Coordination 協調賽局

Joseph Tao-yi Wang (王道一) Lecture 10, EE-BGT

Coordination

Outline

- Why is coordination important?
- Pure Coordination Game
 - ► GAMES magazine (1989)
 - Mehta et al. (AER 1994)
 - Mehta et al. (T&D 1994)
 - Bacharach and Bernasconi (GEB 1997)
- Battle of Sexes

Cooper et al. (AER 1990) Blume et al.(AER98/GEB01)

- Market Entry Games
 Kahneman (like magic...)
- Stag Hunt
 Cooper et al. (AER 1990)
- Weak-Link Game
 Van Huyck et al. (AER1990)
- Apply to Market Adoption: Clemons & Weber (InfoSysR96)
- Apply to Culture:

Camerer & Weber (MS 2003)

2021/4/30

- Which Equilibrium to Select Among Many?
 - This requires Coordination!
- Examples of Coordination in Daily Life:
 - Language
 - Trading in Markets (Liquidity)
 - Industry Concentration

- Equilibrium Selection in Game Theory
- 1. Desirable Features Approach:
 - Payoff-Dominance, Risk Dominance, etc.
- 2. Convergence via Adaptation/Learning
 - ▶ Weibull (1995), Fudenberg and Levine (1998)
- 3. Empirical Approach: Infer Principles by
 - Putting people in experiments and observe actual behavior/outcome

- Possible "Selection Principles":
 - Precedent, focal, culture understanding, etc.
- Why are observations useful?
- Schelling (1960, p.164):
 - "One cannot, without empirical evidence, deduce what understandings can be perceived in a nonzero-sum game of maneuver
 - any more than one can prove,
 - by purely formal deduction, that a particular joke is bound to be funny."

- Can't Communication Solve This?
 - Not always... (See Battle of Sexes below)
- Sometimes communication is not feasible:
 - Avoiding Traffic Jams
 - Speed Limits (useful because they reduce speed "variance", and hence, enhance coordination!)
- Miscommunication can have big inefficiency!

Examples of Coordination Impact

- ▶ US railroad tracks is 4 feet and 8.5 inch
 - Because English wagons were about 5 feet (width of two horses), and lead to
- Space Shuttle Rockets smaller than ideal
 since they need to be shipped back by train...
- Industries are concentrated in small areas
 Silicon Valley, Hollywood, Hsinchu Science Park
- Urban Gentrification
 - ▶ I want to live where others (like me) live

Examples of Coordination Impact: Drive on Left/Right side of the Road

- Right: Asia, Europe (Same continent!)
- Left: Japan, UK, Hong Kong (Islands!) 3.9
- Sweden switched to Right (on Sunday morning)
- What about America? Right, to avoid
 - Hitting others with the whip on your right hand!
- Bolivians switch to Left in mountainous area
 - To see outer cliffside from (left) driver seat
- ▶ Pittsburgh left: 1st left-turner goes 1st at green
 - on two-lane streets to avoid blocking traffic

<u>3 Types of Coordination Games</u>

- Matching Games
 - Pure Coordination Game; Assignment Game
- Games with Asymmetric Payoffs
 - Battle of Sexes, Market Entry Game
- Games with Asymmetric Equilibria
 - Stag Hunt, Weak-Link Game
- Applications: Market Adoption and Culture

Examples of Coordination Impact

- Categorizing Products
 - Where should you find MCU? Disney or Action?
 - Find your favorite item at a new Costco store
- Common Language:
 - Internet promotes English
 - Some Koreans even get surgery to loosen their tongues, hoping to improve their pronunciation
- Key: Agreeing on something is better than not; but some coordinated choices are better

- Pick one celebrity (out of 9) for President, another for Vice-President:
 - Oprah Winfrey, Pete Rose,
 - Bruce Springsteen, Lee laccoca,
 - Ann Landers, Bill Cosby,
 - Sly Stallone, Pee-Wee Herman,
 - Shirley MacLaine
- One person is randomly awarded prize among those who picked most popular one

- Taiwanese Version:
- 、戴資穎、張育成、福原愛、瑞莎、趙婷、 陳時中、潘忠政、詹順貴、黃士修、趙介佑
 Prize?
- Results...

Coordination

Taiwanese example:

- ▶ 戴資穎、周天成、羅志祥、周揚青、劉樂妍、 曾博恩、陳時中、黃秋生、陳建仁、黃安
- Prize?

2021/4/30

Results...(Last Year)

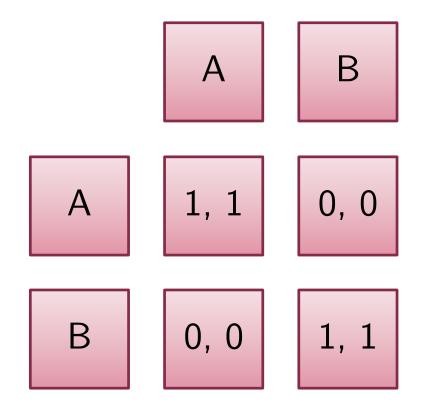
PRAJ + T	陳建仁丁
南南周一	资本并一 法选举王
SP东建行 下	展示中 正. 「新考育 T
一个手下	国天城
EXA	

ng

Taiwanese example:

★ 戴資穎、陳偉殷、黃國昌、朱敬一、陳建仁、 林立青、李來希、舒淇、林志玲、林奕含

Prize?


Results...(of 2019)

生故-B東了軍 (二 4 5 1 1 B V 本本さまう 生物 本本人いする 17 ng

- US Results:
- 1. Bill Cosby (1489): successful TV show
- 2. Lee lacocca (1155): possible US candidate
- 3. Pee-Wee Herman (656): successful TV show
- 4. Oprah Winfrey (437): successful TV show
- 9. Shirley MacLaine (196): self-proclaimed reincarnate

. . .

Pure Coordination Game

Both get 1 if pick the same;

- Both get 0 if not
- Two pure NE,
- One mixed NE
- Which one will be played empirically?

Pure Coordination Game

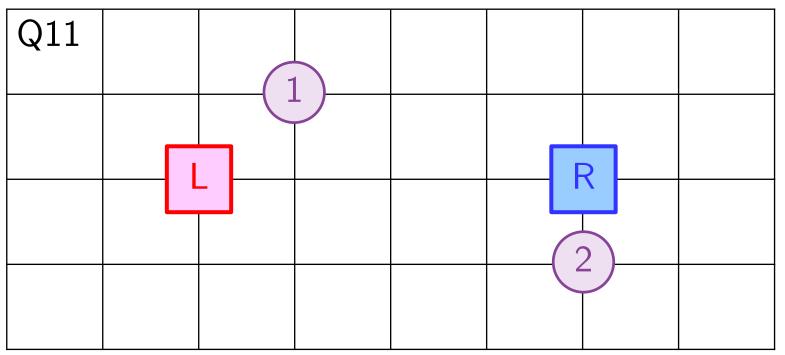
- Mehta, Starmer and Sugden (AER 1994)
- Picking Condition (P): Just pick a strategy
- Coordinating Condition (C):
 - Win \$1 if your partner picks the same as you
- Difference between P and C = How focal
- Choices: Years, Flowers, Dates, Numbers, Colors, Boy's name, Gender, etc.

Pure Coordination Game						
Category	Group P (Group C (n=90)			
	Response	%	Response	%		
Years	1971	8.0	1990	61.1		
Flowers	Rose	35.2	Rose	66.7		
Dates	Dec. 25	5.7	Dec. 25	44.4		
Numbers	7	11.4	1	40.0		
Colors	Blue	38.6	Red	58.9		
Boy's Name John		9.1	John	50.0		
Gender	Him	53.4	Him	84.4		
2021/4/30	Coordin	ation	Joseph Tao-yi Wang			

Pure Coordination Game: Follow-up 1

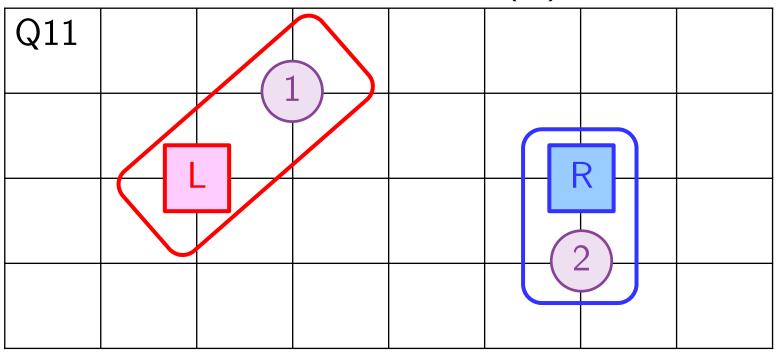
- Bardsley, Mehta, Starmer, Sugden (EJ 2010)
 - Incorporate (Replace?) Bardsley, et al. (wp 2001)
- 14 Games: One in choice set is distinctive
 EX: {Bern, Barbodos, Honolulu, Florida}
- Add additional condition besides P and C:
 - Guess Condition (G): Guess partner's pick
- Design question: How do you avoid focality of physical location (first/last/top-left)?
 - Have things swim around the computer screen...

Pure Coordination Game: Follow-up 1

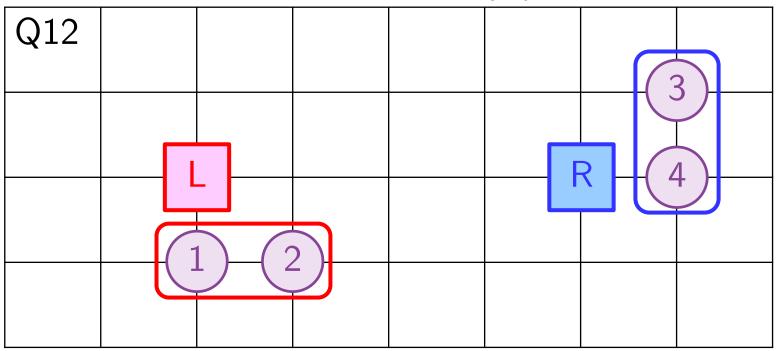

- EX: {Bern, Barbodos, Honolulu, Florida}
- Derivative Salience: P=G=C
 - (See how paper use) Cognitive Hierarchy Model
 - Ex: Choose Bern in C since Bern in P and G
- ► Schelling Salience: P=G≠C
 - Team Reasoning: Pick distinctive choice only in C
 - Ex: Choose Bern in C, but Florida in P and G
- Coordinate on this: Even though I would not pick this and I know you would not pick this!

Pure Coordination Game: Follow-up 1

- Derivative Salience: P=G=C
- Schelling Salience: P=G≠C
- Schelling Salience wins here!
 - In 12 games (out of 14):
- Chose distinctive choice 60% in C (modal!)
 But less often in P and G
- EJ 2010: Follow-up w/ Nottingham subjects
 - Both saliences rejected with subtle design differences (used to coordinate)

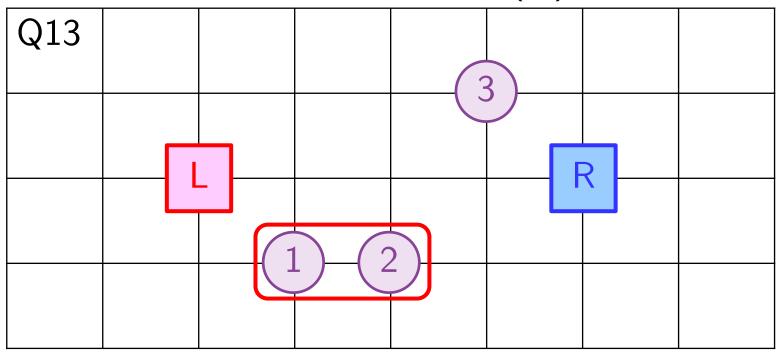

Assignment Game (Follow-up 2)

- Hume (1978/1740) Ownership conventions: spatial/temporal proximity, cultural, etc.
 - ▶ Mehta, Starmer and Sugden (T&D 1994)


- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 1: Closeness (C)

2021/4/30

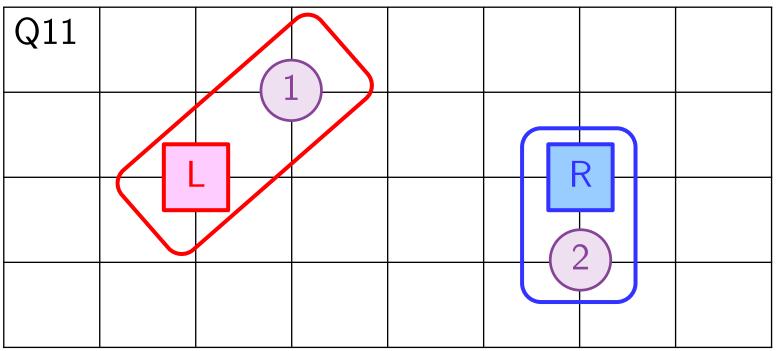
Coordination

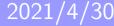

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- Focal Principle 2: Equality (E)

2021/4/30

Coordination

- Assign circles to L or R
- Earn \$\$ if all circles match partner assignment
- ► Focal Principle 3: Accession (A)

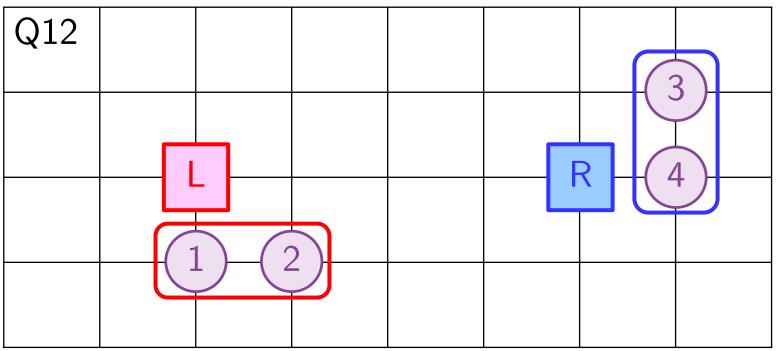

2021/4/30


Coordination

How would you assign the circles?

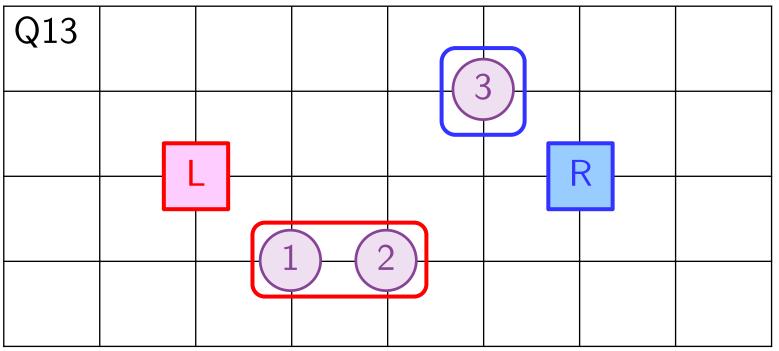
• What about this? (C = A = E)

In fact, 74% chose this!



How would you assign the circles?

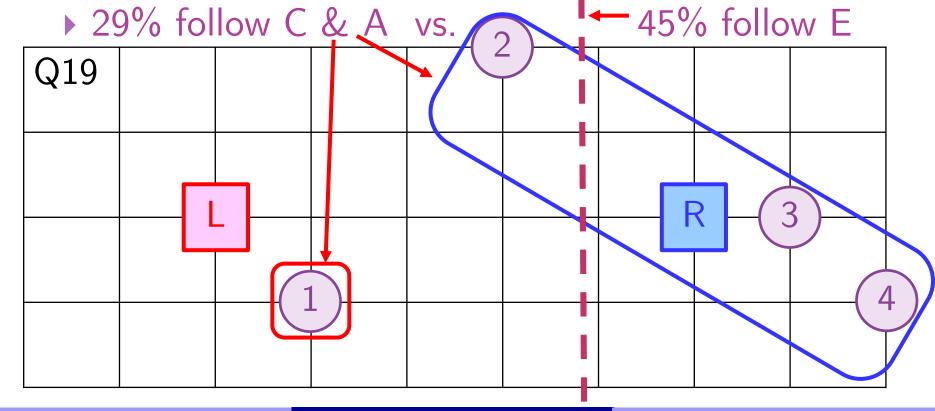
• What about this? (C = A = E)


In fact, 68% chose this!

2021/4/30

Coordination

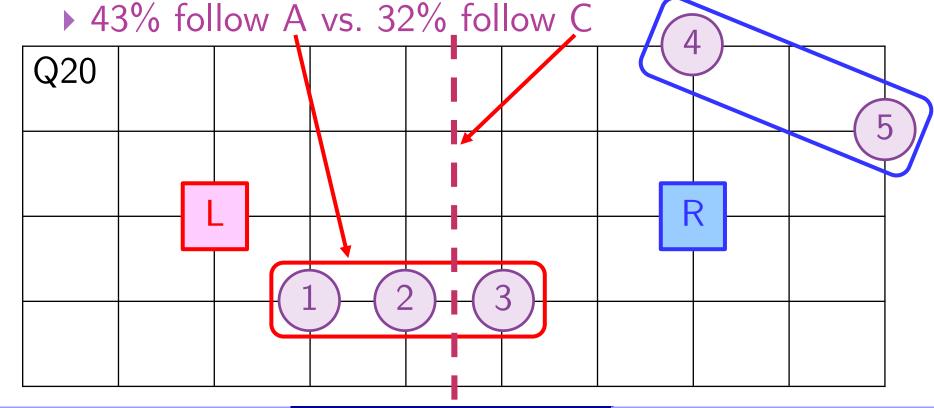
- How would you assign the circles?
- What about this? (Accession!)
 - ▶ In fact, 70% chose this! (What does C/E say?)



2021/4/30

Coordination

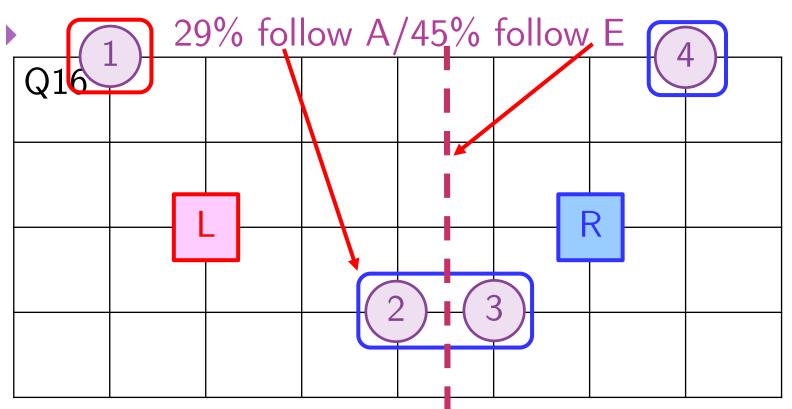
Assignment Game: C & A vs. Equality


- What does Closeness/Accession say?
- What does Equality say about this?

2021/4/30

Assignment Game: Accession vs. Closeness

- What does Accession say about this?
- What does Closeness say about this?

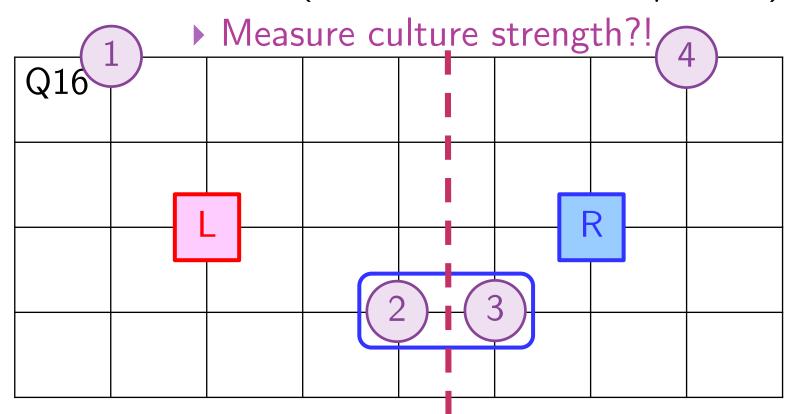


2021/4/30

Coordination

Assignment Game: Accession vs. Equality

- What does Accession say about this?
- What does Equality say about this?

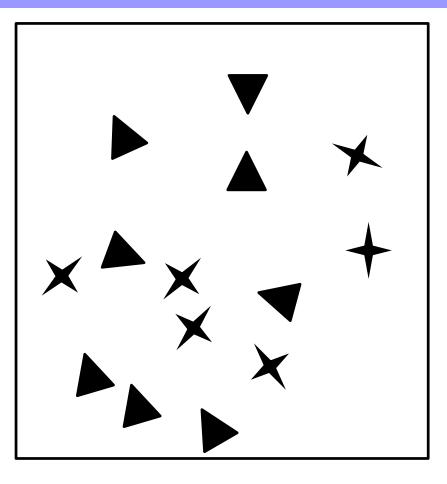


2021/4/30

Coordination

Equality > Accession > Closeness

- First Focal Principle: Equality
- Then Accession (if Equality satisfied/silent)



2021/4/30

Coordination

Unpacking Focality

- Bacharach and Bernasconi (GEB 1997)
- Visual matching game
 Pick one from picture:
- Test rarity preferences
 - ▶ 6 vs. 8
- Are Rare item chosen more frequently
 - As Rarity increases?
 - ▶ 6/8, 2/3, 6/18, 1/15

2021/4/30

Unpacking Focality: Test Rarity

Yes!

- As Rarity increases,
 - Frequency of rare choice increases!

	<pre># of Rare/Frequent Items</pre>					
	6/8	2/3	6/18	1/15		
Rare	65%	76%	77%	94%		
Frequent	35%	24%	23%	6%		

2021/4/30

Coordination

Unpacking Focality: Test Trade-offs

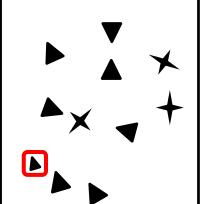
Rarity (r=3 vs. n=8)

▶ against

2021/4/30

- Oddity (size or color)
 - p(F)= prob. of notice
 - Would you choose Oddity if p(F) > 1/r ?

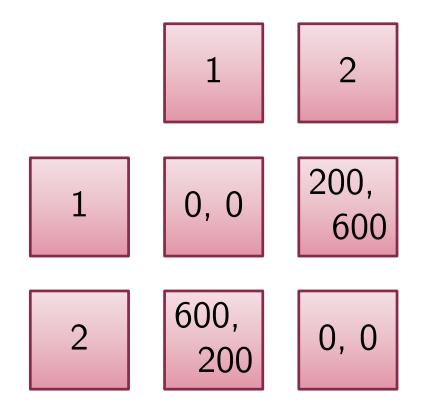
Obvious Treatments:


▶ *p*(F)=0.94 >> 1/3

Subtle Treatments:

Unpacking Focality: Test Trade-offs

- Violate p(F) > 1/r
 - Mostly chose Obvious Oddity
 - Less than half chose Subtle Oddity



r = # .	Obvious Oddity (r)			Subtle Oddity (r)					
of Rare	2	3	4	5	2	3	4	5	6
Rare	14%	19%	9%	7%	77%	55%	45%	69%	55%
Oddity	83%	79%	91%	88%	23%	31%	45%	19%	20%
Other	2%	2%	0%	5%	0%	14%	10%	12%	25%
$p(\mathbf{F})$	0.95	0.91	0.95	0.93	0.55	0.40	0.62	0.25	0.25
2021/4/30 Coord			Coordi	nation Joseph Tao-yi Wang			ang		

Unpacking Focality

- Munro (wp 1999)
- Field study of coordination
- Narrow bike lanes in Japan
 - ► No center line
- Two bikes coming from opposite directions
 Both ride close to middle
- How they avoid colliding?
 - Both move Left!

Asymmetric Players: Battle of Sexes

- 100 lottery tickets =
 - ▶ 10% chance to win \$1/\$2
- ▶ Pure NE: (1,2) and (2,1)
 - Players prefer equilibrium where they play strategy 2
- Mixed NE:
 - ▶ (1/4, 3/4) each
- Which would you pick?

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- **BOS**: Baseline (MSE mismatch 62.5%)
- BOS-300: Row player has outside option 300
 Forward induction predicts (2,1)
- BOS-100: Row player has outside option 100
 Forward induction doesn't apply
- Compare BOS-100 and BOS-300 shows if "any outside option" works...

Battle of Sexes (Last 11 Periods)

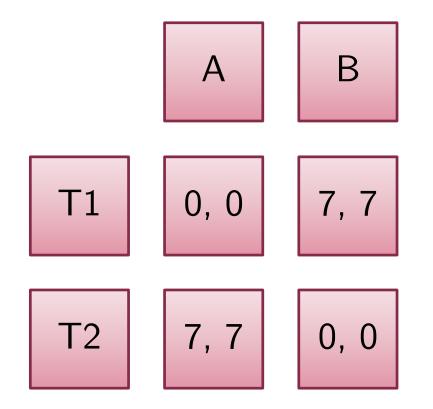
Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W					165
BOS-2W					165
BOS-SEQ					165

Coordination

Asymmetric Players: Battle of Sexes

- Cooper, DeJong, Forsythe & Ross (AER 90')
- BOS-1W: 1 way communication by Row
- BOS-2W: 2 way communication by both
- BOS-SEQ: Both know that Row went first, but Column doesn't know what Row did
 - Information set same as simultaneous move
 - Would a sequential move act as an coordination device?

Battle of Sexes (Last 11 Periods)

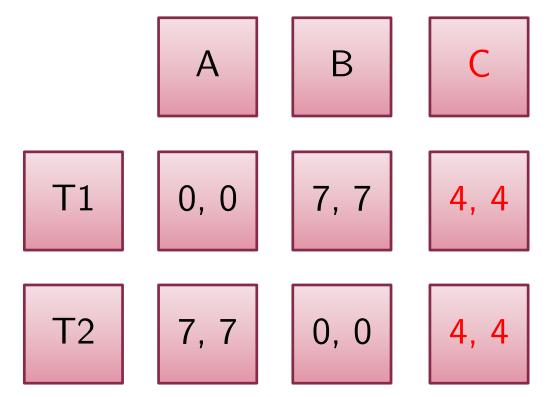

Game	Outside	(1,2)	(2,1)	Other	# Obs
BOS	-	37(22%)	31(19%)	97(59%)	165
BOS-300	33	0(0%)	119(90%)	13(10%)	165
BOS-100	3	5(3%)	102(63%)	55(34%)	165
BOS-1W	-	$1_{(1\%)}$	158(96%)	6(4%)	165
BOS-2W	-	49(30%)	47(28%)	69(42%)	165
BOS-SEQ	-	6(4%)	103(62%)	56(34%)	165

Coordination

Where Does Meaning Come From?

- Communication can help us coordinate
- But how did the common language for communication emerge in the first place?
- Put people in a situation of no meaning and see how they create it!
- Blume, DeJong, Kim & Sprinkle (AER 1998)
 See also BDKS (GEB 2001) which is better!

Evolution of Meaning: Game 1 (Baseline)



- Blume et al. (AER 1998)
- Sender has private type T1 or T2
- Sends message "*" or "#" to receiver
- Receiver chooses A or B (to coordinate type)

Evolution of Meaning

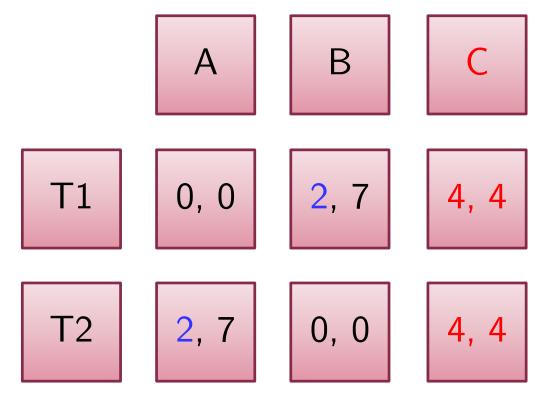
- Blume et al. (AER 1998)
- Game 1: Baseline as above
- ► Game 1NH: See only history of own match
- ▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium

Evolution of Meaning: Game 2

▶ Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2

Percentage Consistent with Separating

Game \ Period	1	5	10	15	20
1st Session					
Game 1	48	65	74	89	95
2nd Session					
Game 1	49	72	61	89	100
Game 1NH	55	55	28	55	72
Game 2					
Separating	44	88	88	88	94
Pooling	39	05	00	05	05


2021/4/30

Coordination

Evolution of Meaning (Blume et al. AER 1998)

- Game 1: Baseline as above
- ► Game 1NH: See only history of own match
- Game 2: Receiver can choose C (safe action) that gives (4,4) regardless of T1/T2
 - Theory: Pooling or Separating Equilibrium
- ► Game 3: Coordinate payoffs become (2,7)
 - So sender wants to disguise types to force receiver to choose C (safe action)
 - Allowed to send 2 or 3 messages...

Evolution of Meaning: Game 3

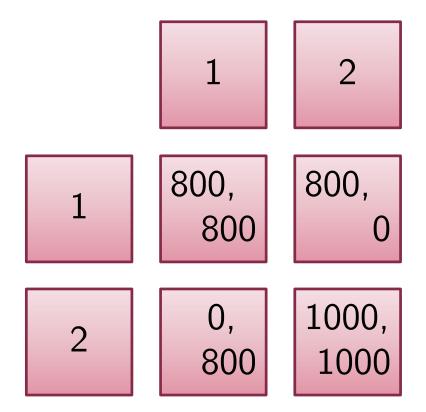
► Game 3: Coordinate payoffs become (2,7)

2021/4/30

Coordination

Results of Game 3: 2 vs. 3 messages								
# of Messages	1-10	11-20	21-30	31-40	41-50	51-60		
2-Separating	43	53	38	39				
2-Pooling	33	34	41	43	2 nd Se	ession		
3-Separating	43	38	33	24				
3 -Pooling	33	37	42	60				
2-Separating	39	27	23	24	24	23		
2-Pooling	39	48	51	60	63	61		
3-Separating	23	22	23	25	22	24		
3-Pooling	55	61	58	56	57	61		
					1 st Se	ession		
2021/4/30		Coordi	nation	J	oseph Tao-y	i Wang		

Example of Asymmetric Payoffs


- Market Entry Game
 - \blacktriangleright n players decide to enter market with capacity c
 - Payoffs declines as number of entrants increase;
 < 0 if number > c (= capacity)
- Kahneman (1988): Number close to equil.
 - "To a psychologist, it looks like magic."
- See BI-SAW paper by Chen et al. (2012)...

Market Entry Game Results

Market capacity	1	3	5	7	9	11	13	15	17	19
MSE	0	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9
all data	1.0	3.7	5.1	7.4	8.7	11.2	12.1	14.1	16.5	18.2
1 st block	1.3	5.7	9.7	6.7	3.7	14.0	11.3	11.3	16.0	18.0

Sundali, Rapoport and Seal (OBHDP 1995)

Games with Asymmetric Equilibria

Stag Hunt
Cooper et al. (AER 1990)
100 lottery tickets =

10% chance to win \$1/ \$2

Pure NE:

(1,1) & (2,2)

Which would you pick?

Games with Asymmetric Equilibria

- Cooper et al. (AER 1990)
- CG: Baseline Stag Hunt
- CG-900: Row has outside option 900 each
 Forward induction predicts (2,2)
- ► CG-700: Row has outside option 700 each
 - Forward induction won't work
- ► CG-1W: 1 way communication by Row
- CG-2W: 2 way communication by both

Stage Hunt (Last 11 Periods)

Game	Outside	(1,1)	(2,2)	Other	# Obs
CG	-	160(97%)	0(0%)	5(3%)	165
CG-900	65	2(2%)	77(77%)	21(21%)	165
CG-700	20	119(82%)	0(0%)	26(18%)	165
CG-1W	-	26(16%)	88(53%)	51 (31%)	165
CG-2W	-	0(0%)	150(91%)	15(9%)	165

Coordination

Weak-link Game

- ▶ Van Huyck, Battalio and Beil (AER 1990)
- \blacktriangleright Each of you belong to a team of n players
- Each of you can choose effort $X_i = 1-7$
- Earnings depend on your own effort and the smallest effort min{X_j} of your team
 - Each person has to do his/her job for the whole team project to fly
- Payoff = $60 + 20 * \min\{X_i\} 10 * X_i$

Team Project Payoff

Cost of Effort X_i

V	Weak-link Game: Van Huyck et al. (AER 1990)								
	Payoff = 60 + 10 * min{ X_j } - 10 * (X_i - min{ X_j }) Team Minimum Deviation from Min								
	Т	eam N	linimun	1	Devia	ation fr	om Min		
	Your		S	mallest	X_j in t	he tear	n		
	X_i	7	6	5	4	3	2	1	
	7	130	110	90	70	50	30	10	
	6	-	120	100	80	60	40	20	
	5	-	-	110	90	70	50	30	
	4	-	-	-	100	80	60	40	
	3	-	-	-	-	90	70	50	
	2	-	-	-	-	-	80	60	
20	1	-	-	-	-	-	-	70	

Weak-link Game: Van Huyck et al. (AER 1990)

- What is your choice when...
 - ► Group size = 2?
 - Group size = 3?
 - Group size = 20?
- Can some kind of communication help coordinate everyone's effort?

Classroom Experiment: 害群之馬

最弱環節賽局 (Weak-Link Game)

水經濟實驗: 節約用水

Weak-Link Game (最弱環節賽局)

- ► Each DM chooses effort X=1-4
 - Spade = 4, Heart = 3, Diamond = 2, Club = 1
- DM (Decision Maker) = a team of two
 - ▶ 每組每回合都會有四張撲克牌,分別為黑桃(4)、 紅心(3)、方塊(2)、梅花(1)
 - ▶主持人會跟每組收一張牌
 - ▶ 交出來的花色代表你們花多少時間排練
 - ▶ 你們的努力程度: 黑桃 = 4小時、紅心 = 3小時、方 塊 = 2小時、梅花 = 1小時
 - ▶ 各組要討論屆時交出哪一張牌…

• Payoff = $3 * \min\{X_j\} - 1 * X$

Team Project Payoff

Cost of Effort X

▶ 「花最少時間排練那一組的排練時數」,每一小時的排練 大家都會得到3分。各組自己每花一小時排練,就少1分。

Your X _i	mir	n{X _j } (最低那組時數)		
(本組時數)	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

水經濟實驗: 害群之馬

- 1. How much would you earn if all DM choose X=4?
 - 8!

如果所有各組都花四小時排練,這樣各組會拿幾分?8分!

Your X _i	min{X _j } (最低那組時數)				
(本組時數)	4	3	2	1	
4	8	5	2	-1	
3	-	6	3	0	
2	-	-	4	1	
1	-	-	-	2	

水經濟實驗: 害群之馬

2. How much would you earn if you choose X=3 while others choose X=4?

▶ 6 (< 8, not worth it!)

如果別組都花四小時排練,但你們這組只花三小時排練,這樣你們會 拿幾分?你們這麼做值得嗎?6分!小於8分所以不值得!

Your X _i (本組時數)	min{X _j } (最低那組時數)				
(本組時數)	4	3	2	1	
4	8	5	2	-1	
3	-	6	3	0	
2	-	-	4	1	
1	-	-	-	2	

- 3. How much would you earn if you choose X=2 while some other DM choose X=1?
 - ▶ 1 (< 2, if you also choose X=1!)</p>
 - 如果有某一組只花一小時排練,你們這組如果花兩小時排 練,值得嗎?不值得,因為只得1分,但如果也花一小時 就會跟他們一樣得到2分!

Your X _i	mir	min{X _j } (最低那組時數)					
(本組時數)	4	3	2	1			
4	8	5	2	-1			
3	-	6	3	0			
2	-	-	4	1			
1	-	-	-	2			

2021/4/30

水經濟實驗: 害群之馬

Weak-Link Game (最弱環節賽局)

- Please decide now and we will see the results...
- 6. Are you satisfied with the results? How can you encourage cooperation next time?
 - 你對結果滿意嗎?如果你希望大家都更好,該怎麼鼓勵大家合作?讓我們再來做一次…

Your X _i (本組時數)	mir	數)		
(本組時數)	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	_	2

Weak-Link Game (最弱環節賽局)

In reality, people would see each other's effort and increase effort gradually

Let's try again by committing hour-by-hour!

現實中你們彼此多半清楚大家的排練情況,而且時數可以 逐步加碼。這次我們採一小時、一小時逐步加碼方式進行

本組排練時數		最低那組	排練時數	
	4	3	2	1
4	8	5	2	-1
3	-	6	3	0
2	-	-	4	1
1	-	-	-	2

Weak-link Game: Van Huyck et al. (AER 1990)

• Payoff = $60 + 10 * \min\{X_j\} - 10 * (X_i - \min\{X_j\})$

Your		S	mallest	X_j in t	he tear	n	
X_i	7	6	5	4	3	2	1
7	130	110	90	70	50	30	10
6	-	120	100	80	60	40	20
5	-	-	110	90	70	50	30
4	-	-	-	100	80	60	40
3	-	-	-	-	90	70	50
2	-	-	-	-	-	80	60
1	_	_	-	-	-	-	70

Weak-link Game: Large Group (n=14-16?)

Start at $X_i = 4-7$, but quickly drop to $X_i = 1-2!$

V	Period									
X_i	1	2	3	4	5	6	7	8	9	10
7	33	13	9	4	4	4	6	3	3	8
6	10	11	7	0	1	2	0	0	0	0
5	34	24	10	12	2	2	24	1	0	1
4	17	23	24	18	15	5	3	3	2	2
3	5	18	25	25	17	9	8	3	4	2
2	5	13	17	23	31	35	39	27	26	17
1	2	5	15	25	37	50	47	70	72	77
2021/4/	50				orumatic	ווע		Joseph T	ao-yr vva	ang

Weak-link Game: Large Group (Extensions)

▶ No penalty above min: 83% choose 7 in 1st period

Show effort distribution: Accelerate race to bottom

\mathbf{V}										
$oldsymbol{\Lambda}_{i}$	1	2	3	4	5	6	7	8	9	10
7	33	13	9	4	4	4	6	3	3	8
6	10	11	7	0	1	2	0	0	0	0
5	34	24	10	12	2	2	24	1	0	1
4	17	23	24	18	15	5	3	3	2	2
3	5	18	25	25	17	9	8	3	4	2
2	5	13	17	23	31	35	39	27	26	17
1	2	5	15	25	37	50	47	70	72	77

Weak-link Game: Small Group (n=2)

2021/4

- Start at $X_i = 1$ or 7, but quickly converge to $X_i = 7!$
- Wait a couple periods for partner if choose $X_i = 7$.

	V		Period							
	X_i	1	2	3	4	5	6	7		
	7	9	13	13	17	19	19	21		
	6	0	1	4	2	1	1	0		
	5	4	1	1	1	0	0	0		
	4	0	1	2	0	1	1	0		
	3	1	2	1	1	0	0	0		
	2	1	2	0	0	0	0	1		
4/3(1	8	4	3	3	3	3	2		

'ang

Weak-link Game: Small Group (Extension)

Random Matching:

- Start high (4-7), but drop to 1!
- Small group size not enough to induce good equilibrium!
- Clark and Sefton (wp 1999)
 - Replicate random matching results in stag hunt

Still unpublished as of 2021...

(See how difficult to publish replications...Orz)

Weak-link Game: Group Size (various papers)

- ▶ Table 7.27 (Camerer, BGT 2003)
- Group size \geq 6:
 - ▶ 1st period $\min\{X_j\} \le 4$
 - 5th period $\min\{X_j\}$ mostly 1
- Group size 2-3:
 - 1st period $min\{X_i\}$ is 5-7
 - ▶ 5th period min{ X_j } mostly (86%) reaches 7 if n=2
- But 1st period median $X_i = 4-5$ for all n!
 - Why? Maybe subjects think they play against representative opponent (and clone for large n)