Signaling 鶴立雞群賽局

Joseph Tao-yi Wang (王道一) Lecture 11, EE-BGT

- What have we learned up to now?
 - ► Camerer (BGT 2003) report Game Theory Experiments (test theory & inspire new theory)
- 1. Mixed-strategy Nash Equilibrium (MSE)
- 2. Subgame Perfect Equilibrium (SPE) 🙁
- 3. Bayesian Nash Equilibrium (BNE): (@@on)
- 4. Sequential Equilibrium (SE) (SE) (Itoday)
- Why theory works well in some situations?

- Why theory works well in simple situations?
- 1. Learning to play Nash?
- 2. Limited strategic reasoning
 - Backward Induction fails!
- 3. Initial response (level-k reasoning)
- Cannot detect deviations
- 5. Coordination & pre-game Communication

- ► Camerer (BGT 2003) purposely reported different classes of game theory experiments
- 1. Games of Social Preferences (Ch. 2)
- 2. MSE (Ch. 3)
- 3. Bargaining (Ch. 4)
- 4. SPE and dominant solvable games (Ch. 5)
- 5. Learning (Ch. 6)
- 6. Coordination (Ch. 7)
- 7. SE and Signaling and Reputation (Ch. 8)

- ▶ We also saw Risk and Time Preferences...
- What about Market Behavior? Applications?
- 1. Auction (auction chapter in EL)
- 2. Cheap Talk Games (and Lying)
- 3. Voting Games (special case of MSE!)
- 4. Market Design
- 5. Field Experiments
- 6. Prediction Markets and Bubbles

Signaling 鶴立雞群賽局

Joseph Tao-yi Wang (王道一) Lecture 11, EE-BGT

What Makes a Signal Work?

- ▶ A Signal must be affordable by certain types of people
 - Cost < Benefit (if receivers decodes it)</p>
- ▶ A signal must be too expensive for players of the wrong type to afford
 - Cost > Benefit (even if receivers decodes it)
- Separating Equilibrium: Those who buy and those who don't are of different types

What Makes a Signal Work?

- Separating Equilibrium consists of a circular argument:
- Signal senders
 - buy the signal anticipating receivers decode it
- Receivers
 - get assurance about sender types from the signal & act different with/without it
- ▶ This is a self-fulfilling prophecy
- ▶ Spence (Dissertation 1974)

Theory of Signaling

- Harsanyi (MS 1967-68)
 - ▶ Types: Privately observe a move of Nature
- Bayesian-Nash Equilibrium (simultaneous) or Perfect-Bayesian Equilibrium (sequential)
 - Separating Equilibrium
 - Pooling Equilibrium
 - Semi-pooling Equilibrium
- Refinements: Sequential, Intuitive, Divine, Universal Divine, Never-Weak-BR, Stable

Screening Experiment

- 1. CHT Telecom has 2 cell phone plans:
 - ▶ Plan A: NT\$1 per minute
 - ▶ Plan B: NT\$168 for 300 minutes, NT\$1.5 beyond
- 2. Your monthly usage (based on card received):
 - ▶ ♠ Spades: 0-100 minutes
 - ▶ ♥ Hearts: 200-300 minutes
 - ▶ ♦ Diamonds: 400-500 minutes
 - Clubs: 600-700 minutes
- 3. Which plan would you choose? Why?

Signaling Experiment

- 1. Suppose you are in...
 - ▶ National iDaiwan University: Graduates earn 35k
 - ▶ Private So-What University: Graduates earn 22k
- 2. In your senior year, you can choose to:
 - Take master entrance exam for National iDaiwan University: Graduates earn 40k, but need to repay tuition/cram school loans 5k monthly
- 3. Would you choose apply for a master? Why or why not?

Simple Signaling Game

- Brandts and Holt (AER 1992)
- Worker Types are H or L with (2/3, 1/3)
- Seeing own type, Workers can choose to Skip or Invest (in education)
- Seeing this action, Employer assign the worker to a D (dull) or C (challenging) job
- ▶ Employer payoffs are 125 if she assigns D to L types and C to H types

Simple Signaling Game

- ▶ Workers get 100 doing *C* and 20 doing *D*
 - ightharpoonup L types get additional 40 for taking action Skip
 - ▶ *H* types get 40 if take action *Invest*, 20 if *Skip*

Type	Action se	eing <i>Skip</i>	Action seeing <i>Invest</i>		
	C^{S}	D^{S}	C^{I}	D^I	
Type <u>L</u>	140, 75	60, 125	100, 75	20, 125	
Type <i>H</i>	120, 125	20 40, 75	140, 125	60,75	

Simple Signaling Game: Extensive Form

- Sequential Equilibrium: (S|H,S|L),(D|I,C|S)
- Beliefs: $\Pr(H|I) \le p_1 = \frac{1}{2}, \Pr(H|S) = \frac{2}{3}$

$$(140,125) \xrightarrow{C} 2 \text{ Invest 1 Skip 2 } C (120,125)$$

$$(60,75) \xrightarrow{D} \leq \frac{1}{2} \xrightarrow{H} \frac{2}{3} \xrightarrow{2} \xrightarrow{D} (20,75)$$

$$(100,75) \xrightarrow{C} \geq \frac{1}{2} \xrightarrow{L} \frac{1}{3} \xrightarrow{\frac{1}{3}} \xrightarrow{C} (140,75)$$

2 Invest 1 Skip

(20,125)

Simple Signaling Game: Extensive Form

- Intuitive Equilibrium: ((I|H,I|L),(C|I,D|S))
- Beliefs: $\Pr(H|I) = \frac{2}{3}, \Pr(H|S) \le p_1 = \frac{1}{2}$

$$(140,125) \leftarrow C = 2 \text{ Invest 1 } Skip = 2 \quad C \quad (120,125)$$

$$(60,75) \quad D \quad \frac{2}{3} \quad H \quad \frac{2}{3} \quad \leq \frac{1}{2} \quad D \quad (20,75)$$

$$(100,75) \quad C \quad \frac{1}{3} \quad L \quad \frac{1}{3} \quad \geq \frac{1}{2} \quad C \quad (140,75)$$

$$(20,125) \quad D \quad 2 \quad Invest 1 \quad Skip \quad 2 \quad D \quad (60,125)$$

Simple Signaling Game

- ▶ Two Pooling Equilibria:
- Sequential Equilibrium
 - lacktriangle Both Types choose Skip, Employers assign C
 - ▶ Out-of-equilibrium Belief: choosing *Invest* means *L*
 - lacktriangle Hence, Employers assign D if they see Invest
- ▶ Intuitive Equilibrium
 - lacktriangle Both Types choose Invest, Employers assign C
 - lacktriangle Out-of-equilibrium Belief: choosing Skip means $m{L}$
 - lacktriangle Hence, Employers assign D if they see Skip

100

Simple Signaling Game							
			Action Message		Equilibrium Predictions		
Periods	$I \mid H$	$I \mid L$	$C \mid I$	$D \mid S$	Intuit.	Seq.	
1-4	100	25	100	74	100	0	
5-8	100	58	100	100	100	0	
9-12	100	75	98	60	100	0	
Suggest Actions: $C \mid S, D \mid I$							
1-4	50	13	60	46	100	0	
5-8	75	33	33	67	100	0	

2021/5/14

Signaling

Joseph Tao-yi Wang

- Banks, Camerer and Porter (GEB 1994)
- Design 7 games, separating pooling equil. of:
 - Nash vs. non-Nash
 - Sequential vs. Nash
 - Intuitive vs. Sequential
 - Divine vs. Intuitive
 - Universal Divine vs. Divine
 - NWBR vs. Universal Divine
 - Stable vs. NWBR

Table X	K:Banks, (camerer	& Por	ter (C	PER18	994)
Game	More Refin	ed Less R	Pefined	Non-	Nash	N

2Sequential $61\% \rightarrow 71\%$

3 Intuitive $53\% \rightarrow 68\%$

4 Divine 28% → 38%

Universal $31\% \rightarrow 27\%$

 $30\% \rightarrow 15\%$

59% **→** 56%

56% **→** 76%

Nash

Stable

2021/5/14

 $13\% \rightarrow 24\%$

13% **→** 4%

16% **→** 8%

 $36\% \rightarrow 36\%$

 $30\% \rightarrow 33\%$

 $13\% \to 7\%$

Signaling

44% → 24%

 $26\% \rightarrow 5\%$

 $34\% \rightarrow 28\%$

56% → 54%

 $33\% \rightarrow 37\%$

 $40\% \rightarrow 52\%$

 $28\% \rightarrow 37\%$

Joseph Tao-yi Wang

150

150

180

120

90

120

300

- Results show that subjects do converge to the more refined equilibrium up to intuitive
- After that, subjects conform to neither
 - Except for possibly Stable vs. NWBR
- Is this a test of <u>refinements</u>, or a test of <u>equilibrium selection</u>?
- Exercise: Show how equilibria in Table 8.3 (adopted from Banks, Camerer and Porter, GEB 1994) satisfy corresponding refinements

- In game 2-6, different types send different messages (violating pooling equilibrium!)
 - No simple decision rule explains this
 - ▶ But weak dominance and 1 round IEDS hold
- ▶ Are people just level-1?
- Also, how does the convergence work?

- More studies on learning:
- ▶ Brands and Holt (IJGT 1993)
 - Subjects lead to play less refined equilibrium
 - Why? Initial random play produces history that supports the non-intuitive equilibrium
- ▶ Anderson and Camerer (ET 2000)
 - ▶ EWA yields $\delta = 0.54 (0.05)$;
 - Does better than choice reinforcement ($\delta = 0$) and weighted fictitious play ($\delta = 1$)

- ▶ Potters and van Winden (IJGT 1996)
 - Lobbying
- Cadsby, Frank & Maksimovic (RFS 1990)
 - Corporate Finance
- Cooper, Kagel, Lo and Gu (AER 1999)
 - ▶ Ratchet Effect
- Cooper, Garvin and Kagel (Rand/EJ 1997)
 - Belief Learning in Limit Pricing Signaling Games

Lobbying: Potters & van Winden (IJGT 1996)

- ▶ Lobby group is type t_1 or t_2 with (1-p, p)
- ▶ Lobby group can send a signal (cost c)
- ▶ Politician chooses action x_1 or x_2 (match type)

Type	No Signal		Costly Signal		
	x_{1}	$x_{\!\scriptscriptstyle \mathcal{Q}}$	x_{1}	x_{2}	
$t_1 (1-p)$	0 , <i>b</i> ₁	a_1 , 0	$-c$, b_1	a_1 - c , 0	
$t_{2}(p)$	0, 0	$a_{\it 2}$, $b_{\it 2}$	<i>-c</i> , 0	a_{2} – c , b_{2}	

Lobbying: Pooling Equilibrium

- ▶ Equilibrium: $\Big((Not|t_1,Not|t_2),(x_1|Send,x_1|Not)\Big)$ ▶ Beliefs: $\Pr(t_2|Not) = p = \Pr(t_2|Send)$

$$(0, b_1)$$
 x_1 R Not S Send R x_1 $(-c, b_1)$ $(a_1, 0)$ x_2 t_1 $(1-p)$ x_2 $(a_1-c, 0)$ $(0, 0)$ x_1 t_2 p x_1 $(-c, 0)$ (a_2, b_2) x_2 R Not S Send R x_2 (a_2-c, b_2)

Lobbying: Semi-Pooling Equilibrium

$$\begin{pmatrix} (\beta S + (1 - \beta)N|t_{1}, S|t_{2}), ((1 - \alpha)x_{1} + \alpha x_{2}|S, x_{1}|N) \\ \bullet \text{ Beliefs: } \Pr(t_{2}|N) = 0; \Pr(t_{2}|S) = \frac{p}{p + (1 - p)\beta} \\ (0, b_{1}) < x_{1} & \text{R} & Not & \text{S} & Send & \text{R} & x_{1} - \frac{c}{a_{1}}(-c, b_{1}) \\ (a_{1}, 0) < x_{2} & t_{1} & (1 - p) & x_{2} - \frac{c}{a_{1}}(a_{1} - c, 0) \\ (0, 0) < x_{1} & t_{2} & p & \frac{1 - \frac{c}{a_{1}}}{x_{1}} - \frac{c}{a_{1}}(-c, 0) \\ (a_{2}, b_{2}) < x_{2} & \text{R} & Not & \text{S} & Send & \text{R} & x_{2} - \frac{c}{a_{1}}(a_{2} - c, b_{2}) \\ \end{pmatrix}$$

Lobbying

- For $\beta = \frac{pb_2}{(1-p)b_1} < 1$; there are 2 equilibrium:
- Pooling: Lobby groups both don't send signal
- lacktriangle Politician ignores signal and chooses x_1
 - Intuitive, divine, but not universally divine
- ightharpooling: type t_2 always send signal
- Politicians mix x_1/x_2 @ $(1-c/a_1,\ c/a_1)$ if signal
- type t_1 mixes by sending signal with prob. β
 - Universally divine

Lobbying

Treat	Signal Freq. (t_1, t_2)			x_2 Freq. (no sig., sig)		
ment	β	Actual	Pred.	c/a_1	Actual	Pred.
1	0.25	38, 76	25,100	0.25	2, 5	0,25
2(2c)	0.75	46,100	75 ,100	0.25	3, 79	0,25
2a(6c)	0.75	83, 93	75 ,100	0.25	11, 54	0,25
3	0.25	16, 85	25,100	0.75	0, 53	0,75
4	0.75	22, 83	75 ,100	0.75	5, 80	0,75
Avor	0.25	27, 81	25,100	0.25	5, 46	0,25
Aver.	0.75	50, 92	75 ,100	0.75	2, 66	0,75

Lobbying

- Supporting universally divine equilibrium
- Fictitious Play Learning:
 - ▶ Past frequency of x_2 after signal is $r(m)_{t-1}$
- ▶ Should signal if $[r(m)_{t-1} a_1 c] > 0$
 - ▶ Subjects signal 46% if >0, 28% if <0
 - ▶ Politicians choose x_2 77% if >0, 37% if <0
- ▶ Potters and van Winden (JEBO 2000)
 - Similar results; little difference between students and professionals

Corporate Finance

- Cadsby, Frank & Maksimovic (RFS 1990)
- Firms are either H or L with (50%, 50%)
 - Worth B_H , B_L if carry project
 - lacktriangle Worth A_H , A_L if pass
- ▶ Need capital *I* to finance the project
- lacktriangle Investors can put up I and get S shares
- Exercise: When will there be pooling, separating, and semi-separating equilibria?

Corporate Finance

- Example:
- ▶ L types worth 375/50 with/without project
- ▶ *H* types worth 625/200 with/without project
- ightharpoonup Capital I = 300
- Separating equilibrium: S = 0.80
- Pooling equilibrium: S = 0.60
- Semi-pooling equilibrium: S = 0.68
- Exercise: Show that these are equilibria!

Corporate Finance

- ▶ Cadsby et al. ran 10 sessions (Table 8.11)
- Results support equilibrium (pooling if multi.)
 - When unique pooling: all firms offer shares
 - ▶ When unique separating: Initially, both offer (pool), but H types learn not to offer (separate)
 - When multiple: Converge to pooling equilibrium
- Cadsby, Frank and Maksimovic (RFS 1998)
 - ▶ Add costly signals (see Table 8.12 for results)

Ratchet Effect

- Cooper, Kagel, Lo and Gu (AER 1999)
- Firms are either H or L with (50%, 50%)
- ▶ Choose output level 1-7
- Planner choose easy or tough target
 - ▶ Set easy if $Pr(L \mid output) > 0.325$
- ▶ Pooling Eq: L chooses 1 or 2; H pools with L
- Myopic K firms: Naively pick 5 (& get tough)
 - ▶ Exercise: Prove these with payoffs in Table 8.13.

Ratchet Effect

- ▶ 70-90% *L* firms choose 2
- ▶ Most *H* firms choose 2 or 5
- ▶ Period 1-12: 54-76% myopic →80% tough
- ▶ Period 13-36: Convergence to pooling
- Big context effect only for Chinese manager
 - Provides language to foster learning from experience
- Cooper, Garvin and Kagel (Rand/EJ 1997)
 - ▶ Belief Learning in Limit Pricing Signaling Games

Reputation Formation

- Camerer and Weigelt (Econometrica 1988)
- ▶ 8 period trust game
- ▶ Borrower: Normal (X) or Nice (Y)
- ▶ (New) Lender each period: Lend or Don't
- lacksquare Borrower chooses to Default or Repay
 - \blacktriangleright Normal types Default; Nice types Repay

Reputation Formation

Lender	Borrower	Lender	Borrower Payoff		
Strategy	Strategy	Payoff	Normal (X)	Nice (Y)	
Lend	Default	-100	150	0	
	Repay	40	60	60	
Don't	-	10	10	10	

Reputation Formation

- What does the equilibrium look like?
- ▶ Last Period: Lend if $P_8(Nice) > \tau = 0.79$
 - \blacktriangleright Normal borrowers Default; Nice ones Repay
- Period 7:
 - Normal borrowers weigh between Default now (and reveal) and Default later

Conditional Frequency of Lending

Round		1	2	3	4	5	6	7	8
3-5	Predict	100	100	100	100	64	64	64	64
J-5	Actual								
6-8	Predict	100	100	100	64	64	64	64	64
0-0	Actual							64	
9-10	Predict	100	100	100	64	64	64	64	64
	Actual								

2021/5/14

Conditional Frequency of Lending

Conditional Frequency of Lending									
Round		1	2	3	4	5	6	7	8
3-5	Predict	100	100	100	100	64	64	64	64
3-3	Actual	94	96	96	91	72	59	38*	67
6-8	Predict	100	100	100	64	64	64	64	64
0-0	Actual	96	99	100	95*	85*	72	58	47
9-10	Predict	100	100	100	64	64	64	64	64
	Actual	93	92	83	70	63	72	77	33

2021/5/14

Conditional Frequency of Repay (by X)

Round		1	2	3	4	5	6	7	8
3-5	Predict	100	100	100	81	65	59	44	0
	Actual								
6-8	Predict	100	100	73	68	58	53	40	0
0-0	Actual							44	
0.10	Predict	100	100	73	67	63	56	42	0
9-10	Actual								

Conditional Frequency of Repay (by X)

Conditional Frequency of Repay (by A)										
Round		1	2	3	4	5	6	7	8	
3-5	Predict	100	100	100	81	65	59	44	0	
3-3	Actual	95	97	98	95*	86*	72	47	14	
6-8	Predict	100	100	73	68	58	53	40	0	
0-0	Actual	97	95	97*	92*	85*	70*	48	0	
9-10	Predict	100	100	73	67	63	56	42	0	
9-10	Actual	91	89	80	77	84*	79*	48	29	

2021/5/14

Follow-up Studies

- ▶ Neral and Ochs (Econometrica 1992)
 - Similar repeated trust games
- Jung, Kagel and Levin (Rand 1994)
 - ▶ Entry deterrence in chain-store paradox
- ▶ Camerer, Ho and Chong (JET 2002)
 - Sophisticated EWA (strategic teaching!)

Conclusion

- Cooper, Garvin and Kagel (EJ 1997)
 - "We do not suggest that game theory be abandoned, but rather as a descriptive model that it needs to incorporate more fully how people actually behave."
- Possible improvements:
- QRE, level-k or Cognitive Hierarchy
- Learning (EWA or belief learning)

Conclusion

The End

Applying for Economics Graduate School

An Example of Signaling

Questions

- 1. What should I apply? MBA or Econ PhD?
- 2. What's the most important factor if I apply?
- 3. Are foreigners/females discriminated against?
- 4. Is mathematics needed in graduate school?
- 5. Is MA (at NTU) required before PhD?
- 6. How should I prepare myself now?

What Program Should I Apply?

- ▶ MBA or Econ PhD?
 - ▶ This depends on Your Career Interest
- ▶ However, MBA is not for newly graduates
 - MBA is designed for people who have worked for years and are heading for top management
- ▶ Teach undergraduate level Economics, but
 - 1. Tie it with actual working experience
 - 2. Socializing with other CEO-to-be's is a bonus

What Program Should I Apply?

- Econ PhD provides you the rigorous training to modern economic analysis techniques
- ▶ This is used by
 - Academics (Economics, Public Policy, Law,...)
 - Economics Consulting Firms
 - Public Policy Evaluation
 - Financial Companies (like Investment Banking)
 - ▶ International Organizations (APEC, IMF, etc.)

Most Important Factor

- What is the Most Important Factor when I Apply for Graduate School?
- Petersons Guide surveyed both students & admission committee members (faculty)
- ▶ They find that both agree No.1 factor is:
 - Letter from someone the committee knows
- ▶ Why is this No.1?
- Credible Signaling!

Most Important Factor

- ▶ No.1:
 - Letter from someone the committee knows
- Who are the people committees know?
- What if I cannot find someone to write?
- Find Other Credible Signals!
 - ▶ GPA?
 - ▶ GRE or TOEFL?
 - ▶ Other Distinct Features such as AWA 5.0 or higher?

Discrimination and Gender

- Are Foreigners or Females Discriminated?
- Foreigners:
 - Different Programs have different policy
 - ▶ UCLA (8/35) vs. MIT (25/30)
- ▶ Women: Only 16% of Faculty are Female
 - ▶ Does the market favor women? Maybe...
 - ▶ Comparison: 33% Math Professors are Female
 - ▶ <u>AEA-PP</u>: CSWEP mentorship RCT to help
 - ▶ <u>JEP</u>: Other strategies at every stage

Is Mathematics Needed?

- Advice for Econ PhD Applicants:
 - Take a heavy dose of mathematics during undergraduate.Peterson's Guide
- So, the answer is generally yes.
 - ▶ There is a gap between undergrad & graduate
- But, the ability to find economic intuition behind the math is even more essential
 - ▶ My first year micro comp. experience...
- ▶ They need Bilingual People!

Is Mathematics Needed?

- What Kind of Math is Needed?
- Introduction to Real Analysis (aka Advanced Calculus): Score A or A+
 - ▶ The thinking process required for you to score A/A+ is what's important
- ▶ Linear Algebra: Basic Tool for Econometrics
- ▶ Advance Statistical Inference: ... Econometrics
- ▶ The more the better, but mastering these three is better than being a jack of all traits...

Is MA required before I enter PhD?

- ▶ No. Most Top-10 have only PhD programs
 - Chicago: Give you a master if you cannot finish
- But you may not be able to survive studying both math and economics in English...
- Hence, a MA might help since
 - ▶ MA classes are similar to PhD classes
 - You may not be sure if you want to go for PhD
- Condition on passing 1st year comp's, MA is unnecessary, but you may want to hedge...

How Should I Prepare Myself Now?

- Create Credible Signals!
- Such As:
- ▶ GPA 4.0, ranked 1/160
- Good References
- A Published Research Paper
- ▶ Take a Heavy Dose of Mathematics
- ▶ Take Graduate Level Courses in Economics
- ▶ Take Economics Courses Taught in English

What Makes a Signal Work?

- Exercise: Show which types of people can afford the following signals:
 - ▶ GPA 4.0, ranked 1/160
 - Good References
 - ▶ A Published Research Paper
 - ▶ Take a Heavy Dose of Mathematics
 - ▶ Take Graduate Level Courses in Economics
 - ▶ Take Economics Courses Taught in English
 - ▶ AWA 5.0+