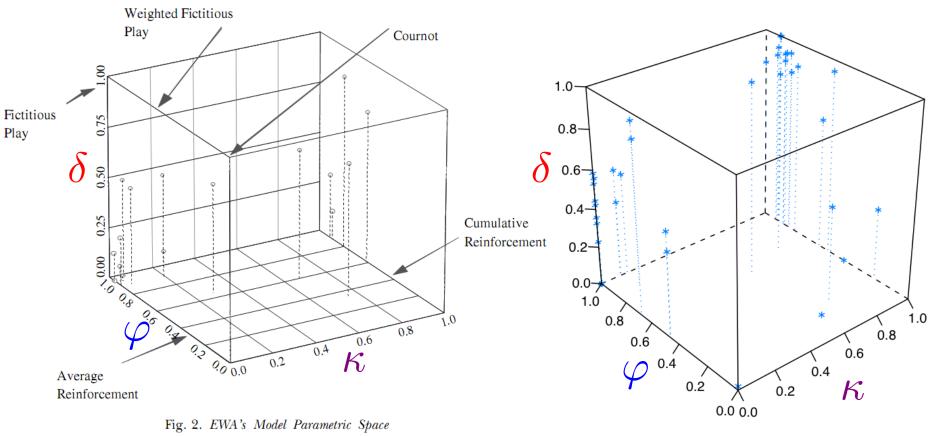
2023/4/18

Learning in Games

Interpretation of EWA Parameters

- δ : Attraction weight on foregone payoffs
 - Diff. between received vs. opportunity gains
- κ: The rate attractions grow
 Cumulative vs. Average
- N(t): The strength of initial attractions
 (in units of "experience-equivalence")
- φ : Weight in N(t)
 - Decay of previous attractions

EWA Cube: Camerer, Wang, Ho (EJ 08) vs. Wang, Knoepfle, Camerer (JEEA 09)



• δ : Attraction weight on foregone payoffs

• φ : Decay of previous attractions; κ : Growth rate of attractions

2023/4/18

Learning in Games

Prediction Power of EWA

- EWA generally improves accuracy in about 35 games (except for mixed ones)
 - See Camerer and Ho (book chapter, 1999)
 - Long version of the Econometrica paper?
- BGT, Ch. 6 provides two examples:
 - Continental Divide
 - p-Beauty Contest

Prediction Power of EWA

- Overfitting: Too many parameters?
- Can be tested:
 - LR test: Restricted fit vs. Unrestricted
- Better Out-of-sample Prediction Power:
 - Estimate parameters and predict "new data"
 - Not prone to overfitting (because of new data)
- ▶ 1-parameter self-tuned EWA works too:
 - This EWA-Lite does as good as reinforcement or fictitious play, even on data with new games

Other Learning Rules

- Other rules include:
- Anticipatory learning (Sophistication):
 - Sophisticated players are aware that others are learning – BR to Cournot, etc. (level-k)
 - ▶ Soph. EWA: Camerer, Ho, Chong (JET 2002)
- Imitation: Imitate average or "best" player
- Learning direction theory: Move toward BR
- Rule learning: Learn which "rule" to use
 Stahl (GEB 2000)

Further Research

- Here is where we stand.
- Are there new direction for research in learning?
 - How does information acquisition help us study how people learn?
 - Learning direction theory and imitation are still loose ends to be filled

Holy Grail: How do people "actually" learn?

Further Research

- How can we use these tools?
- Econometric Properties of learning rules:
 - Salmon (Econometrica 2001): Simulate data via certain learning rules and estimate them
 - Identification is bad for mixed strategy equilibrium and games with few strategies
 - EWA estimation does well on δ ; others okay only for 1000 periods (but not 30 periods)
- Can use this to test designs

Conclusion

- Learning: How people react to past history
- Reinforcement
- Belief Learning
 - Fictitious play, Cournot, etc.
- EWA: a Hybrid model
 - Performs better even out-of-sample
- Design tests: simulate and estimate