Experimetrics: Power Analysis

實驗計量:統計檢定力分析

Joseph Tao-yi Wang (王道一) EE-BGT, Lecture 1

2023/2/21

Experimetrics: Power Analysis

Joseph Tao-yi Wang

Outline: The Replication Size Trinity

- 1. Sample Size n: # of observations/subjects
- 2. Effect Size: How big is the true result
- 3. Power $(1-\beta)$: How likely will your test show significance if there is truly an effect

2023/2/21

Experimetrics: Power Analysis

Why Do We Care About This?

- ▶ Editor's Preface (<u>JEEA 2015</u>):
 - ▶ A necessary (but not sufficient) condition for publishing a replication study or null result
 - will be the presentation of power calculations.
- ▶ Test Resolution: Pr(confirm | infected patient)
 - ▶ In 2020, Taiwan requires 3 consecutive negatives to discharge for COVID-19, since even PCR has insufficient power (around 70%)...
- ▶ But what about structural estimation?

023/2/21

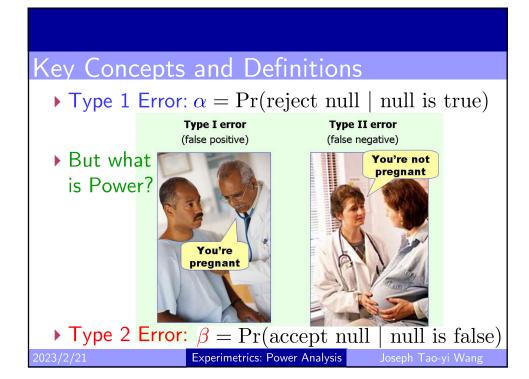
Experimetrics: Power Analysis

Joseph Tao-yi Wang

Key Concepts and Definitions

- ▶ Treatment Test:
 - ightharpoonup Null ($H_0: heta = heta_0$) Hypothesis No Effect!
 - lacktriangle Alternative ($H_1: heta = heta_1$) Hypothesis Effective!
- ▶ Effect Size $(\theta_1 \theta_0)$: True size of effect
- ▶ Alternative Hypothesis can be Directional:
 - ▶ One-sided Alternative One-tailed test
 - Usually comes from prior beliefs based on theory
 - ▶ Two-sided Alternative Two-tailed test

2023/2/21


Experimetrics: Power Analysis

Key Concepts and Definitions

- ▶ Two Stages of the Treatment Test:
 - 1. Compute Test Statistic of sample size n
 - 2. Compare Test Statistic with null distribution
- ▶ Rejection Region = Tail of null distribution
 - of a Size $\alpha = \Pr(\text{reject null} \mid \text{null is true})$
 - ▶ Critical Value: Rejection region starting point
- ▶ p-value = $\Pr(|T| \ge T_{CV}| \text{ null is true})$
 - p < 0.05 vs. p < 0.01/0.001 (strength of evidence)
 - ▶ Evidence vs. Strong/Overwhelming Evidence

023/2/21

Experimetrics: Power Analysis

Key Concepts and Definitions

- ▶ Type 1 Error: $\alpha = \Pr(\text{reject null} \mid \text{null is true})$
- ▶ Type 2 Error: β = Pr(accept null | null is false)
- ▶ Power(π): 1β = Pr(reject null | null is false)
 - 1. True effect size $\theta_1 \theta_0$ (and one/two-tailed)
 - 2. Sample size n
 - 3. Size of the test lpha
- ▶ Trade-off: The higher α/n , the higher is π
 - 1. Power Analysis: Compute power $\pi=1-\beta$, or
 - 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$

2023/2/21

Experimetrics: Power Analysis

Joseph Tao-yi Wang

Choosing the Value of α

- ▶ How big can we allow Type 1 Error
- ▶ To convict a crime suspect,
 - ▶ Null Hypothesis: Not Guilty
 - ▶ Alternative Hypothesis: Guilty
 - ▶ Type 1: $\alpha = \Pr(\text{convict} \mid \text{innocent suspect})$
 - ▶ Type 2: β = Pr(acquit | guilty suspect)e)
- ▶ Type 1 Error more serious than Type 2 Error
 - lacktriangle Choose very low lpha at the expense of power:

 $1 - \beta = \Pr(\text{convict} \mid \text{guilty suspect})$

2023/2/21

Experimetrics: Power Analysis

Choosing the Value of α

- ▶ How big can we allow Type 1 Error
- ▶ To test for COVID-19,
 - ▶ Null Hypothesis: Healthy
 - ▶ Alternative Hypothesis: Infected by COVID-19
 - ▶ Type 1: $\alpha = \Pr(\text{confirm} \mid \text{healthy patient})$
 - ▶ Type 2: β = Pr(discharge | infected patient)
- ▶ Type 2 Error more serious than Type 1 Error
 - \blacktriangleright Choose a higher α so get higher power:
 - $1 \beta = \Pr(\text{confirm} \mid \text{infected patient})$

Experimetrics: Power Analysis

Choosing the Value of α

- ▶ Type 1 $\alpha = \Pr(\text{confirm} \mid \text{healthy patient})$
- ▶ Type 2 β = Pr(discharge | infected patient)

▶ Both errors not fatal in Experimental

Economics,

Convention is:

$$\alpha = 0.05$$

$$\pi = 1 - \beta = 0.80$$

$$\beta = 0.20$$

病人真的生病,

檢驗結果卻為陰

病人真的沒生病, 檢驗也確實為陰性

Treatment Testing Toolkit

- ▶ One-sample t-test
 - ▶ Does WTP = £3 (= retail value of coffee mug)?
- ▶ Two-sample t-test (with equal variance)
 - ▶ If passes variance ratio test
 - ▶ Can be done using OLS!
- ▶ Two-sample t-test (with unequal variance)
 - ▶ If fails variance ratio test
 - Skewness-kurtosis test
- ▶ Need CLT: Okay if sufficiently large $n \ge 30$?

2023/2/21

Experimetrics: Power Analysis

Joseph Tao-yi Wang

Treatment Testing Toolkit

- \blacktriangleright What if we do not have CLT/large n?
 - ▶ Use non-parametric tests instead!
- Mann-Whitney Test (aka ranksum test)
 - ▶ Between-subject non-parametric treatment test
- ▶ Kolmogorov-Smirnov (KS) Test
- Epps-Singleton Test (discrete KS test)
 - ▶ Tests comparing entire distributions

2023/2/21

Experimetrics: Power Analysis

Treatment Testing: WTP - WTA Gap

- ▶ What if we have within-subject data?
- ▶ Can use within-subject tests!
 - ▶ But, watch out for order effect...
- ▶ Paired t-test (assume CLT)
- Wilcoxon Signed Rank Test
 - Within-subject non-parametric treatment test
 - ▶ Assume symmetric distribution around median
 - (regarding paired difference). Without it, use:
- ▶ Paired-sample sign test

2023/2/21

Experimetrics: Power Analysis

Joseph Tao-yi Wang

Treatment Testing: WTP - WTA Gap

- Isoni et al. (AER 2011)
 - ▶ Replicate Plott and Zeiler (AER 2007), which
 - ▶ Replicate Kahneman et al. (JPE 1990) (KKT)
- ▶ Measure WTP and/or WTA
 - ▶ Becker–DeGroot–Marschak (BDM) mechanism
 - ▶ 2nd price auction against (randomizing) computer
- ▶ Treatment Test:
 - ▶ Does WTP or WTA = £3 (= retail value of the coffee mug)?

2023/2/21

Experimetrics: Power Analysis

Power Analysis: Theory

- 1. Power Analysis: Find test power $\pi=1-\beta$, or
- 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$
- ▶ One-sample t-test
 - ▶ Rarely used in experimental economics, but...
 - ▶ Isoni et al. (2011) test WTP of coffee mug = £3
- lacktriangledown Y: Continuous outcome measure with mean μ
 - Null Hypothesis: $H_0: \mu = \mu_0$
 - Alternative Hypothesis: $H_1: \mu = \mu_1 > \mu_0$
- ▶ Collect data of sample size n

Experimetrics: Power Analysis

Power Analysis: Theory

- 1. What is the power of this test?
- 2. How big should sample size n be?
- ▶ Test Size $\alpha = 0.05 = \Pr(\text{reject null} \mid \text{null is true})$
- ▶ Type 2 $\beta = 0.20 = Pr(\text{accept null} \mid \text{null is false})$
- Power $\pi = 1 \beta = 0.80$

- ▶ One-sample t-test

 ▶ Test Statistic: $t = \frac{\overline{y} \mu_0}{s/\sqrt{n}} \sim t(n-1)$
 - Reject if $t > t_{n-1,\alpha}$ $(t > z_{\alpha} \text{for large } n)$

Experimetrics: Power Analysis

Power Analysis: Power of the Test

$$\pi = \Pr(t > z_{\alpha} | \mu = \mu_{1}) = \Pr\left(\frac{\overline{y} - \mu_{0}}{s/\sqrt{n}} > z_{\alpha} \middle| \mu = \mu_{1}\right)$$

$$= \Pr\left(\overline{y} > \mu_{0} + z_{\alpha} \left(s/\sqrt{n}\right) \middle| \mu = \mu_{1}\right)$$

$$= \Pr\left(\frac{\overline{y} - \mu_{1}}{s/\sqrt{n}} > \frac{\mu_{0} + z_{\alpha} \left(s/\sqrt{n}\right) - \mu_{1}}{s/\sqrt{n}} \middle| \mu = \mu_{1}\right)$$

$$= \Phi\left(\frac{12 - 10 - 1.645 \left(5/\sqrt{30}\right)}{5/\sqrt{30}}\right)$$

$$= \frac{z_{\alpha} = 1.645, \ s = 5}{0.71}$$

$$= 0.71$$

$$= 0.71$$

What n is required to get $\pi = 0.80$?

Experimetrics: Power Analysis

Power Analysis: How Big Should n Be?

Power
$$\pi = 1 - \beta = \Phi\left(\frac{\mu_1 - \mu_0 - z_{\alpha}(s/\sqrt{n})}{s/\sqrt{n}}\right)$$

$$\Rightarrow z_{\beta} = \frac{\mu_1 - \mu_0 - z_{\alpha}(s/\sqrt{n})}{s/\sqrt{n}}$$

$$\Rightarrow z_{\beta} + z_{\alpha} = \frac{\mu_1 - \mu_0}{s/\sqrt{n}}$$

$$\Rightarrow z_{\beta} + z_{\alpha} = \frac{\mu_1 - \mu_0}{s/\sqrt{n}}$$

$$\Rightarrow n = \frac{s^2(z_{\alpha} + z_{\beta})^2}{(\mu_1 - \mu_0)^2} = \frac{5^2(1.645 + 0.842)^2}{(12 - 10)^2}$$

$$\Rightarrow n = \frac{5^2(z_{\alpha} + z_{\beta})^2}{(\mu_1 - \mu_0)^2} = \frac{5^2(1.645 + 0.842)^2}{(12 - 10)^2}$$

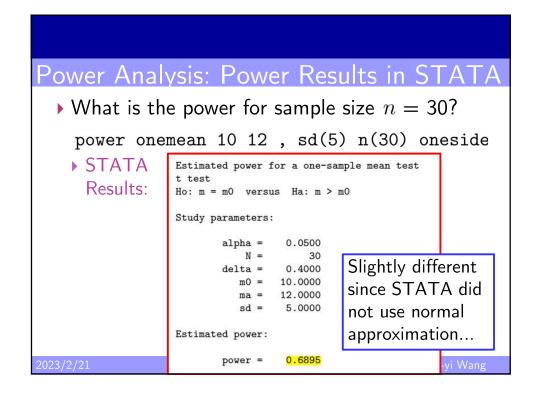
So we need $n \ge 39$

= 38.66

Experimetrics: Power Analysis Joseph Tao-yi Wang

```
Power Analysis: Power in STATA

• What is the power for sample size n=30?


• STATA command for power calculation

\mu_0/\mu_1
power onemean 10 12 , sd(5) n(30) oneside

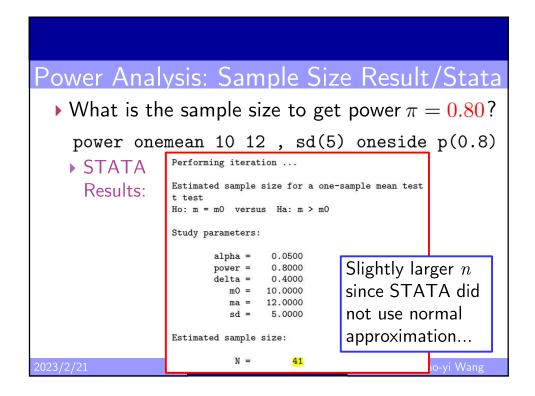
• sample std; sample size

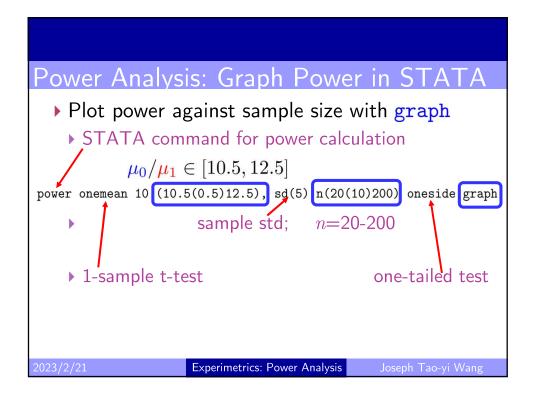
• 1-sample t-test

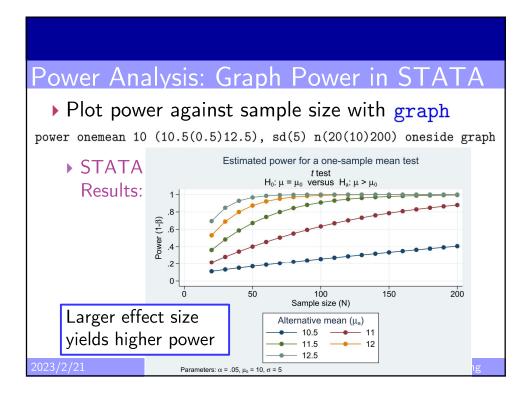
one-tailed test
```



```
Power Analysis: Sample Size in STATA


• What is the sample size to get power \pi = 0.80?


• STATA command for power calculation

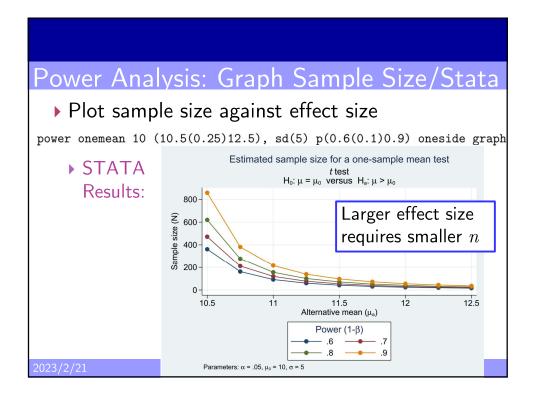

\mu_0/\mu_1
power onemean 10 12 , sd(5) oneside p(0.8)

• sample std; required power

• 1-sample t-test one-tailed test
```



```
Power Analysis: Graph Sample Size/Stata


• Plot sample size against effect size

• STATA command for power calculation

\mu_0/\mu_1 \in [10.5, 12.5]
power onemean 10 (10.5(0.25)12.5), sd(5) p(0.6(0.1)0.9) oneside graph

• sample std; power=0.6-0.9

• 1-sample t-test one-tailed test
```


Power Analysis: Two-sample t-test

- 1. Power Analysis: Find test power $\pi=1-\beta$, or
- 2. Find n to meet power requirement $\pi(n) \geq \overline{\pi}$
- ▶ Two-sample t-test
 - ▶ More common in experimental economics...
- μ_1 : Population mean of control group
- μ_2 : Population mean of treatment group
 - Null Hypothesis: $H_0: \mu_2 \mu_1 = 0$
 - Alternative Hypothesis: $H_1: \mu_2 \mu_1 = d$
- lacktriangle Collect data of sample size n_1 and n_2 from prior

Experimetrics: Power Analysis

Power Analysis: Two-sample t-test

- Test Size $\alpha = 0.05$ $\overline{y}_1, \overline{y}_2 = \text{sample means}$
- ▶ Type 2 $\beta = 0.20 = s_1^2, s_2^2 = \text{sample variances}$

Power
$$\pi=1-\beta=0.80$$

$$s_p=\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}} \text{ (pooled sample s.d. for equal variance)}$$

$$\text{Test} \qquad t=\frac{\overline{y}_2-\overline{y}_1}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim t(n_1+n_2-2)$$

$$\text{Statistic:} \qquad s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$$

Test
$$t = \frac{\overline{y}_2 - \overline{y}_1}{\sqrt{1 + \frac{1}{n^2}}} \sim t(n_1 + n_2 - 2)$$

- ▶ Reject if $t > t_{n_1+n_2-2,\alpha} (t > z_{\alpha} \text{ for large } n)$

Power Analysis: Two-sample t-test

- Equal sample size $\overline{y}_1, \overline{y}_2 = \text{sample means}$ $n_1 = n_2 = n$ $s_1^2, s_2^2 = \text{sample variances}$
- ▶ Pooled sample s.d. for equal variance is:

$$s_p = \sqrt{\frac{s_1^2 + s_2^2}{2}}$$

- ▶ Test $t=rac{\overline{y}_2-\overline{y}_1}{s_p\sqrt{rac{2}{n}}}\sim t(2n-2)$ ▶ Statistic: $s_p\sqrt{rac{2}{n}}$ ▶ Reject if $t>t_{2n-2,\alpha}$ $\left(t>z_{\alpha} \text{ for large } n\right)$

Experimetrics: Power Analysis

Power Analysis: Power of the Test

$$\pi = \Pr(t > z_{\alpha} | \mu_{2} - \mu_{1} = d)$$

$$= \Pr\left(\frac{\overline{y}_{2} - \overline{y}_{1}}{s_{p}\sqrt{2/n}} > z_{\alpha} \middle| \mu_{2} - \mu_{1} = d\right)$$

$$= \Pr\left(\overline{y}_{2} - \overline{y}_{1} > z_{\alpha}s_{p}\sqrt{2/n} \middle| \mu_{2} - \mu_{1} = d\right)$$

$$= \Pr\left(\frac{\overline{y}_{2} - \overline{y}_{1} - d}{s_{p}\sqrt{2/n}} > \frac{z_{\alpha}s_{p}\sqrt{2/n} - d}{s_{p}\sqrt{2/n}} \middle| \mu_{2} - \mu_{1} = d\right)$$

$$= \Phi\left(\frac{d - z_{\alpha}s_{p}\sqrt{2/n}}{s_{p}\sqrt{2/n}}\right)$$

Experimetrics: Power Analysis

Power Analysis: How Big Should n Be?

▶ Power
$$\pi = 1 - \beta = \Phi\left(\frac{d - z_{\alpha} s_{p} \sqrt{2/n}}{s_{p} \sqrt{2/n}}\right)$$

$$\Rightarrow z_{\beta} = \frac{d - z_{\alpha} s_{p} \sqrt{2/n}}{s_{p} \sqrt{2/n}}$$

$$\Rightarrow z_{\beta} + z_{\alpha} = \frac{d}{s_{p} \sqrt{2/n}}$$

$$\Rightarrow z_{\beta} + z_{\alpha} = \frac{d}{s_{p} \sqrt{2/n}}$$

$$\Rightarrow n = \frac{2s_{p}^{2} (z_{\alpha} + z_{\beta})^{2}}{d^{2}} = \frac{2(5^{2})(1.645 + 0.842)^{2}}{2^{2}}$$

$$\Rightarrow n = \frac{2s_{p}^{2} (z_{\alpha} + z_{\beta})^{2}}{d^{2}} = \frac{2(5^{2})(1.645 + 0.842)^{2}}{2^{2}}$$

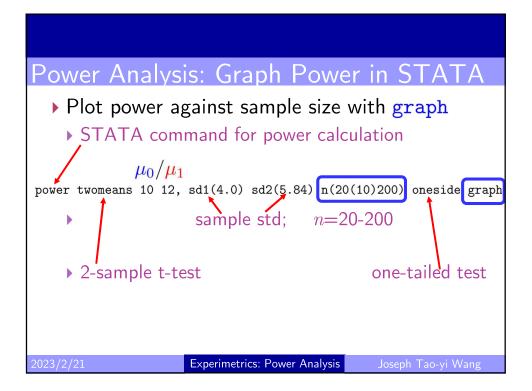
$$\Rightarrow So \text{ we need } n \geq 78$$

$$\Rightarrow \frac{77.32}{d} = \frac{2}{2}$$

023/2/21 Experimetrics: Power Ar

Experimetrics: Power Analysis Joseph Tao-yi Wang

Power Analysis: Sample Size in Stata


- What is the sample size to get power $\pi = 0.80$?
 - ▶ STATA command for power calculation


▶ 2-sample t-test one-tailed test

2023/2/21

Experimetrics: Power Analysis

```
Power Analysis: Sample Size Result/Stata
   • What is the sample size to get power \pi = 0.80?
power twomeans 10 12 , sd1(4.0) sd2(5.84) oneside p(0.8)
                      Performing iteration ...
     ▶ STATA
                      Estimated sample sizes for a two-sample means test
       Results:
                      Satterthwaite's t test assuming unequal variances
                      Ho: m2 = m1 versus Ha: m2 > m1
                      Study parameters:
                                    0.0500
                            alpha =
                                    0.8000
                            power =
                                               Slightly larger n
                                    2.0000
                            delta =
                                   10.0000
                              m1 =
                              m2 =
                                   12.0000
                                               since STATA did
                             sd1 =
                                    4.0000
                                               not use normal
                      Estimated sample sizes:
                                               approximation...
                               N =
                                      158
                       N per group =
```