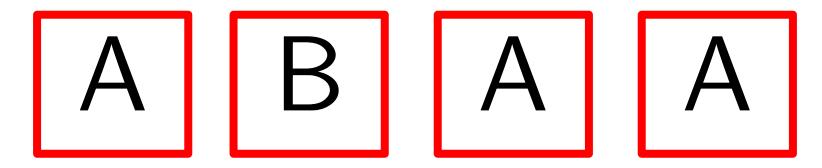
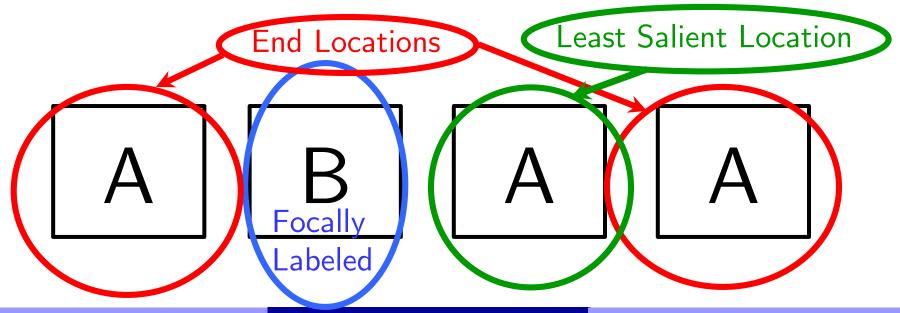
# Level-k Reasoning 多層次思考

Joseph Tao-yi Wang (王道一) Lecture 8, EE-BGT


#### Outline

- ▶ Introduction: Initial Deviations from MSE
  - ▶ Hide-and-Seek: Crawford & Iriberri (AER07)
  - ▶ Initial Joker Effect: Re-assess O'Neil (1987)
- Simultaneous Dominant Solvable Games
  - ▶ Price competition: Capra et al (IER 2002)
  - ▶ Traveler's dilemma: Capra et al (AER 1999)
  - ▶ p-BC game: Nagel (AER 95), CHW (AER 98)
- Level-k Theory:
  - ▶ Stahl-Wilson (GEB1995), CGCB (ECMA2001)
  - Costa-Gomes & Crawford (AER 2006)

- ▶ RTH: Rubinstein & Tversky (1993); Rubinstein, Tversky, & Heller (1996); Rubinstein (1998,1999)
- Your opponent has hidden a prize in one of four boxes arranged in a row.
- The boxes are marked as shown below: A, B, A, A. (Non-neutral Location Framing!)

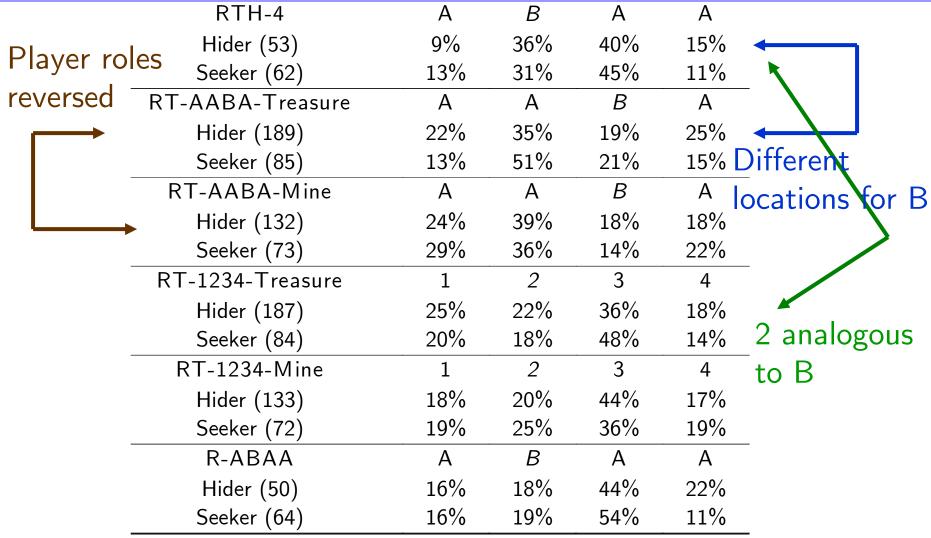



- ▶ RTH (Continued):
- Your goal is, of course, to find the prize.
- His goal is that you will not find it.
- You are allowed to open only one box.
- Which box are you going to open?



- ▶ Folk Theory: "...in Lake Wobegon, the correct answer is usually 'c'."
  - ▶ Garrison Keillor (1997) on multiple-choice tests
- Comment on the poisoning of the Ukrainian presidential candidate (later president):
- Any government wanting to kill an opponent ...would not try it at a meeting with government officials."
  - Viktor Yushchenko, quoted in Chivers (2004)

- B is distinguished by its label
- ▶ The two end A may be inherently salient
  - ▶ This gives the central A location its own brand of uniqueness as the least salient location




- ▶ RTH's game has a unique equilibrium, in which both players randomize uniformly
- Expected payoffs: Hider 3/4, Seeker 1/4

| Hider/Seeker | A    | В    | А    | A    |
|--------------|------|------|------|------|
| A            | 0, 1 | 1, 0 | 1, 0 | 1, 0 |
| В            | 1, 0 | 0, 1 | 1, 0 | 1, 0 |
| A            | 1, 0 | 1, 0 | 0, 1 | 1, 0 |
| A            | 1, 0 | 1, 0 | 1, 0 | 0, 1 |

- ▶ All Treatments in RTH:
  - ▶ Baseline: ABAA (Treasure Treatment)
- Variants:
  - ▶ Left-Right Reverse: AABA
  - ▶ Labeling: 1234 (2 is like B, 3 is like central A)
- Mine Treatments
  - ▶ Hider hides a mine in 1 location, and Seeker wants to avoid the mine (payoffs reversed)
  - mine hiders = seekers, mine seekers = hiders

### Hide-and-Seek Games: RTH Results



# Hide-and-Seek Games: RTH Results

| RTH-4            | Α   | В   | Α   | Α   |
|------------------|-----|-----|-----|-----|
| Hider (53)       | 9%  | 36% | 40% | 15% |
| Seeker (62)      | 13% | 31% | 45% | 11% |
| RT-AABA-Treasure | Α   | Α   | В   | Α   |
| Hider (189)      | 22% | 35% | 19% | 25% |
| Seeker (85)      | 13% | 51% | 21% | 15% |
| RT-AABA-Mine     | Α   | A   | В   | Α   |
| Hider (132)      | 24% | 39% | 18% | 18% |
| Seeker (73)      | 29% | 36% | 14% | 22% |
| RT-1234-Treasure | 1   | 2   | 3   | 4   |
| Hider (187)      | 25% | 22% | 36% | 18% |
| Seeker (84)      | 20% | 18% | 48% | 14% |
| RT-1234-Mine     | 1   | 2   | 3   | 4   |
| Hider (133)      | 18% | 20% | 44% | 17% |
| Seeker (72)      | 19% | 25% | 36% | 19% |
| R-ABAA           | Α   | В   | A   | Α   |
| Hider (50)       | 16% | 18% | 44% | 22% |
| Seeker (64)      | 16% | 19% | 54% | 11% |

Stylized facts

#### Hide-and-Seek Games: RTH Results

- Can pool data since no significant differences for Seekers (p = 0.48) or Hiders (p = 0.16)
  - ▶ Chi-square Test across 6 different Treatments

| Role            | A      | В      | A      | Α      |
|-----------------|--------|--------|--------|--------|
| Hiders (n=624)  | 21.63% | 21.15% | 36.54% | 20.67% |
| Seekers (n=560) | 18.21% | 20.54% | 45.89% | 15.36% |

### Hide-and-Seek Games: Stylized Facts

- ► Central A (or 3) is most prevalent for both Hiders and Seekers
- Central A is even more prevalent for Seekers (or Hiders in Mine treatments)
  - ▶ Hence, Seekers do better than in equilibrium!
- Shouldn't Hiders realize that Seekers will be just as tempted to look there?
  - ▶ RTH: "The finding that both choosers and guessers selected the least salient alternative suggests little or no strategic thinking."

### Hide-and-Seek Games: Stylized Facts

- Can a strategic theory explain this?
  - Heterogeneous population with substantial frequencies of L2 and L3 as well as L1 (estimated 19% L1, 32% L2, 24% L3, 25% L4) can reproduce the stylized facts
- More on Level-k later...
  - Let us first see more evidence in DS Games...

#### Simultaneous Dominant Solvable Games

- ▶ Initial Response vs. Equilibration
- Price Competition
  - ▶ Capra, Goeree, Gomez and Holt (IER 2002)
- ▶ Traveler's Dilemma
  - ▶ Capra, Goeree, Gomez and Holt (AER 1999)
- ▶ p -Beauty Contest
  - ▶ Nagel (AER 1995)
  - ▶ Camerer, Ho, Weigelt (AER 1998)

#### Price Competition

- ▶ Capra, Goeree, Gomez & Holt (IER 2002)
  - ▶ Two firms pick prices  $p_1$  &  $p_2$  from \$0.60-\$1.60
  - ▶ Both get  $(1 + \alpha)^* p_1 / 2$  if tied
- ▶ But if  $p_1 < p_2$ :
  - ▶ Low-price firm gets  $(1 \times p_1)$
  - Other firm gets  $(\alpha \times p_1)$
- $\alpha$  = responsiveness to best price (=0.2/0.8)
  - $\triangleright \alpha \rightarrow 1$ : Meet-or-release (low price guarantees)
  - $\blacktriangleright \alpha < 1$ : Bertrand competition predicts lowest price

### Price Competition: Data

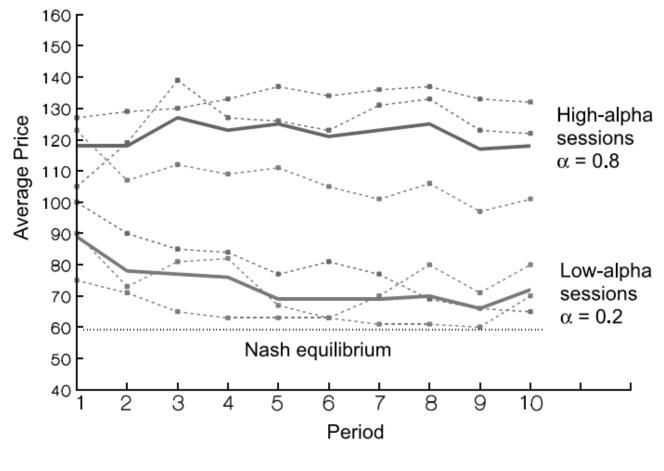
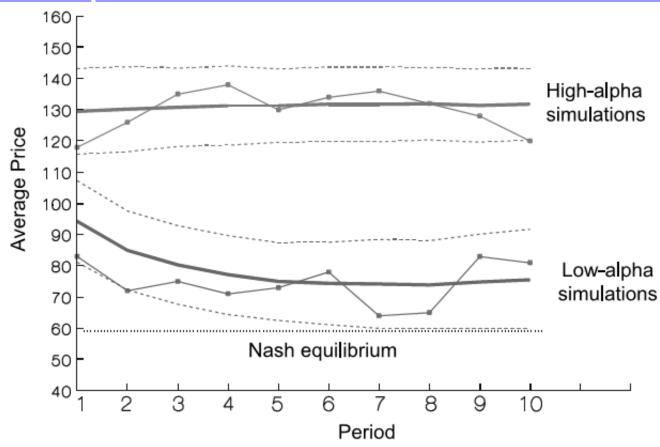
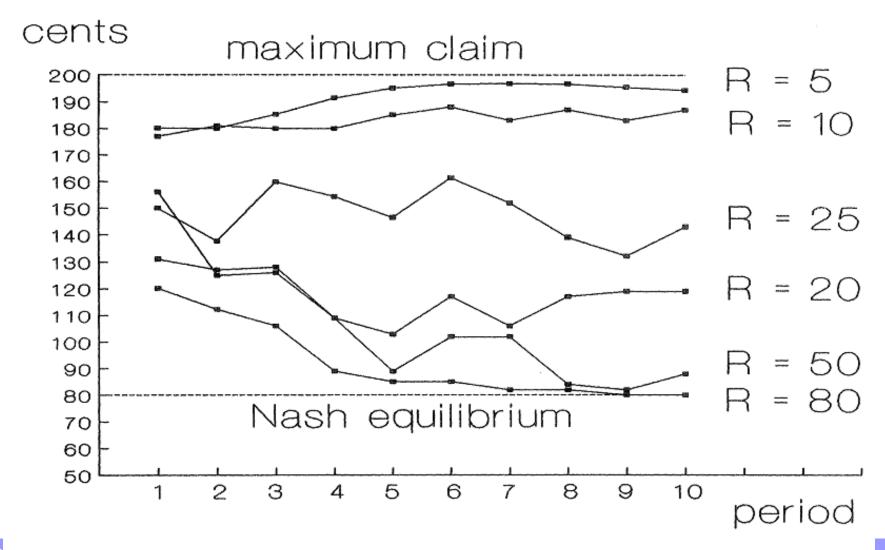



Figure 5

AVERAGE PRICES BY SESSION (DASHED LINES) AND TREATMENT (DARK LINE)

## Price Competition: Simulation

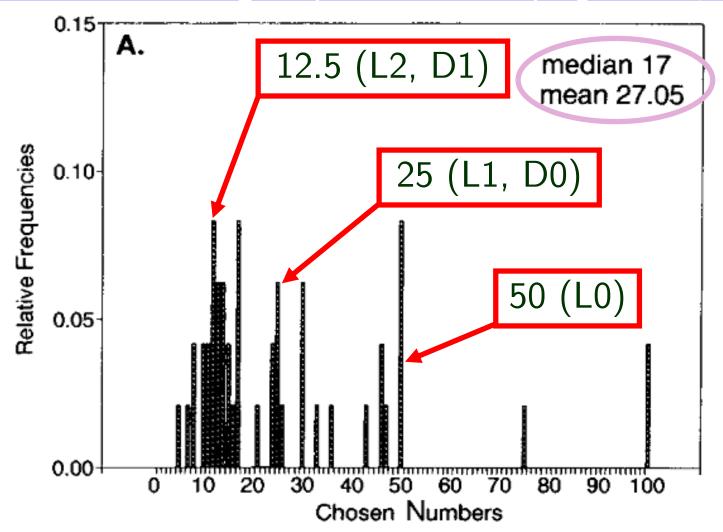




Figure 4

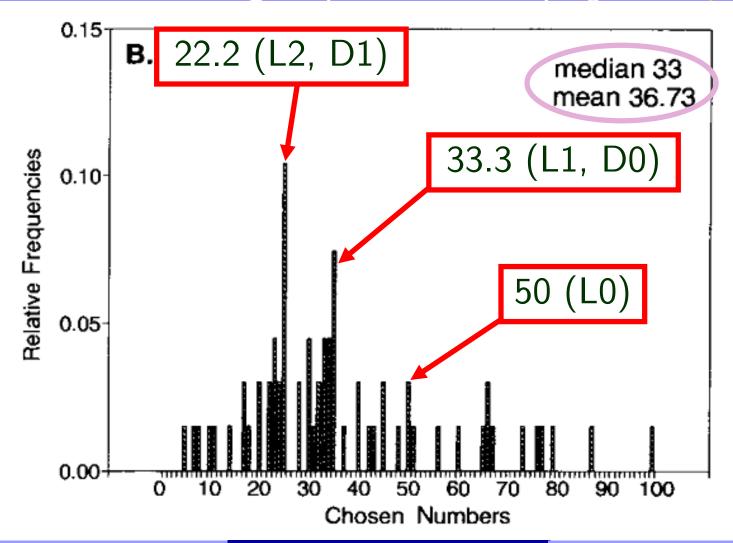
simulated average prices obtained from 1000 simulations (dark lines)  $\pm 2$  standard deviation (dotted lines) and a typical run (lines connecting squares)

#### Traveler's Dilemma

- ▶ Capra, Goeree, Gomez & Holt (AER 1999)
  - ▶ Two travelers state claim  $p_1$  and  $p_2$ : 80-200
  - ▶ Airline awards both the minimum claim, but
  - Reward R to the one who stated the lower claim
  - Penalize the other by R
- ▶ Unique NE: race to the bottom
  - → lowest claim
  - ▶ Like price competition game or *p*-beauty contest


#### Traveler's Dilemma: Data




202

- Each of N players choose  $x_i$  from [0,100]
  - ▶ 每人選擇0到100之間的數字,希望最接近「所有數字平均乘以p倍」
- ▶ Target is  $p^*$  (average of  $x_i$ )
- ightharpoonup Closest  $x_i$  wins fixed prize
- ▶ (67,100] violates 1<sup>st</sup> order dominance
  - ▶ 選擇67-100的人是選擇(一階的)劣勢策略
- lackbox[ (45, 67] ] obeys 1 step (not 2) of dominance
  - ▶ 選擇45-67的人是選擇除去一階劣勢策略後剩下的(二階)劣勢策略
- ▶ 1<sup>st</sup> Experiment (最早的實驗): Nagel (AER 1995)

# Figure 1A of Nagel (AER 1995): p = 1/2



### Figure 1B of Nagel (AER 1995): $p = \frac{2}{3}$



- Named after Keynes, General Theory (1936)
- "...professional investment may be likened to those newspaper competitions in which the competitors have to pick out the six prettiest faces from a hundred photographs,

(專業投資好比報紙上的選美比賽,要從上百張照片挑出最漂亮的六張)

- the prize being awarded to the competitor whose choice most nearly corresponds to the average preferences of the competitors as a whole..."
  - ▶ (目標是選擇最接近「平均參賽者會選到的照片」)

- It is not a case of choosing those [faces] that, to the best of one's judgment, are really the prettiest,
  - ▶ 「這不是要挑每個人各自認為最漂亮的[臉蛋],
- nor even those that average opinion genuinely thinks the prettiest.
  - ▶ 更不是要挑大家公認最漂亮的。
- We have reached the third degree where we devote our intelligences to...
  - ▶ 我們已經想到第三層去,

- Anticipating what average opinion expects the average opinion to be.
  - ▶ 努力預測一般人心目中認為大家公認最漂亮的會是誰。
- And there are some, I believe, who practice the fourth, fifth and higher degrees."
  - ▶ 而且我相信有些人還可以想到第四層、第五層或更高。」
    - ▶ Keynes (凱因斯, 1936, p.156)
- ▶ Follow-up Studies (後續研究)
  - ▶ Camerer, Ho and Weigelt (AER 1998)

### Camerer, Ho & Weigelt (AER 1998): Design

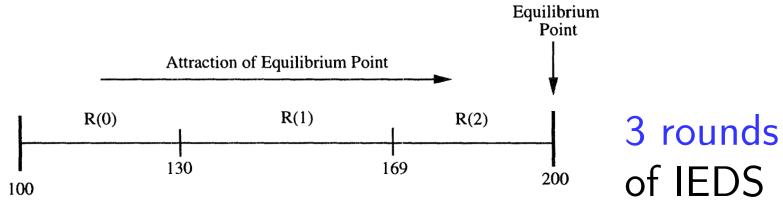



FIGURE 1A. A FINITE-THRESHOLD GAME, FT(n) = ([100, 200], 1.3, n)

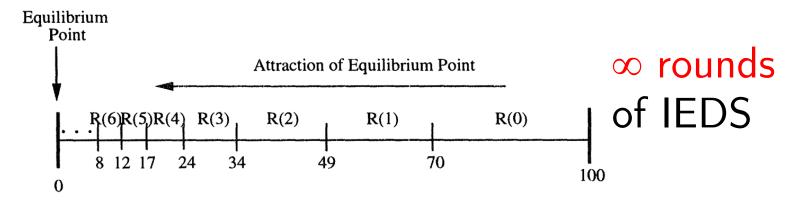



FIGURE 1B. AN INFINITE-THRESHOLD GAME, IT(n) = ([0, 100], 0.7, n)

### Camerer, Ho & Weigelt (AER 1998): Design

TABLE 1—THE EXPERIMENTAL DESIGN

#### 實驗設計

#### Group size

每組人數: 3 vs. 7

先做有限次 再做無限次 (刪劣勢策略)

Finite 
$$\rightarrow$$
 Infinite  
 $FT(1.3, 3) \rightarrow IT(0.7, 0.7)$   
(7 groups)

$$1.3 \rightarrow 0.7$$

$$(7 \text{ (1.3, 7)} \rightarrow 11 \text{ (0.})$$

$$FT(1.3, 3) \rightarrow IT(0.7, 3)$$
  $FT(1.3, 7) \rightarrow IT(0.7, 7)$  (7 groups)  $FT(1.1, 3) \rightarrow IT(0.9, 3)$  (7 groups)  $FT(1.1, 7) \rightarrow IT(0.9, 7)$  (7 groups) (7 groups)

$$FT(1.1, 7) \to IT(0.9, 7)$$

先做無限次 再做有限次

$$IT(0.7, 3) \rightarrow FT(1.3, 3)$$
 $(7 \text{ groups})$ 
 $(7 \text{ groups})$ 
 $IT(0.9, 3) \rightarrow FT(1.1, 3)$ 
 $(6 \text{ groups})$ 
 $IT(0.9, 3) \rightarrow FT(1.1, 3)$ 
 $(7 \text{ groups})$ 
 $(7 \text{ groups})$ 
 $(7 \text{ groups})$ 

### Camerer, Ho and Weigelt (AER 1998)

#### **RESULT 1:**

- ▶ First-period choices are far from equilibrium, and centered near the interval midpoint.
- Choices converge toward the equilibrium point over time.

▶ Baseline: IT(0.9,7) and IT(0.7, 7)

#### Camerer, Ho and Weigelt (AER 1998): $p{=}0.9$ vs. 0.7

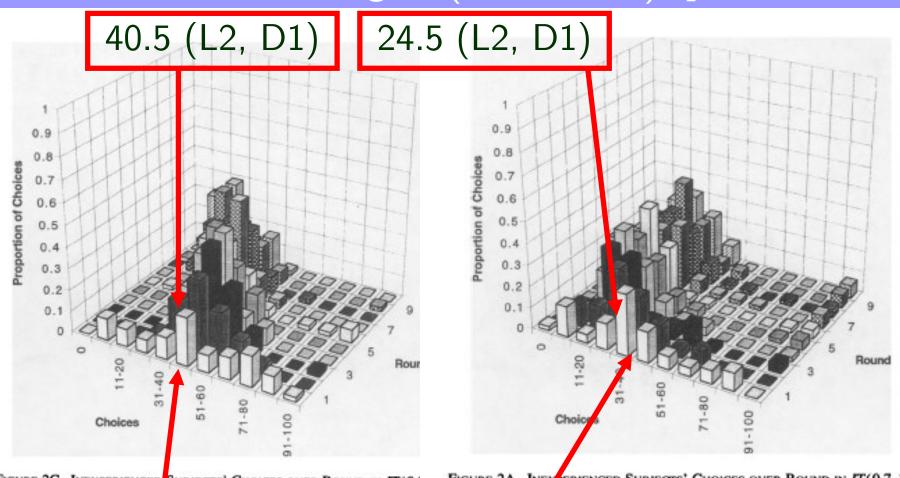



FIGURE 2C. INEXPERIENCED SUBJECTS' CHOICES OVER ROUND IN IT (0.5 FIGURE 2A. INEXPERIENCED SUBJECTS' CHOICES OVER ROUND IN IT (0.7, 7)

45 (L1, D0)

35 (L1, D0)

"p=0.7" closer to 0

#### Camerer, Ho and Weigelt (AER 1998)

▶ IT(0.9,7) vs. IT(0.7, 7)

#### **RESULT 2:**

- On average, choices are closer to equilibrium
- for games with finite thresholds, and
- for games with p further from 1.

Infinite vs. Finite...

# Camerer, Ho and Weigelt (1998): FT vs. IT

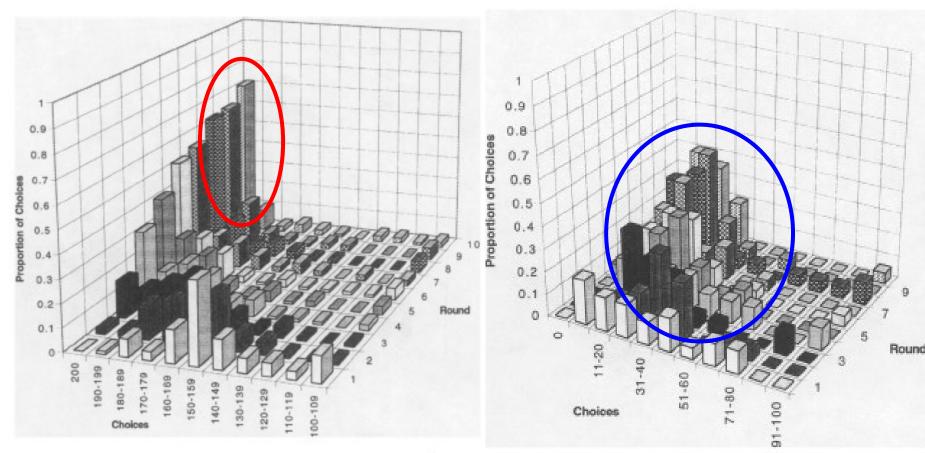




FIGURE 3A. CHOICES OVER ROUND IN FT GAMES PLAYED BY 3-PERSON GROUPS

FT closer to Equilibrium

URE 2E. INEXPERIENCED SUBJECTS' CHOICES OVER ROUND IN IT(0.7, 3)

# Camerer, Ho and Weigelt (1998): FT 3 vs. 7



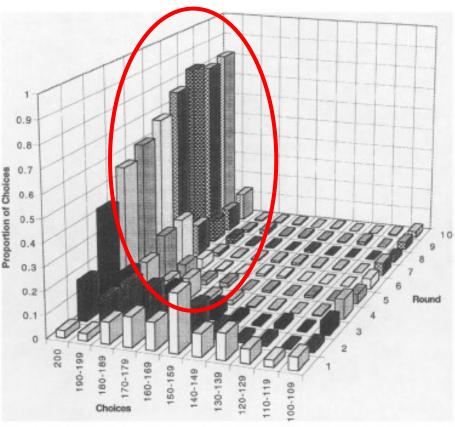



FIGURE 3A. CHOICES OVER ROUND IN FT GAMES PLAYED BY 3-PERSON GROUPS

FIGURE 3B. CHOICES OVER ROUND IN FT GAMES PLAYED BY 7-PERSON GROUPS

7-group closer than 3-group

#### Camerer, Ho and Weigelt (AER 1998)

#### **RESULT 3:**

- Choices are closer to equilibrium
- for large (7-person) groups than for small (3-person) groups.

▶ More on 7-group vs. 3-group...

# Camerer, Ho and Weigelt (1998): IT 3 vs. 7

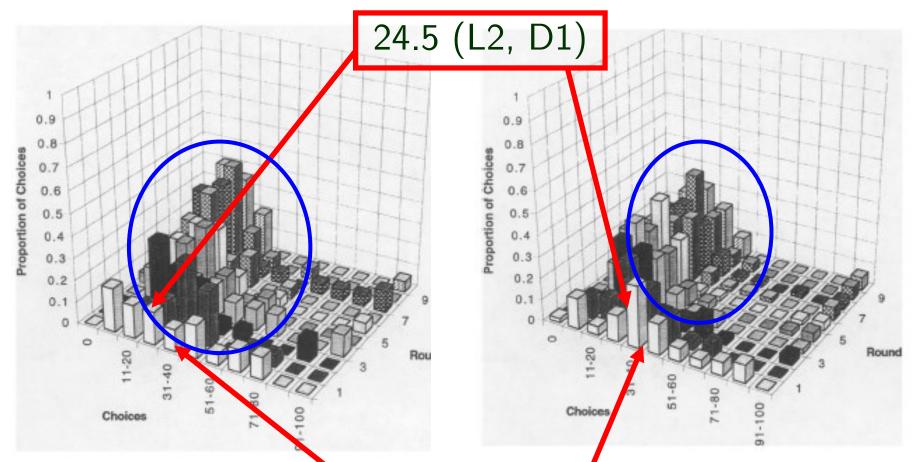


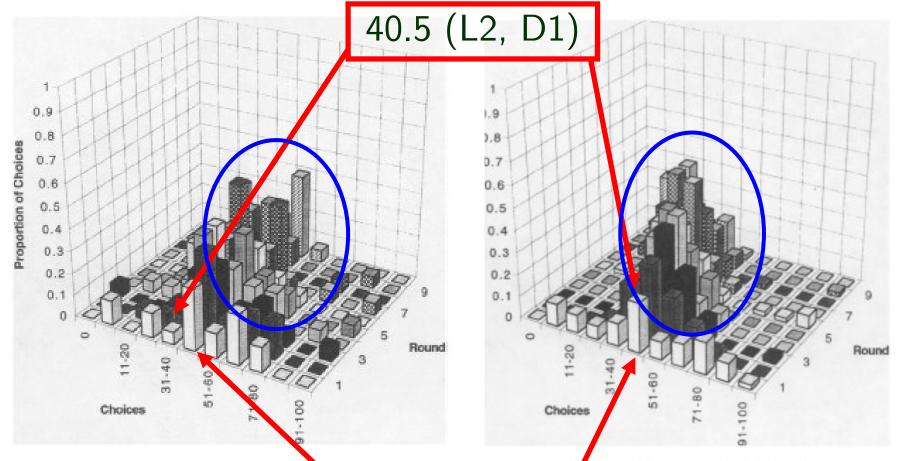

FIGURE 2E. INEXPERIENCED SUBJECTS' CHOICES OVER ROUND IN IT (0

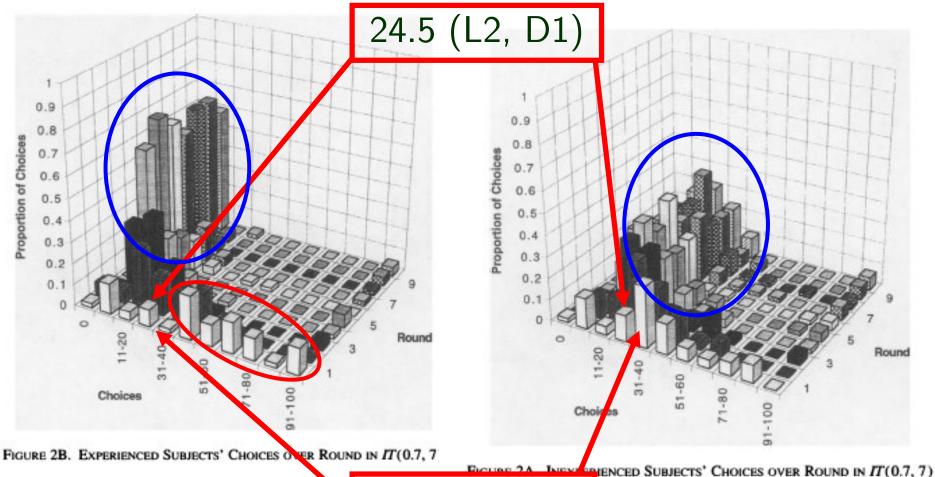
FIGURE 2A. INEXPER ENCED SUBJECTS' CHOICES OVER ROUND IN IT (0.7.7)

35 (L1, D0)

p = 0.7

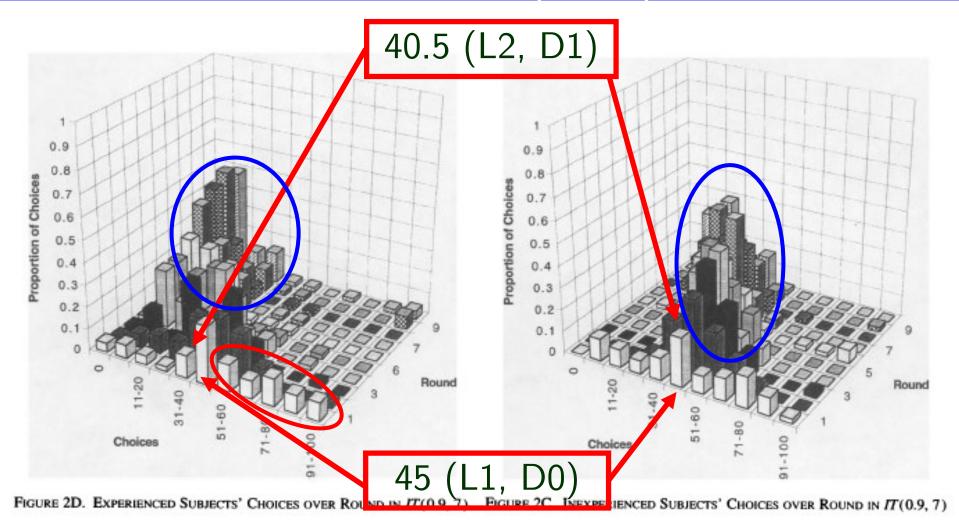
# Camerer, Ho and Weigelt (1998): IT 7 vs. 3

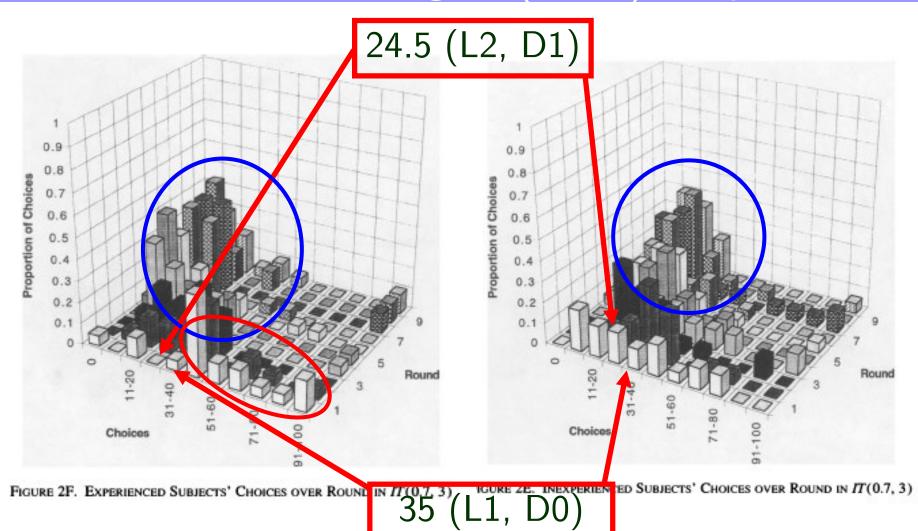


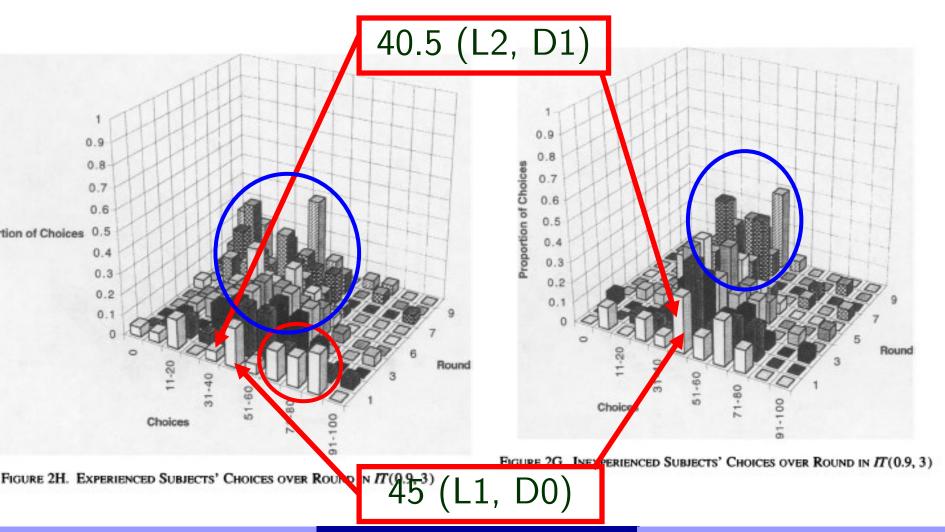


Figure 2G. Inexperienced Subjects' Choices over Region in T(3.9,3) 2G. Leaders Ced Subjects' Choices over Region in T(0.9,7) 45 (L1, D0) p=0.9

#### Camerer, Ho and Weigelt (AER 1998)

#### **RESULT 4:**


- Choices by [cross-game] experienced subjects are no different than choices by inexperienced subjects in the first round,
- but converge faster to equilibrium.


Inexperienced vs. Experienced...




 $20\overline{21/4/22}$ 

35 (L1, D0)







#### Camerer, Ho and Weigelt (AER 1998)

- Classification of Types
  - ▶ Follow Stahl and Wilson (GEB 1995)
- ▶ Level-0: pick randomly from  $N(\mu, \sigma)$
- ▶ Level-1: BR to level-0 with noise
- ▶ Level-2: BR to level-1 with noise
- ▶ Level-3: BR to level-2 with noise
- Estimate type, error using MLE

## Camerer, Ho and Weigelt (AER 1998)

Table 3—Maximum-Likelihood Estimates and Log-Likelihoods for Levels of Iterated Dominance (First-Round Data Only)

| Parameter                       |          | data<br>of 3 or 7) |               | el's data<br>of 16–18) |
|---------------------------------|----------|--------------------|---------------|------------------------|
| estimates                       | IT(p, n) | FT(p, n)           | IT(0.5, n)    | IT(2/3, n)             |
| $\omega_0$                      | 15.93    | 21.72              | 45.83 (23.94) | 28.36 (13.11)          |
| $\omega_{\scriptscriptstyle 1}$ | 20.74    | 31.46              | 37.50 (29.58) | 34.33 (44.26)          |
| $\omega_2$                      | 13.53    | 12.73              | 16.67 (40.84) | 37.31 (39.34)          |
| $\omega_3$                      | 49.50    | 34.08              | 0.00 (5.63)   | 0.00 (3.28)            |
| $\mu$                           | 70.13    | 100.50             | 35.53 (50.00) | 52.23 (50.00)          |
| $\sigma$                        | 28.28    | 26.89              | 22.70         | 14.72                  |
| ρ                               | 1.00     | 1.00               | 0.24          | 1.00                   |
| -LL                             | 1128.29  | 1057.28            | 168.48        | 243.95                 |
| pe distrik                      | oution   | Laud L. Da         |               | L                      |

Level-k Reasoning

Joseph Lao-yi Wang

#### Camerer, Ho and Weigelt (AER 1998)

- Robustness checks:
  - ▶ High stakes (Fig.1.3 small effect lowering numbers)
  - ▶ Median vs. Mean (Nagel 1999 same): BGT Fig. 5.1
  - $p^*(Median+18)$ : Equilibrium is inside
- Subject Pool Variation:
  - ▶ Portfolio managers, Econ PhD, Caltech undergrads
  - Caltech Board of Trustees (CEOs)
  - ▶ Readers of Financial Times and Expansion
- Experience vs. Inexperience (for the same game)
  - ▶ Slonim (EE 2005) Experience good only for 1<sup>st</sup> rd.

#### Level-k Reasoning

- ▶ Theory for Initial Response (BGT, Ch. 5) vs. Theory for Equilibration (BGT, Ch. 6)
- First: Stahl and Wilson (GEB 1995)
- Better: Costa-Gomes, Crawford & Broseta (Econometrica 2001)
- ▶ Best 1: Camerer, Ho and Chong (QJE 2004)
  - Poisson Cognitive Hierarchy
- Best 2: Costa-Gomes & Crawford (AER 2006)

# Level-k Theory: Stahl & Wilson (GEB 1995)

- ▶ Stahl and Wilson (GEB 1995)
- ▶ Level-0: Random play
- ▶ Level-1: BR to Random play
- ▶ Level-2: BR to Level-1
- Nash: Play Nash Equilibrium
- Worldly: BR to distribution of Level-0, Level-1 and Nash types

# Level-k Theory: Stahl & Wilson (GEB 1995)

TABLE IV

PARAMETER ESTIMATES AND CONFIDENCE INTERVALS FOR MIXTURE MODEL WITHOUT RE TYPES

|   | Estimate | Std. Dev. | 95 percent | conf. int. |
|---|----------|-----------|------------|------------|
| 1 | 0.2177   | 0.0425    | 0.1621     | 0.3055     |
|   | 0.4611   | 0.0616    | 0.2014     | 0.8567     |
|   |          |           | [0.2360]   | 0.8567]    |
|   | 3.0785   | 0.5743    | 1.9029     | 4.9672     |
|   |          |           | [2.5631    | 5.0000]    |
|   | 4.9933   | 0.9357    | 1.9964     | 5.0000     |
|   | 0.0624   | 0.0063    | 0.0527     | 0.0774     |
|   | 0.4411   | 0.0773    | 0.2983     | 0.5882     |
|   | 0.3326   | 0.0549    | 0.2433     | 0.4591     |
|   | 0.1749   | 0.0587    | 0.0675     | 0.3047     |
|   | 0.2072   | 0.0575    | 0.1041     | 0.3298     |
|   | 0.0207   | <b>—</b>  | 12.0       | 21         |
|   | 0.1666   |           | oe aist    | ribution.  |
|   | 0.4306   |           |            |            |
|   | -442.727 |           |            |            |

- ▶ Costa-Gomes, Crawford & Broseta (2001)
- ▶ 18 2-player NF games designed to separate:
- ▶ Naive (L1), Altruistic (max sum)
- Optimistic (maximax), Pessimistic (maximin)
- ▶ L2 (BR to L1)
- ▶ D1/D2 (1/2 round of DS deletion)
- Sophisticated (BR to empirical)
- Equilibrium (play Nash)

- ▶ Three treatments (all no feedback):
- Baseline (B)
  - Mouse click to open payoff boxes
- Open Box (OB)
  - Payoff boxes always open
- Training (TS)
  - Rewarded to choose equilibrium strategies

- Results 1: Consistency of Strategies with Iterated Dominance
- ▶ B, OB: 90%, 65%, 15% equilibrium play
  - ▶ For Equilibria requiring 1, 2, 3 levels of ID
- ▶ TS: 90-100% equilibrium play
  - ▶ For all levels
- Game-theoretic reasoning is not computationally difficult, but unnatural.

|  | Resu | lt 2: | Estimate | Sub | ject l | Decision | Rule |
|--|------|-------|----------|-----|--------|----------|------|
|--|------|-------|----------|-----|--------|----------|------|

| Rule          | E(u)  | Choice (%) | Choice+Lookup (%) |
|---------------|-------|------------|-------------------|
| Altruistic    | 17.11 | 8.9        | 2.2               |
| Pessimistic   | 20.93 | 0          | 4.5               |
| Naïve         | 21.38 | 22.7       | <b>44.8</b>       |
| Optimistic    | 21.38 | 0          | 2.2               |
| L2            | 24.87 | 44.2       | 44.1              |
| D1            | 24.13 | 19.5       | 0                 |
| D2            | 23.95 | 0          | 0                 |
| Equilibrium   | 24.19 | 5.2        | 0                 |
| Sophisticated | 24.93 | 0          | 2.2               |

| Subject /   | 1 own     | payoff        | → other   | payoff |
|-------------|-----------|---------------|-----------|--------|
| Rule        | Predicted | Actual        | Predicted | Actual |
| TS (Equil.) | >31       | 63.3          | >31       | 69.3   |
| Equilibrium | >31—      | <b>→</b> 21.5 | >31       | 79.0   |
| Naive/Opt.  | <31       | 21.1          | -         | 48.3   |
| Altruistic  | <31       | 21.1          | -         | 60.0   |
| L2          | >31       | 39.4          | =31       | 30.3   |
| D1          | >31—      | <b>→</b> 28.3 | >31       | 61.7   |

- Result 3: Information Search Patterns
- Occurrence (weak requirement)
  - ▶ All necessary lookups exist somewhere
- Adjacency (strong requirement)
  - Payoffs compared by rule occur next to each other
- ▶ H-M-L: % of Adjacency | 100% occurrence

TABLE V

Aggregate Rates of Compliance with Types' Occurrence and Adjacency for TS and Baseline Subjects, and for Baseline Subjects by Most Likely Type Estimated from Decisions Alone, in percentages (— vacuous)

| Treatment                | Altruistic                | Pessimistic              | Naïve                  | Optimistic     | L.2                     | D1                      | D2                      | Equilibrium             | Sophisticated            |
|--------------------------|---------------------------|--------------------------|------------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| (# subjects)             | J = H, M, L, 0            | j = H, M, L, 0           | j = H, M, L, 0         | j = A,0        | j = H, M, L, 0           |
| TS (12)<br>Baseline (45) | 3,10,50,27<br>14,11,51,24 | 44,7,36,13<br>74,2,11,14 | 83,2,0,15<br>78,4,4,14 | 86,14<br>85,15 | 76,2,0,22<br>67,14,5,14 | 92,3,1,5<br>52,19,15,14 | 92,3,1,5<br>50,19,15,14 | 96,1,1,3<br>42,23,19,16 | 75,1,1,24<br>39,21,20,21 |
| Altruistic (2)           | 78,6,11,6                 | 56,8,33,3                | 53,3,42,3              | 97,3           | 47,8,39,6               | 36,6,56,3               | 33,8,56,3               | 31,11,56,3              | 28,14,56,3               |
| Pessimistic (0)          | -,-,-,-                   | -,-,-,-                  | -,-,-,-                | -,-            | -,-,-,-                 | -,-,-,-                 | -,-,-,-                 | -,-,-,-                 | -,-,-,-                  |
| Naïve / Optim. (11)      | 9,5,53,33                 | 85,1,9,5                 | 89,5,3,4               | 96,4           | 42,24,3,31              | 45,22,20,13             | 43,18,23,16             | 26,24,28,23             | 23,23,27,27              |
| L2 (23)                  | 8,12,58,22                | 72,2,9,17                | 78,3,0,18              | 80,20          | 85,6,3,6                | 57,20,9,15              | 54,21,10,15             | 49,24,12,15             | 46,22,12,20              |
| D1 (7)                   | 23,21,26,29               | 59,3,16,23               | 63,7,6,23              | 77,23          | 53,21,6,21              | 48,17,14,20             | 45,19,15,21             | 42,20,17,21             | 38,14,21,27              |
| D2(0)                    | -,-,-,-                   | -,-,-,-                  | -,-,-,-                | —,—            | -,-,-,-                 | _,_,_,_                 | -,-,-,-                 | -,-,-,-                 | -,-,-,-                  |
| Equilibrium (2)          | 6,8,86,0                  | 100,0,0,0                | 97,3,0,0               | 100,0          | 64,36,0,0               | 69,17,14,0              | 67,19,14,0              | 56,25,19,0              | 53,19,28,0               |
| Sophisticated (0)        | _,_,_,_                   | _,_,_,_                  | _,_,_,_                | —,—            | _,_,_,_                 | _,_,_,_                 | _,_,_,_                 | _,_,_,_                 | _,_,_,_                  |

TABLE V

AGGREGATE RATES OF COMPLIANCE WITH TYPES' OCCURRENCE AND ADJACENCY FOR TS

Most Likely Type Estimated from Decisions Alone, in it

| Treatment<br>(# subjects) | Altruistic $J = H, M, L, 0$ | Pessimistic $j = H, M, L, 0$ | Naïve $j = H, M, L, 0$ | Optimistic $j = A,0$ | j = H, M, L, 0          |
|---------------------------|-----------------------------|------------------------------|------------------------|----------------------|-------------------------|
| TS (12)<br>Baseline (45)  | 3,10,50,27<br>14,11,51,24   | 44,7,36,13<br>74,2,11,14     | 83,2,0,15<br>78,4,4,14 | 86,14<br>85,15       | 76,2,0,22<br>67,14,5,14 |
| Altruistic (2)            | 78,6,11,6                   | 56,8,33,3                    | 53,3,42,3              | 97,3                 | 47,8,39,6               |
| Pessimistic (0)           | ,,                          | _,_,_,_                      | ,,                     |                      | _,_,_,_                 |
| Naïve / Optim. (11)       | 9,5,53,33                   | 85,1,9,5                     | 89,5,3,4               | 96,4                 | 42,24,3,31              |
| L2 (23)                   | 8,12,58,22                  | 72,2,9,17                    | 78,3,0,18              | 80,20                | 85,6,3,6                |
| D1 (7)                    | 23,21,26,29                 | 59,3,16,23                   | 63,7,6,23              | 77,23                | 53,21,6,21              |
| D2 (0)                    | -,-,-,-                     | -,-,-,-                      | -,-,-,-                | —,—                  | -,-,-,-                 |
| Equilibrium (2)           | 6,8,86,0                    | 100,0,0,0                    | 97,3,0,0               | 100,0                | 64,36,0,0               |
| Sophisticated (0)         | -,-,-,-                     | -,-,-,-                      | -,-,-,-                | —,—                  | -,-,-,-                 |

TABLE V

NCE AND ADJACENCY FOR TS AND BASELINE SUBJECTS, AND FOR BASELINE SUBJECTS BY 5 FROM DECISIONS ALONE, IN PERCENTAGES (— VACUOUS)

| Optimistic $j = A,0$   | $L2 \\ j = H, M, L, 0$               | D1 = H, M, L, 0                                 | $D2 \\ j = H, M, L, 0$                           | Equilibrium $j = H, M, L, 0$ | Sophisticated $j = H, M, L, 0$ |
|------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------|--------------------------------|
| 86,14<br>85,15         | 76,2,0,22<br>67,14,5,14              | 92,3,1,5<br>52,19,15,14                         | 92,3,1,5<br>50,19,15,14                          | 96,1,1,3<br>42,23,19,16      | 75,1,1,24<br>39,21,20,21       |
| 97,3                   | 47,8,39,6                            | 36,6,56,3                                       | 33,8,56,3                                        | 31,11,56,3                   | 28,14,56,3                     |
| 96,4<br>80,20<br>77,23 | 42,24,3,31<br>85,6,3,6<br>53,21,6,21 | ,,,<br>45,22,20,13<br>57,20,9,15<br>48,17,14,20 | ,,,<br>43,18,23,16<br>54,21,10,15<br>45,19,15,21 |                              |                                |
| 100,0                  | 64,36,0,0<br>-,-,-,-                 | 69,17,14,0<br>-,-,-,-                           | 67,19,14,0<br>—,—,—,—                            | 56,25,19,0<br>-,-,-,-        | 53,19,28,0<br>-,-,-,-          |

#### Level-k Theory: Cognitive Hierarchy

- ▶ Camerer, Ho and Chong (QJE 2004)
- Poisson distribution of level-k thinkers  $f(k|\tau)$ 
  - $\tau$  = mean number of thinking steps
- ▶ Level-0: choose randomly or use heuristics
- ▶ Level-*k* thinkers use *k* steps of thinking BR to a mixture of lower-step thinkers
  - Belief about others is Truncated Poisson
- Easy to compute; Explains many data

- ▶ Costa-Gomes & Crawford (2006)
- ▶ 2-Person Guessing Games (*p*-beauty contest)
  - ▶ Player 1 guesses 300-500, target = 0.7
  - ▶ Player 2 guesses 100-900, target = 1.5
  - $\triangleright 0.7 \times 1.5 = 1.05 > 1...$
- Unique Equilibrium @ upper bound (500, 750)
- ▶ In general:
- ▶ Target1 x Target2 > 1: Nash @ upper bounds
- ▶ Target1 x Target2 < 1: Nash @ lower bounds

- ▶ 16 Different Games
- Limits:
- $\gamma = [300, 500], \delta = [300, 900]$
- ▶ Target: 1 = 0.5, 2 = 0.7, 3 = 1.3, 4 = 1.5

No feedback – Elicit Initial Responses

- Define Various Types:
- Equilibrium (EQ): BR to Nash (play Nash)
- Defining L0 as uniformly random
  - ▶ Based on evidence from past normal-form games
- ▶ Level-k types L1, L2, and L3:
- ▶ L1: BR to L0
- ▶ L2: BR to L1
- ▶ L3: BR to L2

- Dominance types:
  - ▶ D1: Does one round of dominance and BR to a uniform prior over partner's remaining decisions
  - ▶ D2: Does two rounds and BR to a uniform prior
- Sophisticated (SOPH): BR to empirical distribution of others' decisions
  - ▶ Ideal type (if all subjects are SOPH, coincide with Equilibrium)
  - See if anyone has a transcended understanding of others' decisions

| ے ا | Walk     | Thec | rv. C | CC(I) | AFR C | 2006)  |     |      |
|-----|----------|------|-------|-------|-------|--------|-----|------|
|     | Game     | L1   | L2    | L3    | D1    | D2     | EQ  | SOPH |
|     | 14. β4γ2 | 600  | 525   | 630   | 600   | 611.25 | 750 | 630  |
|     | 6. δ3γ4  | 520  | 650   | 650   | 617.5 | 650    | 650 | 650  |
|     | 7. δ3δ3  | 780  | 900   | 900   | 838.5 | 900    | 900 | 900  |
|     | 11. δ2β3 | 350  | 546   | 318.5 | 451.5 | 423.15 | 300 | 420  |
|     | 16. α4α2 | 450  | 315   | 472.5 | 337.5 | 341.25 | 500 | 375  |
|     | 1. α2β1  | 350  | 105   | 122.5 | 122.5 | 122.5  | 100 | 122  |
|     | 15. α2α4 | 210  | 315   | 220.5 | 227.5 | 227.5  | 350 | 262  |
|     | 13. γ2β4 | 350  | 420   | 367.5 | 420   | 420    | 500 | 420  |
|     | 5. γ4δ3  | 500  | 500   | 500   | 500   | 500    | 500 | 500  |
|     | 4. γ2β1  | 350  | 300   | 300   | 300   | 300    | 300 | 300  |
|     | 10. α4β1 | 500  | 225   | 375   | 262.5 | 262.5  | 150 | 300  |
|     | 8. δ3δ3  | 780  | 900   | 900   | 838.5 | 900    | 900 | 900  |
|     | 12. β3δ2 | 780  | 455   | 709.8 | 604.5 | 604.5  | 390 | 695  |
|     | 3. β1γ2  | 200  | 175   | 150   | 200   | 150    | 150 | 162  |
|     | 2. β1α2  | 150  | 175   | 100   | 150   | 100    | 100 | 132  |
| 202 | 9. β1α4  | 150  | 250   | 112.5 | 162.5 | 131.25 | 100 | 187  |

- ▶ 43 (out of 88) subjects in the baseline made exact guesses (+/- 0.5) in 7 or more games
- ▶ Distribution: (L1, L2, L3, EQ) = (20, 12, 3, 8)

TABLE 1—SUMMARY OF BASELINE AND OB SUBJECTS' ESTIMATED TYPE DISTRIBUTIONS

| Туре         | Apparent from guesses | Econometric from guesses | Econometric from guesses, excluding random | Econometric from guesses, with specification test | Econometric from<br>guesses and<br>search, with<br>specification test |
|--------------|-----------------------|--------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|
| <u></u>      | 20                    | 43                       | 37                                         | 27                                                | 29                                                                    |
| L2           | 12                    | 20                       | 20                                         | 17                                                | 14                                                                    |
| L3           | 3                     | 3                        | 3                                          | 1                                                 | 1                                                                     |
| D1           | 0                     | 5                        | 3                                          | 1                                                 | 0                                                                     |
| D2           | 0                     | 0                        | 0                                          | 0                                                 | 0                                                                     |
| Eq.          | 8                     | 14                       | 13                                         | 11                                                | 10                                                                    |
| Soph.        | 0                     | 3                        | 2                                          | 1                                                 | 1                                                                     |
| Unclassified | 45                    | 0                        | 10                                         | 30                                                | 33                                                                    |

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.

- No Dk types
- No SOPH types
- ▶ No L0 (only in the minds of L1...)
- Deviation from Equilibrium is cognitive
- Cannot distinguish/falsify Cognitive Hierarchy
  - ▶ BR against lower types, not just L(k-1)
- But distribution is not Poisson (against CH)
  - ▶ Is the Poisson assumption crucial?

- ▶ Pseudotypes: Constructed with subjects' guesses in 16 games (pseudo-1 to pseudo-88)
- Specification Test: Compare the likelihood of subject's type with likelihoods of pseudotypes
  - ▶ Should beat at least 87/8 = 11 pseudotypes
  - Unclassified if failed
- Omitted Type Test: Find clusters that
  - ▶ (a) Look like each other, but (b) not like others
  - Pseudotype likelihoods high within, low outside

- ▶ 5 small clusters; total = 11 of 88 subjects
- Other clusters?
  - ▶ Could find more smaller clusters in a larger sample, but size smaller than 2/88 (approx. 2%)
- Smaller clusters could be treated as errors
  - ▶ No point to build one model per subject...
  - ▶ A model for only 2% of population is not general enough to make it worth the trouble

- Large fraction of subjects' deviations from equilibrium explained by Level-k model
  - (that can be explained by a model)
- Although the model explains only half+ of subjects' deviations from equilibrium,
- it may still be optimal for a modeler to treat the rest of the deviations as errors
  - Since the rest is not worth modeling...

#### Does Level-k Explain Hide-and-Seek Games?

- Aggregate RTH Hide-and-Seek Game Results:
- ▶ Both Hiders and Seekers over-choose central A
- Seekers choose central A even more than hiders

|         | Α      | В      | A      | Α      |
|---------|--------|--------|--------|--------|
| Hiders  | 0.2163 | 0.2115 | 0.3654 | 0.2067 |
| (624)   |        |        |        |        |
| Seekers | 0.1821 | 0.2054 | 0.4589 | 0.1536 |
| (560)   |        |        |        |        |

- Can a strategic theory explain this?
- Level-k: Each role is filled by Lk types: L0, L1, L2, L3, or L4 (probabilities to be estimated)
  - ▶ Note: In Hide and Seek the types cycle after L4...
- ▶ High types anchor beliefs in a naive ∠0 type and adjusts with iterated best responses:
  - ▶ L1 best responds to L0 (with uniform errors)
  - ▶ L2 best responds to L1 (with uniform errors)
    - **...**
  - ▶ Lk best responds to Lk-1 (with uniform errors)

#### Hide-and-Seek Game: Anchoring Type Level-0

- ▶ LO Hiders and Seekers are symmetric
  - ▶ Favor salient locations equally
- 1. Favor B: choose with probability q > 1/4
- 2. Favor end A: choose with prob. p/2>1/4
  - ▶ Choice probabilities: (p/2, q, 1 p q, p/2)
- Note: Specification of Anchoring Type ∠0 is the key to model's explanatory power
  - ▶ See Crawford and Iriberri (AER 2007) for other LO
  - Cannot use uniform L0 (coincide with equilibrium)

- More (or less) attracted to B: p/2 < q (p/2 > q)
- ▶ L1 Hiders choose central A

Table 2—Types' Expected Payoffs and Choice Probabilities in RTH's Games when p > 1/2 and q > 1/4

| Hider                     | Expected payoff            | Choice<br>probability                  | Expected payoff           | Choice probability | Seeker                       | Expected payoff        | Choice probability | Expected payoff        | Choice<br>probability |
|---------------------------|----------------------------|----------------------------------------|---------------------------|--------------------|------------------------------|------------------------|--------------------|------------------------|-----------------------|
| <i>L0</i> (Pr. <i>r</i> ) | Mor                        | eB-                                    | Less                      | s B -              | $\frac{1}{L0(\text{Pr. }r)}$ | Mor                    | e B                | _ Les                  | sB-                   |
| A<br>B                    | _                          | p/2                                    | _                         | p/2                | A<br>B                       | _                      | p/2                | _                      | p/2                   |
| A                         | _                          | q $1-p-q$                              | _                         | q $1-p-q$          | A                            | _                      | q $1-p-q$          | _                      | 1-p-q                 |
| A                         | _                          | p/2                                    | _                         | p/2                | A                            |                        | p/2                |                        | p/2                   |
| L1 (Pr. $s$ )             |                            |                                        |                           |                    | LI(Pr. s)                    |                        |                    |                        |                       |
| A<br>B                    | 1 - p/2 < 3/4              | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ | 1 - p/2 < 3/4             | 0                  | A                            | p/2 > 1/4              | 0                  | p/2 > 1/4              | 1/2<br>0              |
| A                         | 1 - q < 3/4<br>p + q > 3/4 | 1                                      | 1 - q < 3/4 $p + q > 3/4$ | 1                  | A                            | q > 1/4<br>1-p-q < 1/4 | 1 0                | q > 1/4<br>1-p-q < 1/4 |                       |
| A                         | 1 - p/2 < 3/4              | 0                                      | 1 - p/2 < 3/4             | 0                  | A                            | p/2 > 1/4              | 0                  | p/2 > 1/4              | 1/2                   |
| <i>L2</i> (Pr. <i>t</i> ) |                            |                                        |                           |                    | L2 (Pr. t)                   |                        |                    |                        |                       |
| A                         | 1                          | 1/3                                    | 1/2                       | 0                  | A                            | 0                      | 0                  | 0                      | 0                     |
| В                         | 0                          | 0                                      | 1                         | 1/2                | В                            | 0                      | 0                  | 0                      | 0                     |
| A                         | 1                          | 1/3                                    | 1                         | 1/2                | A                            | 1                      | 1                  | 1                      | 1                     |
| A                         | 1                          | 1/3                                    | 1/2                       | 0                  | A                            | 0                      | 0                  | 0                      | 0                     |

- ▶ More (or less) attracted to B: p/2 < q (p/2 > q)
- ▶ L1 Seekers avoid central A (pick B or end A)

Table 2—Types' Expected Payoffs and Choice Probabilities in RTH's Games when p > 1/2 and q > 1/4

| Hider                     | Expected payoff | Choice<br>probability | Expected payoff | Choice<br>probability | Seeker                       | Expected payoff | Choice probability                             | Expected payoff | Choice<br>probability |
|---------------------------|-----------------|-----------------------|-----------------|-----------------------|------------------------------|-----------------|------------------------------------------------|-----------------|-----------------------|
| <i>L0</i> (Pr. <i>r</i> ) | Mor             | eB-                   | Less            | sB-                   | $\frac{1}{L0(\text{Pr. }r)}$ | Mor             | eB_                                            | _ Les           | ss B -                |
| A                         | _               | <i>p</i> /2           | -               | <i>p</i> /2           | A                            | _               | p/2                                            | _               | p/2                   |
| В                         | _               | q                     | _               | q                     | B                            | _               | q                                              | _               | q                     |
| A<br>A                    | _               | 1-p-q $p/2$           | _               | 1-p-q                 | A<br>A                       | _               | 1-p-q                                          | _               | 1-p-q $p/2$           |
| <i>L1</i> (Pr. s)         |                 | ,                     |                 |                       | Li (P. C)                    |                 | ,                                              |                 |                       |
| A                         | 1 - p/2 < 3/4   | 0                     | 1 - p/2 < 3/4   |                       | A                            | p/2 1/A         | 0                                              | p/2 > 1/4       | 1/2                   |
| В                         | 1 - q < 3/4     | 0                     | 1 - q < 3/4     | 0                     | В                            | q > 1/4         | 7                                              | q > 1/4         | 0                     |
| A                         | p + q > 3/4     | 1                     | p + q > 3/4     | 1                     |                              | 1-p-q < 1/4     | $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ | 1-p-q < 1/4     | 1 0                   |
| A                         | 1 - p/2 < 3/4   | 0                     | 1 - p/2 < 3/4   | 0                     | A                            | p/2 > 1/4       | 0                                              | p/2 > 1/4       | 1/2/                  |
| <i>L2</i> (Pr. t)         |                 |                       |                 |                       | <i>L2</i> (Pr. <i>t</i> )    |                 |                                                |                 |                       |
| A ` ´                     | 1               | 1/3                   | 1/2             | 0                     | A ` ´                        | 0               | 0                                              | 0               | 0                     |
| В                         | 0               | 0                     | 1               | 1/2                   | В                            | 0               | 0                                              | 0               | 0                     |
| A                         | 1               | 1/3                   | 1               | 1/2                   | A                            | 1               | 1                                              | 1               | 1                     |
| A                         | 1               | 1/3                   | 1/2             | 0                     | A                            | 0               | 0                                              | 0               | 0                     |
|                           |                 |                       |                 |                       |                              |                 |                                                |                 |                       |

- More (or less) attracted to B: p/2 < q (p/2 > q)
- ▶ L2 Hiders choose central A with prob. in [0,1]

Table 2—Types' Expected Payoffs and Choice Probabilities in RTH's Games when p > 1/2 and q > 1/4

| Hider                               | Expected payoff                         | Choice<br>probability                                              | Expected payoff                         | Choice probability                                                 | Seeker                                                        | Expected payoff                     | Choice probability                                                 | Expected payoff                     | Choice probability                                                 |
|-------------------------------------|-----------------------------------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|
| <i>L0</i> (Pr. <i>r</i> )           | — Mor                                   | e B                                                                | Less                                    | sB-                                                                | $\frac{1}{L0  (Pr.  r)}$                                      | Mor                                 | e B _                                                              | Les                                 | s B -                                                              |
| A<br>B<br>A                         | _<br>_<br>_                             | $   \begin{array}{c}     p/2 \\     q \\     1-p-q   \end{array} $ | _<br>_<br>_                             | $   \begin{array}{c}     p/2 \\     q \\     1-p-q   \end{array} $ | A<br>B<br>A                                                   | -<br>-<br>-                         | $   \begin{array}{c}     p/2 \\     q \\     1-p-q   \end{array} $ | -<br>-<br>-                         | $   \begin{array}{c}     p/2 \\     q \\     1-p-q   \end{array} $ |
| A<br>L1 (Pr. s)<br>A                | - 1 - p/2 < 3/4                         | p/2<br>0                                                           | - 1 - p/2 < 3/4                         |                                                                    | $\begin{vmatrix} A \\ L1 \text{ (Pr. } s) \\ A \end{vmatrix}$ | - $p/2 > 1/4$                       | p/2<br>0                                                           | - $p/2 > 1/4$                       | p/2                                                                |
| B<br>A<br>A                         | 1 - q < 3/4  p + q > 3/4  1 - p/2 < 3/4 | 0<br>1<br>0                                                        | 1 - q < 3/4  p + q > 3/4  1 - p/2 < 3/4 | 0<br>1<br>0                                                        | B<br>A<br>A                                                   | q > 1/4<br>1-p-q < 1/4<br>p/2 > 1/4 | 1 0                                                                | q > 1/4<br>1-p-q < 1/4<br>p/2 > 1/4 | 0 0 1/2                                                            |
| L2 (Pr. t)<br>A<br>B                | 1                                       | 1/3                                                                | 1/2                                     | 0                                                                  | L2 (Pr. t)<br>A<br>B                                          | 0                                   | 0                                                                  | 0                                   | 0                                                                  |
| A<br>A<br><i>L3</i> (Pr. <i>u</i> ) | 1                                       | 1/3<br>1/3                                                         | 1<br>1/2                                | 1/2                                                                | A<br>A<br>L3 (Pr. u)                                          | 1<br>0                              | 1                                                                  | 1 0                                 | 1<br>0                                                             |
| Δ (11. 11)                          | 1                                       | 1/2                                                                | 1                                       | 1/2                                                                | Δ (11. 11)                                                    | 1/2                                 | 1/2                                                                | 0                                   | 0                                                                  |

## Hide-and-Seek: Crawford and Iriberri (2007)

- More (or less) attracted to B: p/2 < q (p/2 > q)
- ▶ L2 Seekers choose central A for sure
  Table 2—Types' Expected Payoffs and Choice Probabilities in RTH's Games when p > 1/2 and q > 1/4

|                                |                            |                    |                           |                    | I                            |                      |                            |                        |                                       |
|--------------------------------|----------------------------|--------------------|---------------------------|--------------------|------------------------------|----------------------|----------------------------|------------------------|---------------------------------------|
| Hider                          | Expected payoff            | Choice probability | Expected payoff           | Choice probability | Seeker                       | Expected payoff      | Choice probability         | Expected payoff        | Choice probability                    |
| <i>L0</i> (Pr. <i>r</i> )      | — Mor                      | e B                | Less                      | s B –              | $\frac{1}{L0(\text{Pr. }r)}$ | Mor                  | e B                        | _ Les                  | sB-                                   |
| A<br>B                         | _                          | $\frac{p/2}{q}$    | _                         | $\frac{p/2}{q}$    | AB                           | _                    | p/2                        | _                      | p/2                                   |
| A<br>A                         | _                          | 1-p-q              | _                         | 1-p-q              | A<br>A                       | _                    | q $1-p-q$                  | _                      | q $1-p-q$                             |
| <i>L1</i> (Pr. s)              | _                          | <i>p</i> /2        | _                         | <i>p</i> /2        | L1  (Pr.  s)                 | _                    | <i>p</i> /2                | _                      | <i>p</i> /2                           |
| A<br>B                         | 1 - p/2 < 3/4              | 0                  | 1 - p/2 < 3/4             | 0                  | A<br>B                       | p/2 > 1/4<br>q > 1/4 | 0                          | p/2 > 1/4              | 1/2<br>0                              |
| A                              | 1 - q < 3/4<br>p + q > 3/4 | 1                  | 1 - q < 3/4 $p + q > 3/4$ | 1                  | A                            | 1 - p - q < 1/4      |                            | q > 1/4<br>1-p-q < 1/4 | 0                                     |
| A 1.2 (Dr. 4)                  | 1 - p/2 < 3/4              | 0                  | 1 - p/2 < 3/4             | 0                  | A<br>L2 (Pr. t)              | p/2 > 1/4            | 0                          | p/2 > 1/4              | 1/2                                   |
| L2 (Pr. t)<br>A                | 1                          | 1/3                | 1/2                       | 0                  | A                            | 0                    | 0                          | 0                      | 0                                     |
| B<br>A                         | 0<br>1                     | 0<br>1/3           | 1<br>1                    | 1/2<br>1/2         | B<br>A                       | 1                    | $\rightarrow$ <sub>1</sub> | 1                      | $\begin{array}{c} 0 \\ 1 \end{array}$ |
| A                              | 1                          | 1/3                | 1/2                       | 0                  | A 1.2 (D )                   | 0                    | 0                          | 0                      | 0                                     |
| <i>L3</i> (Pr. <i>u</i> )<br>A | 1                          | 1/3                | 1                         | 1/3                | L3 (Pr. u)<br>A              | 1/3                  | 1/3                        | 0                      | 0                                     |

|                           | Evenanted             | Chaine             | Evenanted       | Chains             |                           | Evenceted       | Chaina             | Evented         | Chaine             |
|---------------------------|-----------------------|--------------------|-----------------|--------------------|---------------------------|-----------------|--------------------|-----------------|--------------------|
| Hider                     | Expected payoff       | Choice probability | Expected payoff | Choice probability | Seeker                    | Expected payoff | Choice probability | Expected payoff | Choice probability |
|                           | <ul><li>Mor</li></ul> | e B -              | Less            | s B -              |                           | Mor             | e B -              | – Les           | sB-                |
| <i>L0</i> (Pr. r)         | 11101                 |                    |                 |                    | <i>L0</i> (Pr. r)         |                 |                    |                 |                    |
| A                         | _                     | p/2                | _               | p/2                | A                         | _               | p/2                | _               | p/2                |
| В                         | _                     | q                  | _               | q                  | В                         | _               | q                  | _               | q                  |
| A                         | _                     | 1-p-q              | _               | 1-p-q              | A                         | _               | 1-p-q              | _               | 1-p-q              |
| A                         | _                     | p/2                | _               | p/2                | A                         | _               | p/2                | _               | p/2                |
| L1 (Pr. $s$ )             |                       |                    |                 |                    | <i>L1</i> (Pr. s)         |                 |                    |                 |                    |
| A                         | 1 - p/2 < 3/4         |                    | 1 - p/2 < 3/4   |                    | A                         | p/2 > 1/4       | 0                  | p/2 > 1/4       | 1/2                |
| В                         | 1 - q < 3/4           | 0                  | 1 - q < 3/4     | 0                  | В                         | q > 1/4         | 1                  | q > 1/4         | 0                  |
| A                         | p + q > 3/4           | 1                  | p + q > 3/4     | 1                  | A                         | 1 - p - q < 1/4 |                    | 1 - p - q < 1/4 |                    |
| A                         | 1 - p/2 < 3/4         | 0                  | 1 - p/2 < 3/4   | 0                  | A                         | p/2 > 1/4       | 0                  | p/2 > 1/4       | 1/2                |
| <i>L2</i> (Pr. <i>t</i> ) |                       |                    |                 |                    | <i>L2</i> (Pr. <i>t</i> ) |                 |                    |                 |                    |
| A                         | 1                     | 1/3                | 1/2             | 0                  | A                         | 0               | 0                  | 0               | 0                  |
| В                         | 0                     | 0                  | 1               | 1/2                | В                         | 0               | 0                  | 0               | 0                  |
| A                         | 1                     | 1/3                | 1               | 1/2                | A                         | 1               | 1                  | 1               | 1                  |
| A                         | 1                     | 1/3                | 1/2             | 0                  | A                         | Û               | 0                  | 0               | 0                  |
| <i>L3</i> (Pr. <i>u</i> ) |                       |                    |                 |                    | £3 (Pr. u)                | _               |                    |                 |                    |
| A                         | 1                     | 1/3                | 1               | 1/3                | A                         | 1/3             | 1/3                | 0               | 0                  |
| В                         | 1                     | 1/3                | 1               | 1/3                | B                         | 0               | 0                  | 1/2             | 1/2                |
| A                         | 0                     | 0                  | 0               | 0                  | Α                         | 1/3             | 1/3                | 1/2             | 1/2                |
| A                         | 1                     | 1/3                | 1               | 1/3                | A                         | 1/3             | 1/3                | 0               | 0                  |
| <i>L4</i> (Pr. v)         |                       |                    |                 |                    | <i>L4</i> (Pr. v)         |                 |                    |                 |                    |
| A                         | 2/3                   | 0                  | 1               | 1/2                | A                         | 1/3             | 1/3                | 1/3             | 1/3                |
| В                         | 1                     | 1                  | 1/2             | 0                  | В                         | 1/3             | 1/3                | 1/3             | 1/3                |
| A                         | 2/3                   | 0                  | 1/2             | 0                  | A                         | 0               | 0                  | 0               | 0                  |
| A                         | 2/3                   | 0                  | 1               | 1/2                | A                         | 1/3             | 1/3                | 1/3             | 1/3                |
| 1 -                       | ,                     |                    |                 |                    |                           |                 | I (O)C(O)          |                 |                    |

2021/4/22

| Hider                     | Expected payoff | Choice<br>probability | Expected payoff | Choice probability | Seeker                    | Expected payoff          | Choice probability | Expected payoff          | Choice probability |
|---------------------------|-----------------|-----------------------|-----------------|--------------------|---------------------------|--------------------------|--------------------|--------------------------|--------------------|
|                           |                 | re B                  | Less            | s R -              |                           | Mor                      | e R -              | _                        | s B -              |
| L0 (Pr. $r$ )             | 10101           |                       | LC3             | 3 D                | <i>L0</i> (Pr. r)         | 10101                    |                    |                          | 13 D               |
| A                         | -               | p/2                   | -               | p/2                | A                         | _                        | <i>p</i> /2        | _                        | p/2                |
| В                         | _               | q                     | _               | q                  | В                         | _                        | q                  | _                        | q                  |
| A                         | _               | 1-p-q                 | _               | 1-p-q              | A                         | _                        | 1-p-q              | _                        | 1-p-q              |
| A                         | _               | p/2                   | _               | p/2                | A                         | _                        | p/2                | _                        | p/2                |
| L1 (Pr. $s$ )             |                 |                       |                 |                    | <i>L1</i> (Pr. s)         |                          |                    |                          |                    |
| A                         | 1 - p/2 < 3/4   |                       | 1 - p/2 < 3/4   |                    | A                         | p/2 > 1/4                | 0                  | p/2 > 1/4                | 1/2                |
| В                         | 1 - q < 3/4     | 0                     | 1 - q < 3/4     | 0                  | В                         | q > 1/4                  | 1                  | q > 1/4                  | 0<br>1 0           |
| A<br>A                    | p + q > 3/4     | 1<br>0                | p + q > 3/4     | 1 0                | A<br>A                    | 1-p-q < 1/4<br>p/2 > 1/4 | 1 0<br>0           | 1-p-q < 1/4<br>p/2 > 1/4 | 1/2                |
|                           | 1 - p/2 < 3/4   | U                     | 1 - p/2 < 3/4   | U                  |                           | p/2 > 1/4                | U                  | p/2 > 1/4                | 1/2                |
| L2 (Pr. $t$ )             | 1               | 1./2                  | 1 /2            | 0                  | L2 (Pr. t)                | 0                        | 0                  | 0                        | 0                  |
| A<br>B                    | 0               | 1/3<br>0              | 1/2             | 1/2                | A<br>B                    | 0                        | 0                  | 0                        | 0                  |
| A                         | 1               | 1/3                   | 1               | 1/2                | A                         | 1                        | 1                  | 1                        | 1                  |
| A                         | 1               | 1/3                   | 1/2             | 0                  | A                         | 0                        | 0                  | 0                        | 0                  |
| <i>L3</i> (Pr. <i>u</i> ) |                 |                       |                 |                    | <i>L3</i> (Pr. <i>u</i> ) |                          |                    |                          |                    |
| Α                         | 1               | 1/3                   | 1               | 1/3                | A (11. 11)                | 1/3                      | 1/3                | 0                        | 0                  |
| В                         | 1               | 1/3                   | 1               | 1/3                | В                         | 0                        | 0                  | 1/2                      | 1/2                |
| A                         | 0               | 0                     | 0               | 0                  | A                         | 1/3                      | 1/3                | 1/2                      | 1/2                |
| A                         | 1               | 1/3                   | 1               | 1/3                | A                         | 1/3                      | 1/3                | 0                        | 0                  |
| <i>L4</i> (Pr. v)         |                 |                       |                 |                    | <i>L4</i> (Pr. v)         |                          |                    |                          |                    |
| A                         | 2/3             | 0                     | 1               | 1/2                | A `                       | 1/3                      | 1/3                | 1/3                      | 1/3                |
| В                         | 1               | 1                     | 1/2             | 0                  | В                         | 1/3                      | 1/3                | 1/3                      | 1/3                |
| A                         | 2/3             | 0                     | 1/2             | 0                  | A                         | 0                        | 0                  | 0                        | 0                  |
| A                         | 2/3             | 0                     | 1               | 1/2                | A                         | 1/3                      | 1/3                | 1/3                      | 1/3                |

2021/4/22

|                           |                       |                    |                 |                    | 1                         |                 |                    |                 |                    |
|---------------------------|-----------------------|--------------------|-----------------|--------------------|---------------------------|-----------------|--------------------|-----------------|--------------------|
| Hider                     | Expected payoff       | Choice probability | Expected payoff | Choice probability | Seeker                    | Expected payoff | Choice probability | Expected payoff | Choice probability |
|                           | N /                   | 10 D               | 1               | - D                |                           | 11/10/          | o D                |                 | o D                |
| LO(Pr. r)                 | <ul><li>Mor</li></ul> | e B                | Les             | SB -               | L0  (Pr.  r)              | - Mor           | е Б –              | — Les           | sB-                |
| Α                         | _                     | <i>p</i> /2        | _               | <i>p</i> /2        | A                         | -               | <i>p</i> /2        | -               | <i>p</i> /2        |
| В                         | _                     | q                  | _               | q                  | В                         | _               | q                  | _               | q                  |
| A                         | _                     | 1 - p - q          | _               | 1 - p - q          | A                         | _               | 1-p-q              | _               | 1 - p - q          |
| A                         | _                     | p/2                | _               | p/2                | A                         | _               | p/2                | _               | p/2                |
| L1 (Pr. $s$ )             |                       |                    |                 |                    | <i>L1</i> (Pr. s)         |                 |                    |                 |                    |
| A                         | 1 - p/2 < 3/4         | 0                  | 1 - p/2 < 3/4   | . 0                | A                         | p/2 > 1/4       | 0                  | p/2 > 1/4       | 1/2                |
| В                         | 1 - q < 3/4           | 0                  | 1 - q < 3/4     | 0                  | В                         | q > 1/4         | 1                  | q > 1/4         | 0                  |
| A                         | p + q > 3/4           | 1                  | p + q > 3/4     |                    | A                         | 1 - p - q < 1/4 |                    | 1 - p - q < 1/4 |                    |
| A                         | 1 - p/2 < 3/4         | 0                  | 1 - p/2 < 3/4   | . 0                | A                         | p/2 > 1/4       | 0                  | p/2 > 1/4       | 1/2                |
| <i>L2</i> (Pr. <i>t</i> ) |                       |                    |                 |                    | <i>L2</i> (Pr. <i>t</i> ) |                 |                    |                 |                    |
| A                         | 1                     | 1/3                | 1/2             | 0                  | A                         | 0               | 0                  | 0               | 0                  |
| В                         | 0                     | 0                  | 1               | 1/2                | В                         | 0               | 0                  | 0               | 0                  |
| A                         | 1                     | 1/3                | 1               | 1/2                | A                         | 1               | 1                  | 1               | 1                  |
| A                         | 1                     | 1/3                | 1/2             | 0                  | A                         | 0               | 0                  | 0               | 0                  |
| <i>L3</i> (Pr. <i>u</i> ) |                       |                    |                 |                    | <i>L3</i> (Pr. <i>u</i> ) |                 |                    |                 |                    |
| A                         | 1                     | 1/3                | 1               | 1/3                | A                         | 1/3             | 1/3                | 0               | 0                  |
| В                         | 1                     | 1/3                | 1               | 1/3                | В                         | 0               | 0                  | 1/2             | 1/2                |
| A                         | 0                     | 0                  | 0               | 0                  | A                         | 1/3             | 1/3                | 1/2             | 1/2                |
| A                         | 1                     | 1/3                | 1               | 1/3                | A                         | 1/3             | 1/3                | 0               | 0                  |
| L4 (Pr. $v$ )             |                       |                    |                 |                    | <i>L4</i> (Pr. v)         |                 |                    |                 |                    |
| A                         | 2/3                   | 0                  |                 | 1/2                | A                         | 1/3             | 1/3                | 1/3             | 1/3                |
| В                         | 1                     | 1                  | 1/2             | 0                  | В                         | 1/3             | 1/3                | 1/3             | 1/3                |
| A                         | 2/3                   | 0                  | 1/2             | 0                  | A                         | 0               | 0                  | 0               | 0                  |
| A                         | 2/3                   | 0                  | 1               | 1/2                | A                         | 1/3             | 1/3                | 1/3             | 1/3                |
| 17 1 1 4 1 7 7            |                       |                    |                 | evel-k Re          |                           |                 | IOSEI              | nn I ao-Vi      | vvang              |

2021/4/22

| Hider                     | Expected payoff | Choice probability | Expected payoff | Choice probability | Seeker                          | Expected payoff | Choice probability | Expected payoff | Choice probability |
|---------------------------|-----------------|--------------------|-----------------|--------------------|---------------------------------|-----------------|--------------------|-----------------|--------------------|
| <i>L0</i> (Pr. <i>r</i> ) | — Mor           | re B               | Les             | sB-                | $\frac{1}{L0  (\text{Pr. } r)}$ | Mor             | e B                | Les             | ss B -             |
| Α                         | _               | <i>p</i> /2        | _               | <i>p</i> /2        | A                               | _               | <i>p</i> /2        | _               | <i>p</i> /2        |
| В                         | _               | q                  | _               | q                  | В                               | _               | q                  | _               | q                  |
| A                         | _               | 1-p-q              | _               | 1-p-q              | A                               | _               | 1-p-q              | _               | 1-p-q              |
| A                         | _               | p/2                | _               | p/2                | A                               | _               | p/2                | _               | p/2                |
| <i>L1</i> (Pr. s)         |                 |                    |                 |                    | <i>L1</i> (Pr. s)               |                 |                    |                 |                    |
| A                         | 1 - p/2 < 3/4   | . 0                | 1 - p/2 < 3/4   | . 0                | A                               | p/2 > 1/4       | 0                  | p/2 > 1/4       | 1/2                |
| В                         | 1 - q < 3/4     | 0                  | 1 - q < 3/4     | 0                  | В                               | q > 1/4         | 1                  | q > 1/4         | 0                  |
| A                         | p + q > 3/4     | 1                  | p + q > 3/4     | 1                  | A                               | 1 - p - q < 1/4 | 0                  | 1-p-q < 1/4     | 1 0                |
| A                         | 1 - p/2 < 3/4   | 0                  | 1 - p/2 < 3/4   | . 0                | A                               | p/2 > 1/4       | 0                  | p/2 > 1/4       | 1/2                |
| <i>L2</i> (Pr. <i>t</i> ) |                 |                    |                 |                    | <i>L2</i> (Pr. <i>t</i> )       |                 |                    |                 |                    |
| A                         | 1               | 1/3                | 1/2             | 0                  | A                               | 0               | 0                  | 0               | 0                  |
| В                         | 0               | 0                  | 1               | 1/2                | В                               | 0               | 0                  | 0               | 0                  |
| A                         | 1               | 1/3                | 1               | 1/2                | A                               | 1               | 1                  | 1               | 1                  |
| A                         | 1               | 1/3                | 1/2             | 0                  | A                               | 0               | 0                  | 0               | 0                  |
| <i>L3</i> (Pr. <i>u</i> ) |                 |                    |                 |                    | <i>L3</i> (Pr. <i>u</i> )       |                 |                    |                 |                    |
| A                         | 1               | 1/3                | 1               | 1/3                | A                               | 1/3             | 1/3                | 0               | 0                  |
| В                         | 1               | 1/3                | 1               | 1/3                | В                               | 0               | 0                  | 1/2             | 1/2                |
| A                         | 0               | 0                  | 0               | 0                  | A                               | 1/3             | 1/3                | 1/2             | 1/2                |
| A                         | 1               | 1/3                |                 | 1/3                | A                               | 1/3             | 1/3                | 0               | 0                  |
| <i>L4</i> (Pr. v)         |                 |                    |                 |                    | <i>L4</i> (Pr. v)               |                 |                    |                 |                    |
| A                         | 2/3             | 0                  | 1               | 1/2                | A                               | 1/3             | 1/2                | 1/3             | 1/3                |
| В                         | 1               | 1                  | 1/2             | 0                  | В                               | 1/3             | 1/3                | 1/3             | 1/3                |
| A                         | 2/3             | 0                  | 1/2             | 0                  | A                               | 0               | • 0                | 0               | <b>9</b> 0         |
| A                         | 2/3             | 0                  | 1               | 1/2                | A                               | 1/3             | 1/3                | 1/3             | 1/3                |
| J21/4/22                  | <u>'</u>        |                    |                 | evel-k Re          | easoning                        |                 | Josef              | on Lao-Vi       | VVaile             |

## Hide-and-Seek Game: Explain Stylized Facts

- Given **L0** playing (p/2, q, 1 p q, p/2),
  - ▶ *L1* Hiders choose central A (avoid *L0* Seekers)
  - ▶ L1 Seekers avoid central A (search for L0 Hiders)
- ▶ *L2* Hiders choose central A with prob. in [0,1]
- ▶ L2 Seekers choose central A for sure
- ▶ L3 Hiders avoid central A
- ▶ L3 Seekers choose central A w/ prob. in [0,1]
- ▶ L4 Hiders and Seekers both avoid central A

## Hide-and-Seek Game: Explain Stylized Facts

- ▶ To reproduce the stylized facts, need
  - Heterogeneous Population (L0, L1, L2, L3, L4) = (r, s, t, u, v) with r=0, t & u large, s not too large
- Need s < (2t+u)/3 (More B), or

$$s < (t+u)/2 \text{ (Less B)}$$

• estimated r = 0, s=19%, t=32%, u=24%,

| Total | p < 2q                                                   | p > 2q                                                   | Total | p < 2q                                                   | p > 2q                                                   |
|-------|----------------------------------------------------------|----------------------------------------------------------|-------|----------------------------------------------------------|----------------------------------------------------------|
| A     | $rp/2 + (1-\varepsilon)[t/3 + u/3] + (1-r)\varepsilon/4$ | $rp/2 + (1-\varepsilon)[u/3 + v/2] + (1-r)\varepsilon/4$ | A     | $rp/2 + (1-\varepsilon)[u/3 + v/3] + (1-r)\varepsilon/4$ | $rp/2 + (1-\varepsilon)[s/2 + v/3] + (1-r)\varepsilon/4$ |
| В     | $rq+(1-\varepsilon)[u/3+v] + (1-r)\varepsilon/4$         | $rq+(1-\varepsilon)[t/2+u/3] + (1-r)\varepsilon/4$       | В     | $rq+(1-\varepsilon)[s+v/3] + (1-r)\varepsilon/4$         | $rq+(1-\varepsilon)[u/2+v/3] + (1-r)\varepsilon/4$       |
| A     | $ r(1-p-q)+(1-\varepsilon)[s+t/3] + (1-r)\varepsilon/4 $ | $r(1-p-q)+(1-\varepsilon)[s+t/2] + (1-r)\varepsilon/4$   | A     | $r(1-p-q)+(1-\varepsilon)[t+u/3]\\+(1-r)\varepsilon/4$   | $r(1-p-q)+(1-\varepsilon)[t+u/2]\\+(1-r)\varepsilon/4$   |
| A     | $rp/2 + (1-\varepsilon)[t/3 + u/3] + (1-r)\varepsilon/4$ | $rp/2 + (1-\varepsilon)[u/3 + v/2] + (1-r)\varepsilon/4$ | A     | $rp/2 + (1-\varepsilon)[u/3 + v/3] + (1-r)\varepsilon/4$ | $rp/2 + (1-\varepsilon)[s/2 + v/3] + (1-r)\varepsilon/4$ |

## Hide-and-Seek: Out of Sample Prediction

- Estimate on one treatment and predict other five treatments
  - ▶ 30 Comparisons: 6 estimations, each predict 5
- ▶ This Level-k Model with symmetric L0 beats other models (LQRE, Nash + noise)
  - ▶ Mean Squared prediction Error (MSE) 18% lower
  - ▶ Better predictions in 20 of 30 comparisons

#### HS Level-k Model Ported to Joker Game

- ► Can Level-k thinking from the Hide-and-Seek Game predict results of other games?
  - ▶ Try O'Neill (1987)'s Joker Game

- Stylized Facts:
  - Aggregate Frequencies close MSE
  - Ace Effect (A chosen more often than 2 or 3);
    - Not captured by QRE

# The Joker Game: O'Neill (1987)

|        | Α     | 2     | 3     | J     |
|--------|-------|-------|-------|-------|
| А      | -5    | 5     | 5     | -5    |
| 2      | 5     | -5    | 5     | -5    |
| 3      | 5     | 5     | -5    | -5    |
| J      | -5    | -5    | -5    | 5     |
| MSE    | 0.2   | 0.2   | 0.2   | 0.4   |
| Actual | 0.226 | 0.179 | 0.169 | 0.426 |
| QRE    | 0.191 | 0.191 | 0.191 | 0.427 |

 Actual frequencies are quite close to MSE

MSE Actual QRE

0.221

0.215

0.203

0.362

0.213

0.213

0.213

0.360

0.2

0.2

0.2

0.4

QRE better, but cannot get the Ace effect

### HS Level-k Model Ported to Joker Game

- ▶ Level-k model w/ symmetric L0 (favor A&J)
- ▶ L0: (a, (1-a-j)/2, (1-a-j)/2, j), a, j>1/4
  - A and J, 'face' cards and end locations, are more salient than 2 and 3...
- ▶ Higher Lk type BR to L(k-1) (Table A3-A4)
- ▶ Challenge: To get the Ace Effect (without L0), need a population of almost all L4 or L3
  - ▶ This is an empirical question, but very unlikely

#### HS Level-k Model Ported to Joker Game

- Could there be no Ace Effect in the initial rounds of O'Neil's data?
  - ▶ The Level-k model predicts a Joker Effect instead!
- Crawford and Ireberri asked for O'Neil's data
  - ▶ And they found...
- Initial Choice Frequencies
  - (A, 2, 3, J) = (8%, 24%, 12%, 56%) for Player 1
  - (A, 2, 3, J) = (16%, 12%, 8%, 64%) for Player 2

Table 5. Comparison of the Leading Models in O'Neill's Game

Model

Observed frequencies

(25 Player 1s, 25 Player 2s)

Equilibrium without perturbations

Level-k with a role-symmetric

L0 that favors salience

Level-k with a role-symmetric

L0 that favors salience

Level-k with a role-symmetric

L0 that avoids salience

Level-k with a role-asymmetric L0

player is a seeker and avoids it for

that favors salience for locations

for which

locations for which player is a

hider

Parameter estimates

a > 1/4 and i > 1/4

3j - a < 1, a + 2j < 1

a > 1/4 and j > 1/4

3i - a < 1, a + 2i > 1

a < 1/4 and j < 1/4

 $a_1 < 1/4, j_1 > 1/4;$ 

 $a_0 > 1/4, j_0 < 1/4$ 

 $3j_1$  -  $a_1$  < 1,  $a_1$  +  $2j_1$  < 1,

 $3a_{9} + j_{9} > 1$ 

Player

1

2

1

2

1

2

1

2

1

2

1

2

Α

0.0800

0.1600

0.2000

0.2000

0.0824

0.1640

0.0000

0.2720

0.4245

0.1670

0.1804

0.1804

Observed or predicted choice frequencies

2

0.2400

0.1200

0.2000

0.2000

0.1772

0.1640

0.2541

0.0824

0.1807

0.1807

0.2729

0.1804

3

0.1200

0.0800

0.2000

0.2000

0.1772

0.1640

0.2541

0.0824

0.1807

0.1807

0.2729

0.1804

0.5600

0.6400

0.4000

0.4000

0.5631

0.5081

0.4919

0.5631

0.2142

0.4717

0.2739

0.4589

**MSE** 

0.0120

0.0200

0.0018

0.0066

0.0073

0.0050

0.0614

0.0105

0.0291

0.0117

### Conclusion

- ▶ Limit of Strategic Thinking: 2-3 steps
- Theory (for initial responses)
- Level-k Types:
  - ▶ Stahl-Wilson (GEB 1995), CGCB (ECMA 2001)
  - Costa-Gomes and Crawford (AER 2006)
  - ▶ Ho and Su (MS 2013)
  - ▶ Chen, Huang and Wang (GEB 2018)
- Cognitive Hierarchy:
  - ▶ Camerer, Ho and Chong (QJE 2004)

## Applications of Level-k Thinking

- p -Beauty Contest:
  - Costa-Gomes and Crawford (AER 2006)
  - ▶ Chen, Huang and Wang (GEB 2018)
- MSE:
  - ▶ Hide-and-Seek: Crawford and Iriberri (AER 2007)
  - ▶ LUPI: Ostling, Wang, Chou and Camerer (AEJmicro 2011)
- Auctions:
  - Overbidding: Crawford and Iriberri (AER 2007)
  - Repeated eBay Auctions: Wang (2006)

## More Applications

- Coordination-Battle of the Sexes (Simple Market Entry Game):
  - ▶ Camerer, Ho and Chong (QJE 2004)
  - ▶ Crawford (2007)
- Pure Coordination Games:
  - Crawford, Gneezy and Rottenstreich (AER 2008)
- Pre-play Communication:
  - Crawford (AER 2003)
  - ▶ Ellingsen and Ostling (AER 2011)

## More Applications

- Strategic Information Communication:
  - Crawford (AER 2003)
  - ▶ Cai and Wang (GEB 2006)
  - ▶ Kawagoe and Takizawa (GEB 2008)
  - ▶ Wang, Spezio and Camerer (AER 2010)
  - ▶ Brown, Leveno and Camerer (AEJmicro 2012)
  - ▶ Lai, Lim and Wang (GEB 2015)
  - ▶ Battaglini, Lai, Lim and Wang (APSR 2019)