Dominance-Solvable Games (優勢可解賽局實驗)

Joseph Tao-yi Wang (王道一) Lecture 7, EE-BGT

2021/4/16

Dominance-Solvable Game

Dominance

Dominance

Strategy A gives you better payoffs than
 Strategy B regardless of opponent strategy

Dominance Solvable

 A game that can be solved by iteratively deleting dominated strategy

Dominance-Solvable Game

Dominance

Do people obey dominance?

- Looking both sides to cross a 1-way street
- If you can see this, I can't see you."
- p-Beauty Contest behavior (guess above 67)
- Will you bet on others obeying dominance?
 - Workers respond to incentives rationally
 - Companies do not use optimal contracts
- SOPH: Knowing other's steps of reasoning

Belief of Iterated Dominance

- 1. Obey Dominance,
- 2. Believe that others obey dominance,
- 3. Believe that others believe you will obey dominance,
- 4. Believe that others believe that you believe they obey dominance,
- Believe that others believe that you believe that they believe you obey dominance, etc.

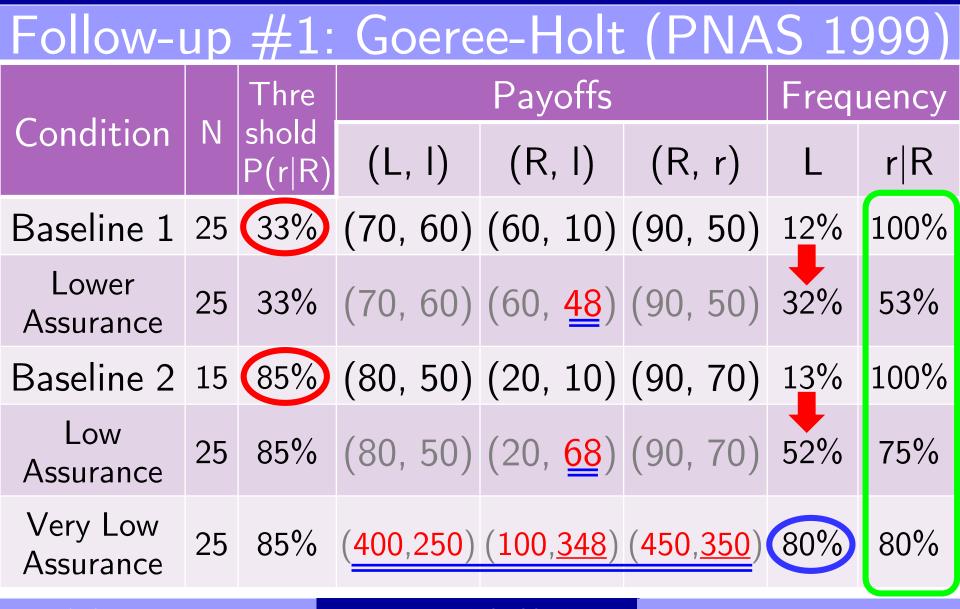
Outline

- A Simple Test: Beard and Beil (MS 1994)
- Centipede:
 - McKelvey and Palfrey (Econometrica 1992)
- Mechanism Design:
 - Sefton and Yavas (GEB 1996)
- Dirty Face:
 - Weber (EE 2001)

Dominance-Solvable Game

A Simple Test: Beard and Beil (MS 1994)

Iterated Dominance Game						
Player 1	Player 2 Move					
Player 1 Move	l r					
L	9.75, 3					
R	3, 4.75	10, 5				


Dominance-Solvable Game

A Simple	Test:	Bearc	and	Bei	(M	S 1	1994)
	Pa	yoffs froi	n	Frequ	uency		Thres
Treatment	(L, I)	(R, I)	(R, r)	L	r R	Ν	∣ -hold P(r R)
1 (baseline)	(9.75,3)	(3, 4.75)	(10, 5)	66%	83%	35	97%
2 (less risk)	(<u>9</u> , 3)	(3, 4.75)	(10, 5)	65%	100%	31	85%
3 (even less risk)							57%
4(more assurance)	(9.75,3)	(3, <u>3</u>)	(10, 5)	47%	100%	32	97%
5(more resentment)	(9.75, <mark>6)</mark>	(3, 4.75)	(10, 5)	86%	100%	21	97%
6 (less risk, more reciprocity)							95%
7 (1/6 payoff)	(58.5,18)	(18,28.5)	(60,30)	67%	100%	30	97%
2021/4/16		ominance-So			Joseph T		Wang

A Simple Test: Beard and Beil (MS 1994)

- Player 2 mostly <u>do</u> obey dominance
- Player 1 is inclined to believe this
 - Though they can be convinced if incentives are strong for the other side to comply
- Follow-up studies show similar results:
 - Goeree and Holt (PNAS 1999)
 - Schotter, Weigelt and Wilson (GEB 1994)

Dominance-Solvable Game

Dominance-Solvable Game

2021/4/16

#	2: Schotter-V	Neigelt-	Wilson	(GEB 199	4)
	Normal Form	Play	er 2	Game 1M	
	Player 1	I	r	Frequency	
	L	<u>4, 4</u>	4, <u>4</u>	(57%)	
	R	0, 1	<u>6</u> , <u>3</u>	(43%)	
	Frequency	(20%)	(80%)		
	Sequential Form			Game 1S	
	L	4, 4		(8%)	
		I	r		
	R	0, 1	6, 3	(92%)	
	Frequency	(2%)	(98%)		
2021	./4/16	Dominance-Solval	ble Game	Joseph Tao-yi Wang	-

	No	ormal Fo	rm		Player	Game 3M			
\pm		Player 1		t	m		b	Frequency	.)
		Т		4, 4	4, 4		4, 4	(82%)	
		Μ		0,1	<u>6, 3</u>		0, 0	(16%)	
		В		0,1	0, 0		3, <u>6</u>	(2%)	
	F	requenc	y	(70%)) (26%)	(4%)		
	Se	quential	Form					Game 3S	
	Т	4, 4	t					(70%)	
			0,1		m		b		
				Μ	6, 3	(), ()	(100%)	
				В	0, 0		3,6	(0%)	
	Fre	equency	(13%	b)	(31%)	(6	i9%)		
202	21/4/	16		Domina	ance-Solvable	Game	Jose	ph Tao-yi Wang	

#2: Schotter-Weigelt-Wilson (GEB 1994)

- Schotter et al. (1994)'s conclusion:
- Limited evidence of iteration of dominance (beyond 1-step), or SPE, forward induction
 Can more experience fix this?
- <u>No</u> for forward induction in 8 periods...
 Brandts and Holt (1995)

But, <u>Yes</u> for 3-step iteration in 160 periods
Rapoport and Amaldoss (1997): Patent Race

Centipede Game: 4-Move SPNE

McKelvey and Palfrey (Econometrica 1992)

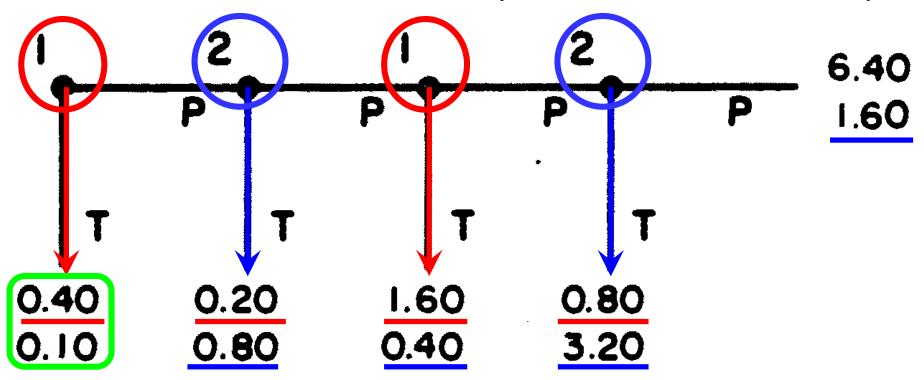
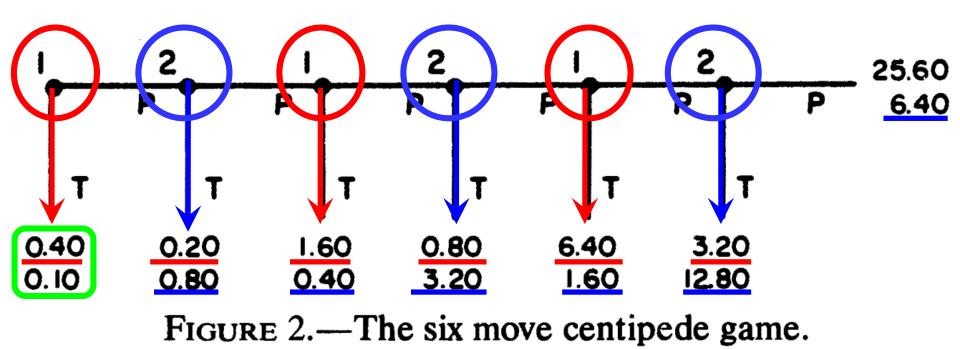



FIGURE 1.—The four move centipede game.

Centipede Game: 6-Move SPNE

2021/4/16

Dominance-Solvable Game

Centipede Game: Outcome

TABLE IIA

PROPORTION OF OBSERVATIONS AT EACH TERMINAL NODE

										<u> </u>
		Session	N	f_1	f_2	f_3	f_4	f_5	f_6	<i>f</i> ₇
Four Move	1 2 3	(PCC) (PCC) (CIT)	100 81 100	.06 .10 .06	.26 .38 .43	.44 .40 .28	.20 .11 .14	.04 .01 .09		
	Total	1-3	281	.071	.356	.370	.153	.049		
High Payoff	4	(High-CIT)	100	.150	.370	.320	.110	.050		
Six Move	5 6 7 Total	(CIT) (PCC) (PCC) 5-7	100 81 100 281	.02 .00 .00	.09 .02 .07 .064	.39 .04 .14 .199	.28 .46 .43 .384	.20 .35 .23 .253	.01 .11 .12 .078	.01 .02 .01 .014

2021/4/16

Dominance-Solvable Game

Centipede Game: Pr(Take)

Implied Take Probabilities for the Centipede Game

	Session	<i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₃	<i>P</i> 4	p ₅	<i>p</i> ₆
	1 (PCC)	.06 (100)	.28 (94)	.65	.83		
Four	2 (PCC)	.10	.42	(68) .76	(24) .90		
Move	3 (CIT)	(81) .06 (100)	(73) .46 (94)	(42) .55 (51)	(10) .61 (23)		
	Total 1–3	.07 (281)	.38 (261)	.65 (161)	.75 (57)		
High Payoff	4 (CIT)	.15 (100)	.44 (85)	.67 (48)	.69 (16)		
••••••••••••••••••••••••••••••••••••••	5 (CIT)	.02 (100)	.09	.44 (89)	.56 (50)	.91 (22)	.50
Six	6 (PCC)	.00	(98) .02 (81)	.04	.49	.72	(2) .82
Move	7 (PCC)	(81) .00 (100)	(81) .07 (100)	(79) .15 (93)	(76) .54 (79)	(39) .64 (36)	(11) .92 (13)
	Total 5–7	.01 (281)	.06 (279)	.21 (261)	.53 (205)	.73 (97)	.85 (26)
1/4/16		Domi	nance-Solva	ble Gam <u>e</u>	Jose	ph Tao-yi	Wang

Centipede Game

TABLE IIIB

Implied Take Probabilities

COMPARISON OF EARLY VERSUS LATE PLAYS IN THE LOW PAYOFF CENTIPEDE GAMES

Treatment	Game	<i>p</i> ₁	<i>p</i> ₂	p ₃	<i>P</i> ₄	<i>p</i> ₅	p ₆
Four Move	1–5 6–10	.06 (145) .08 (136)	.32 (136) .49 (125)	.57 (92) .75 (69)	.75 (40) .82 (17)		
Four Move	1–5 6–10	.00 (145) .01 (136)	.06 (145) .07 (134)	.18 (137) .25 (124)	.43 (112) .65 (93)	.75 (64) .70 (33)	.81 (16) .90 (10)

2021/4/16

Dominance-Solvable Game

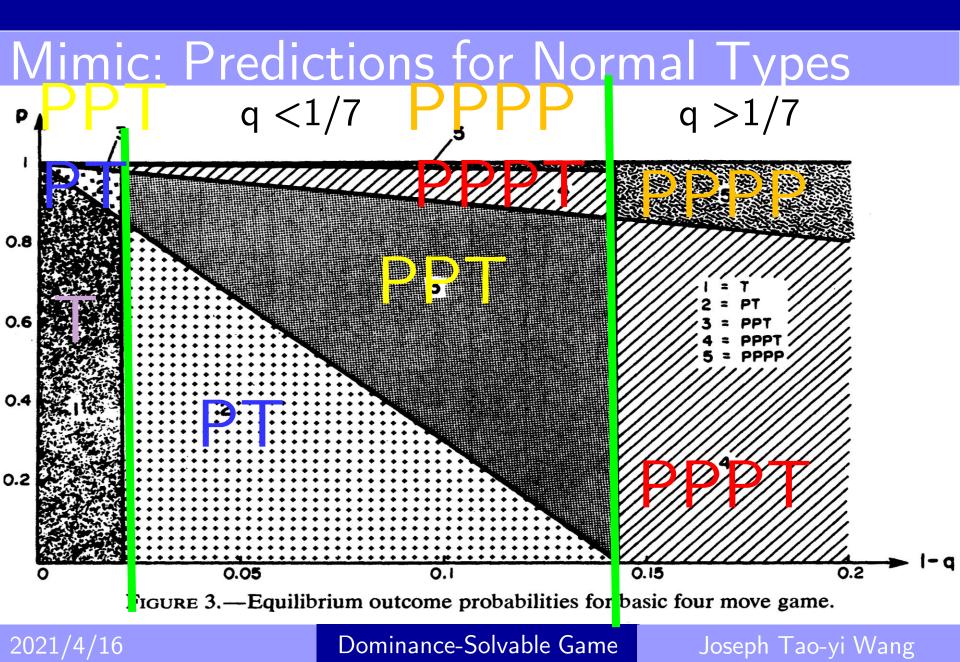
Centipede Game: Mimic Model

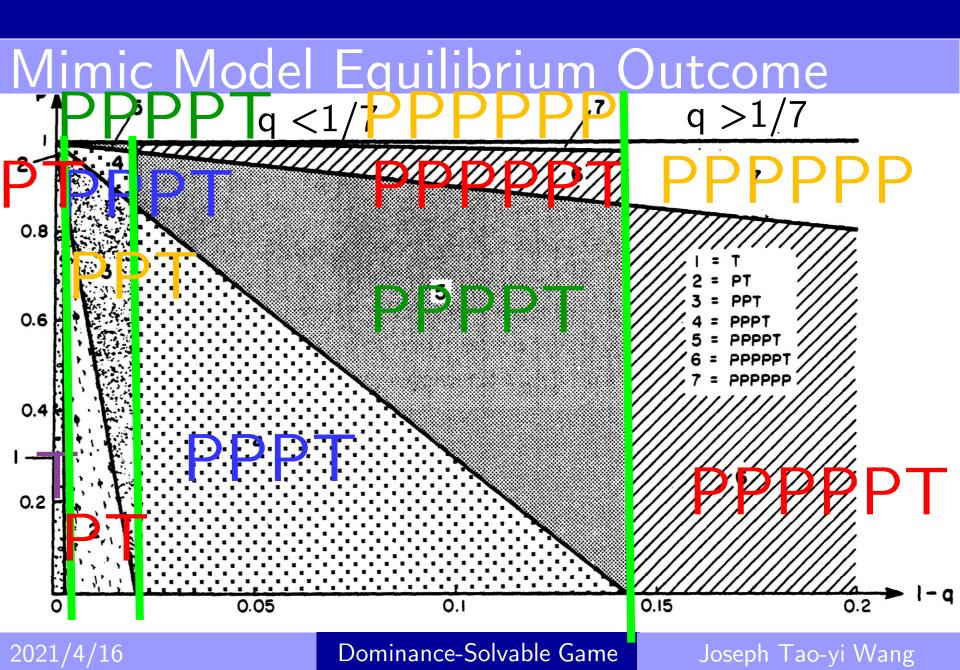
- What theory can explain this?
- Altruistic Types (1-q = 7%): Prefer to Pass
- Selfish Types (q):
 - Mimic altruistic types up to a point (to gain)
- Unraveling: error rate shrinks over time

Dominance-Solvable Game

Centipede Game: Mimic Model

- Selfish guys sometimes pass (mimic altruist)
- Imitating an altruist might lure an opponent into passing at the next move
 - Raising one's final payoff in the game
- Equilibrium imitation rate depends directly on beliefs about the likelihood (1 – q) of a randomly selected player being an altruist
 - The more likely players believe there are altruists, the more imitation there is


Dominance-Solvable Game


Mimic: Predictions for Normal Types

- 1. On the last move, Player 2 TAKE for any q
- 2. If 1 q > 1/7, both Player 1 and 2 PASS
 Except on the last move Player 2 always TAKE
- 3. If $0 < 1 q < 1/7 \rightarrow$ Mixed Strategy Equil.

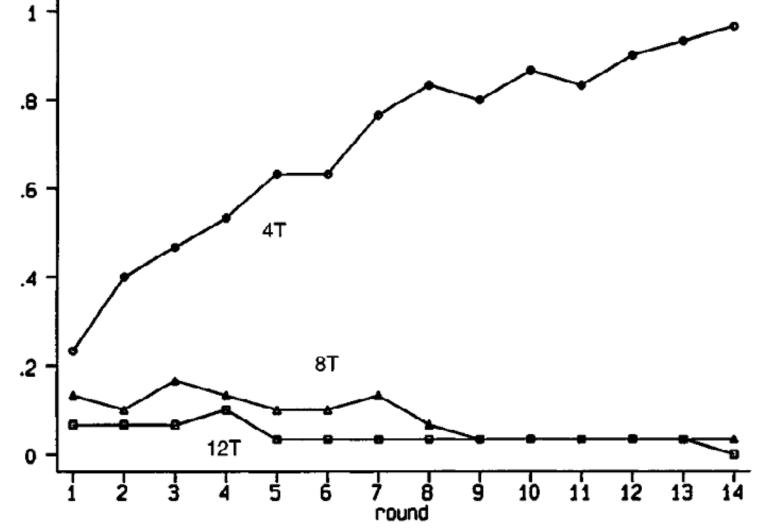
4. If 1 - q = 0 both Player 1 & Player 2 TAKE

Dominance-Solvable Game

Centipede: Mimic Model Add Noisy Play

- We model noisy play in the following way.
- In game t, at node s, if p* is the equilibrium probability of TAKE
- Assume player actually chooses TAKE with probability $(1 \varepsilon_t)p^*$, and makes a random move with probability $\epsilon_t = \epsilon e^{-\delta(t-1)}$
 - Explains further deviation from mimic model

Dominance-Solvable Game


Centipede: Mimic Model Add Noisy Play

- Fey, McKelvey and Palfrey (IJGT 1996)
 - Use constant-sum to kill social preferences
 - ▶ Take 50% at 1st, 80% at 2nd
- Nagel and Tang (JMathPsych 1998)
 - Don't know other's choice if you took first
 - Take about half way
- Rapoport et al. (GEB 2003)
 - 3-person & high stakes: Many take immediately
 - CH can explain this (but not QRE) see theory

- Pure coordination game with \$1.20 & \$0.60
- How can you implement a Pareto-inferior equilibrium in a pure coordination games?
- Abreu & Matsushima (Econometrica 1992)
 - \blacktriangleright Slice the game into T periods
 - ▶ *F* : Fine paid by first subject to deviate
 - \blacktriangleright Will not deviate if $F\!>\$1.20/\,T$
 - ▶ Can set T = 1, F = \$1.20; more credible if T large

- ► Glazer and Rosenthal (Economtrica 1992)
 - Comment: AM mechanism requires more steps of iterated deletion of dominated strategies
- Abreu & Matsushima (Econometrica 1992)
 - Respond: "[Our] gut instinct is that our mechanism will not fare poorly in terms of the essential feature of its construction, that is, the significant multiplicative effect of fines.'"
- This invites an experiment!

- Sefton and Yavas (GEB 1996)
- F = \$0.225
- ▶ T = 4, 8, or 12
 - Theory: Play inferior NE at T=8, 12, not T=4
- Results: Opposite, and diverge...
- Why? Choose only 1 switch-point in middle
 - Goal: switch soon, but 1 period after opponent

2021/4/16

Dominance-Solvable Game

- Glazer and Perry (GEB 1996)
 - Implemental can work in sequential game via backward induction
- Katok, Sefton and Yavas (JET 2002)
 - Does not work either
- Can any approximately rational explanation get this result?
 - Maybe "Limited steps of IDDS + Learning"?

- Three ladies, A, B, C, in a railway carriage all have dirty faces and are all laughing.
- It sudden flashes on A:
- Why doesn't B realize C is laughing at her?
- Heavens! I must be laughable.
 - Littlewood (1953), A Mathematician's Miscellany
- Requires A to think that B is rational enough to draw inference from C

Dirty Face Game: Weber (Exp Econ 01')

- Independent Types: X or O
 - Pr(X) = 0.8, Pr(O) = 0.2 (X is like "dirty face")
- Commonly told: At least one player is type X.
 - ▶ $P(XX) = 0.64 \rightarrow 2/3, P(XO) = 0.32 \rightarrow 1/3$
- Observe other's type
- Choose Up/Down (figure out one is type X)
 If nobody chooses Down, reveal other's choice and play again

Dominance-Solvable Game

Dirty Face Game: Weber (Exp Econ 01')

		Ту	/pe
		Х	Ο
Proba	ability	0.8	0.2
Action	Up	\$0	\$0
	Down	\$1	-\$5

2021/4/16

Dominance-Solvable Game

- Case XO: Players play (Up, Down) since
- Type X player thinks:
 - ▶ I know that "at least one person is type X"
 - ► I see the other person is type O
- So, I must be type $X \rightarrow Chooses Down$
- Type O player thinks:
 - ► I know that "at least one person is type X"
 - ► I see the other person is type X
- No inference → Chooses Up

- Case XX First round:
 - At least one is type X, but the other guy is type X
- No inference → Both choose Up
- Case XX Second round:
- Seeing UU in first
 - The other is not sure about his type
 - He must see me being type X
- I must be Type $X \rightarrow Both choose Down$

Dirty Face Game									
		Tria	al 1	Tri	al 2				
		XO	XX	XO	XX				
	UU	0	7*	1	<u>7*</u>				
Round 1	DU	3*	3	4*	1				
	DD	0	0	0	0				
	UU	-	1	-	2				
Round 2	DU	-	5	-	2				
(after UU)	DD	-	1*	-	3*				
	Other	_	-		-				
2021/4/16		Dominance-So	olvable Game	Joseph Ta	ao-yi Wang				

- Results: 87% rational in XO, but only 53% in 2nd round of XX
- Significance:
- Choices reveal limited reasoning, not pure cooperativeness
 - More iteration is better here...
- Upper bound of iterative reasoning
 Even Caltech students cannot do 2 steps!

Conclusion

- Do you obey dominance?
- Would you count on others obeying dominance?
- Limit of Strategic Thinking: 2-3 steps
- Compare with Theories of Initial Responses
 - Level-k: Stahl-Wilson95, CGCB01, CGC06
 - Cognitive Hierarchy: CHC04

Dominance-Solvable Game