Bargaining (議價談判)

Joseph Tao-yi Wang (王道一) Lecture 5, EE-BGT

Bargaining (議價談判)

- ▶ Bargaining (就是「討價還價」!)
 - ▶ Process by which economic agents agree on the terms of a deal (個體間討論條件、達成交易的過程)
- Common even in competitive markets
 - ▶ The pit market in NYSE/market experiments
 - ▶ (即使在完全競爭市場也很常見,例如紐約股市的交易坑市場)
 - ▶ Edgeworth Box (原本是用來研究談判!) was created to show range of possible bargaining outcomes
- Have you ever bargained with someone?
 - ▶ 你有跟別人談判過嗎?

Bargaining (議價談判)

- Nash (1950, 1951):
 - ▶ (Cooperative) Nash Bargaining Solution (奈許談判解)
 - ▶ (Non-cooperative) Nash Equilibrium (奈許均衡)
- Nash could have won two Nobels...
- ▶ Nash Program: Is NBS the NE/SPE of a particular game? (奈許大哉問: NBS是否為某賽局的NE/SPE?)
 - Yes: Binmore, Rubinstein and Wolinsky (1986)
- ▶ References (參考章節):
 - ▶ BGT, Ch. 4, HEE, Ch. 4, MGSB, 2nd ed., Ch. 14

2 Bargaining Experiments (兩種談判實驗)

- Cooperative NBS vs. Non-cooperative NE
 - ▶ 對應合作賽局NBS和非合作賽局NE,也有兩種談判實驗:
- 1. Unstructured Bargaining Experiments
 - ▶ Free form procedure determined by players
 - Closer to naturally occurring bargaining
 - ▶ 自由談判實驗: 雙方自行決定談判形式過程, 較接近實務上談判
- 2. Structured Bargaining Experiments
 - Procedure specified by experimenter
 - Game theory makes specific predictions
 - ▶ 制式談判實驗:形式過程由實驗者決定,賽局論能做出明確預測

Negotiation Research in Applied Psychology

- Negotiation Research: Bazerman et al. (2000)
- Bazerman, Magliozzi and Neale (1985)
 - Negotiate over several issues (ex: price/quantity)
 - ▶ Free form communication with fixed deadline
 - Private point schedule (dep. on each issue)
 - 應用心理學研究: 雙方各自知道自己的報酬計分方式, 在一定時限自由 溝通討論,最後須在價格數量等多層面(連續或類別)上達成協議
- Results: Deals not Pareto-efficient
 - Affected by systematic heuristics and other cognitive variables (unrelated to game)
 - 結果: 達成的協議不都有效率且受到無關的經驗法則與認知因素影響

Joseph Tao-yi Wang

Negotiation Research (協商談判研究)

- ▶ Why not much overlap? (為何沒有交集?)
 - Game theory assumes too much rationality
 - Solvable games are too simplified
 - Hard to apply to Negotiation games
 - ▶ 賽局論假設完全理性,解得出來賽局又太簡單,很難用在協商研究
- ▶ Like 2 traditions of experimental economics
 - Game experiments are too simplified
 - Hard to apply to market experiments
 - 正如賽局論實驗太過簡單,很難用賽局論來預測市場實驗的結果
- ▶ But research questions are the same! (研究問題—樣)

- ▶ Test: Nash Bargaining Solution (NBS)
 - ▶ The point maximizing the product of utility gains (beyond the disagreement point)
 - ▶ 奈許談判解(NBS):與談判破裂相較讓雙方效用增加量的乘積最大的解
- Only point satisfying 4 axioms:
 - 1. Pareto Optimality (效率性、不受額外無關選項影響)
 - 2. Symmetry (對稱、不受效用平移伸縮影響)
 - 3. Independence of Irrelevant Alternatives (IIA)
 - 4. Independence from affine utility transformation

Nash Bargaining Solution (NBS)

$$S^* = \arg\max_{(x_1,x_2) \in S} (x_1 - d_1)(x_2 - d_2)$$

$$= \arg\max_{(x_1,x_2) \in S} [u_1(x_1) - u_1(d_1)][u_2(x_2) - u_2(d_2)]$$
 Satisfies:

- 1. Pareto Optimality ($x \in S^*$) $\forall x \in S^*$, $\exists y \in S, y > x \Leftrightarrow y_i \geq x_i \forall i, y_j > x_j$
- 2. Symmetry (對稱):

$$d_1 = d_2, (x_1, x_2) \in S^* \Rightarrow (x_2, x_1) \in S^*$$

- 3. IIA (Independence of Irrelevant Alternatives; 不受額外無關選項影響) S^* solves (T,d) if S^* solves (S,d) and $S^* \subset T \subset S$
- 4. IAT (Independence from affine utility transformation, 不受效用平 移伸縮影響): $u_1(x) = Ax + B, u_2(x) = Cx + D$

- ▶ Roth and Malouf (Psych Rev 1979)
- ▶ Player bargain over 100 lottery tickets
 - ▶ Risk neutral if can reduce compound lottery
 - ▶ 雙方談判如何分配100張彩券(每張 = 1%機率贏得獎金)。用彩券可讓人風險中立地決策(假設人們會把複合機率簡化成單一機率)
- ▶ 1 ticket = 1% chance winning a big prize
- Equal (\$1) vs. Unequal Prize (\$1.25/\$3.75)
- Full vs. Partial (know own prize) Info.
- ▶ NBS: 50-50 split (NBS預測: 50-50 對分)
 - ▶ 2×2實驗設計:獎金相同/不同,資訊透明/不透明

Unstructured Bargaining (自由談判) # of Tickets for Player 2

Inform Money Prize ation

% of Disagreement

25 30 35 40

0%

1/11.25/3.75 1 1 0 3

0

Part.

Full

Info.

6

2

14% 6%

Info. 2021/4/10 1/1

1.25/3.75

0

Bargaining

0

0% Joseph Tao-yi Wang

- ▶ Results: Agreements cluster at 50-50
 - ▶ Rare Disagreement (很少未達成協議, 大部分 50-50 對分)
- ▶ 14% Disagree when both know inequality
 - Divide tickets or \$\$\$ payoffs equally
 - Sensitive to \$\$\$ payoffs
 - ▶ Violate IAT (indep. of affine transformation)
 - ▶ 雙方清楚知道獎金不平等時,有14%未達成協議(彩券 vs. 金錢平分)
 - > 結果受金錢多寡影響,違反「不受效用平移伸縮影響」公設
- Rawlsian Bargaining Solution explains this
 - ▶ Followup: Roth & Murnighan (ECMA 1982)

Rawlsian Bargaining Solution (羅斯談判解

$$S^* = \arg\max_{(x_1,x_2) \in S} (x_1 - d_1)(x_2 - d_2)$$

$$= \arg\max_{(x_1,x_2) \in S} [u_1(x_1) - u_1(d_1)][u_2(x_2) - u_2(d_2)]$$
 Satisfies:

- 1. Pareto Optimality (效率性): $\forall x \in S^*, \exists y \in S, \underline{y > x}$
- 2. Symmetry $(d_1 = d_2, (x_1, x_2) \in S^* \Rightarrow (x_2, x_1) \in S^*$
- 3. IIA $(S^* \text{ solves } (T, d) \text{ if } S^* \text{ solves } (S, d), S^* \subset T \subset S$
- 4. Independence of utility transformation preserving preference order & which player has larger gain $x_1 d_1 \ge x_2 d_2 \Leftrightarrow u_i(x_1 d_1) \ge u_i(x_2 d_2)$ $x_i \ge y_i \Leftrightarrow u_i(x_i) \ge u_i(y_i)$

- ▶ Review earlier studies to find: (回顧先前實驗發現)
 - Murnighan, Roth & Schoumaker (JRU 1988)
- ▶ Pairs settle @ final minutes (of 9-12 min)
 - Convey private info (Stubbornness/Delay Cost)?
 - ▶ 最後幾分鐘才達成協議 (用以表示自己很堅持/可以負擔延遲成本?)
- ▶ Follow-up: Roth & Schoumaker (AER 1983)
 - First play against computer that gives you a lot
- Expect & get this from later human players
 - ▶ Strong Reputation (如果有人先跟軟弱的電腦談判、被訓練覺得自己該拿比較多,接下來面對真人態度也會較強硬、並且真的拿比較多)

- Mehta, Starmer and Sugden (bk chp. 1992)
- ▶ Nash Demand Game (奈許需求實驗): 2 Players
 - ▶ Each state demand (兩人分別列出自己的需求金額)
 - Get their demand If sum \leq £10, 0 otherwise.
 - ▶ 如果總和 <= 10英鎊就會得到所求,不然都得0
- ▶ Focal point: Players split 4 Aces + 4 deuces
 - ▶ Before bargain, players were told: "4 aces worth £10 together, so to earn \$\$ you have to pool your aces and agree on how to divide the £10."
 - ▶ (兩人抽八張牌, 其中四張A、四張2)

- ▶ Results:被告知四張A合起來值十英鎊,因此要賺錢就得把四張A合起來並同意如何平分十英鎊。實驗結果居然受此敘述(與報酬無關)影響!!
- ▶ Aces split 2-2:
 - ► Agree 50-50 Split (各兩張A就對分)
- ▶ Aces 1-3: (一張/三張)
 - ▶ Half <u>50-50</u>, (一半對分)
 - ▶ Half 25-75;
 - ▶ 22% disagree(另一半要求25-75, 22%爆掉)

Demand	1A	2A	3A
£2.50	1 1	0	0
£3.00-4.50	5	1	1
£5.00	<u>16</u>	40	<u>17</u>
£5.50-7.00	0	1	11
£7.50	0	0	4
N	32	42	33

- ▶ Roth (1985) explains as Coordination Game over allocation focal points 50-50 vs. h-(100-h)
 - ▶ Each favoring one (50 > h whenever 50 < 100-h)
 - ▶ 可用協調賽局解釋: 考慮兩個分配上的協調焦點 50-50 或 h-(100-h)
- Both simultaneously choose to demand their favorite or acquiesce to the less favorable
 - ▶ If both demand favorite: Both earn 0
 - ▶ If only one demands favorite: Play focal point
 - ▶ 兩邊同時選擇「要求有利自己的分配」或「願接受另一個分配」。
 - ▶ 若都「要求」,兩邊報酬皆為0;只有一方「要求」,則按「要求」分配

- If both acquiesce: Earn average of the two focal points $x_1 = (50+h)/2, x_2 = (150-h)/2$
- ightharpoonup 若都「接受另一個」則獲得兩分配平均 $x_1=(50+h)/2, \, x_2=(150-h)/2$
- MSE:

$$p_1 = \frac{h - 50}{150 - h} \quad p_2 = \frac{h - 50}{h + 50}$$

Disagreement rates $= \frac{(h-50)^2}{(150-h)(50+h)}$

- ▶ Roth (bk chp 1985)
- Disagreement rates =

$$\frac{(h-50)^2}{(150-h)(50+h)}$$

- ▶ Predicted to be $0\% \rightarrow 7\% \rightarrow 10\%$
 - For h = 50, 75, 80 in pervious experiments
- ▶ Data: $7\% \rightarrow 18\% \rightarrow 25\%$ (Direction is right!)
- Murnighan et al. (JRU 1988)
 - h = 60, 70, 80, 90 predict 1%, 4%, 10%, 19%
- \blacktriangleright Actual data not as good: Constant across h

- ▶ Cause of Disagreement: Self-Serving Bias (自利偏誤)
 - ▶ "What is better for me" = "Fair" (對我有利才叫公平)
- Add this to the above coordination game
 - ▶ Can explain higher disagreement rate in data
- Same in Kagel, Kim and Moser (GEB 1996):
 - ▶ Ultimatum over 100 tickets (P/R value differently)
- If R unaware of H/L, P_H/P_L propose 55-45/70-30
 - ▶ If aware of P_H, R will reject 60-40, wants >50%

最後通牒談判分配100張彩券(價值不同),對方不知道價值時價值高/低的提 議者提議55-45/70-30。知道價值高時回應者會拒絕60-40、要求比50%更好

Babcock et al. (AER 1995, Law&Social Inquiry 1997)

- ▶ Self-serving bias Exp: Loewenstein et al. (JLS 93')
- ▶ Read 27-page actual legal case (讀27頁卷宗/談判和解)
 - ▶ Motorcyclist sues driver: \$100,000 injury damage
- ▶ Bargain for 30 min. to settle it for ?? dollars
 - ▶ \$5000 legal fees for every 5-min delay
 - ▶ Retired judge imposes award if no agreement
- First Guess what judge would award
 - ▶ US\$1 (or 1 Grade Point) for every \$10,000
 - ▶ 30分鐘談判和解(訴訟金額\$100,000), 每延遲5分鐘須付\$5000律師費
 - ▶ 事先預測和解不成法官會如何判 (實驗中\$10,000 = 一美金或 1 GPA)

2021/4/10 Bargaining Joseph Tao-yi Wang

Gap of E(judgment) Predicts Disagreement

- ▶ Baseline: 70% cases settled at period 3-4 (out of 6)
- ▶ E(judgment) differ by \$20,000 (20% of \$100,000)
 - ▶ 控制組結果: 70%的組在第3-4回合達成和解(總共6回合)
 - ▶ 雙方預期判決結果的落差在\$20,000左右(訴訟金額的20%)

Information	Settlement Stat.			Stat.	E(judgmt) Gap	
	N	%	periods	(s. e.)	mean	(s. e.)
Control: Babcock 95'	47	72	3.75	(0.28)	\$18,555	(3,787)
Control: Babcock 97'	26	65	4.08	(0.46)	\$21,783	(3,956)

More Pairs Settled (and More Rapidly) if...

- Don't know role @ reading: 94% (in 2.51 pds)
 - Or, before bargaining, 1st tell about bias and
- ▶ List Weakness of own case: 96% (in 2.39 pds)

Information	Settlement Stat.			Stat.	E(judgmt) Gap	
	N	%	periods	(s. e.)	mean	(s. e.)
Control: Babcock 95'	47	- 72	3.75	(0.28)	\$ 18,555	(3,787)
Control: Babcock 95' Didn't know roles	47	94	2.51	(0.21)	-\$6,275	(4,179)
Control: Babcock 97'	26	- 65	4.08	(0.46)	\$21,783	(3,956)
1 st List Weakness	23	-96	2.39	(0.34)	\$4,676 =	• (6,091)

2021/4/10

Summary for Unstructured Bargaining

- Focal points affect bargaining outcome
- Chip value affect bargaining outcome
 - Violate IAT Axiom of NBS
- ▶ BGT Explanation: Bargainers try to coordinate under multiple focal points
- Self-serving bias predict costly delay/settle
 - "Outcome favoring me is more likely/fair"
 - Caused by knowing my role when reading case

- ▶ Finite Alternating-Offer Game (有限回交互提案)
- ▶ Binmore, Shaked & Sutton (1985): 2 period
- ▶ 1 offers a division of 100p to 2
- ▶ If 2 rejects, makes counteroffer dividing 25p
 - ▶ 成員甲提議如何分配100p,成員乙回應。若拒絕則由他提議分配25p
- ▶ SPE: Offer 25-75 (子賽局完全均衡: 成員甲提議25-75)
- Experimental Results: mode at 50-50, some 25-75 and others in between
 - ▶ 實驗結果: 提議分配的衆數在50-50, 有些在25-75, 其他在兩者之間

- ▶ Neelin, Sonnenschein and Spiegel (1988)
 - ▶ Economics undergrads yield different results
- ▶ Are they taught backward induction? Also,
 - ▶ 經濟系大學部學生實驗結果不同,因為學過倒推法?還是實驗說明?
- Binmore: "YOU WOULD BE DOING US A FAVOR IF YOU SIMPLY SET OUT TO MAXIMIZE YOUR WINNINGS."
 - Neelin: "You would be discussing the theory this experiment is designed to test in class."

- ▶ Social Preference or Limited Strategic Thinking? (是因為人們有社會偏好, 還是理性思考有限制?)
- ▶ Johnson, Camerer, Sen & Rymon (2002), "Detecting Failures of Backward Induction: Monitoring Information Search in Sequential Bargaining," Journal of Economic Theory, 104 (1), 16-47.
- Some do not even look at the last stage payoffs in 3-stage bargaining games!
 - ▶ 三回合談判,有人「不看」最後一回合

- Random Termination vs. Discounting
- Zwick, Rapoport and Howard (T&D 1992)
- Divide \$30 with random termination
- ▶ Continuation probabilities 0.90, 0.67, 0.17
- ▶ SPE: 14.21, 12, 4.29
 - ▶ Accepted final offers: 14.97, 14.76, 13.92
- ▶ Close to discounting results (50-50 & SPE)
 - **▶** 14.90, 14.64, 13.57

- Fixed Delay Cost in Bargaining
 - Lost wages, profits, etc.
- ▶ SPE: Strong side (lower delay cost) gets all
- ▶ Rapoport, Weg and Felsenthal (T&D 1990)
 - Divide 30 shekels (pseudo-infinite horizon)
 - ▶ Fixed Cost: 0.10 vs. 2.50 or 0.20 vs. 3.00
- Strong support for SPE: In the 1st round,
 - ▶ Strong P offer 4.4-7.9, weak R accept 60-80%
 - Weak P offer low, strong R accept 30%, but later quickly settle in 2nd (35%) or 3rd-4th (22%)

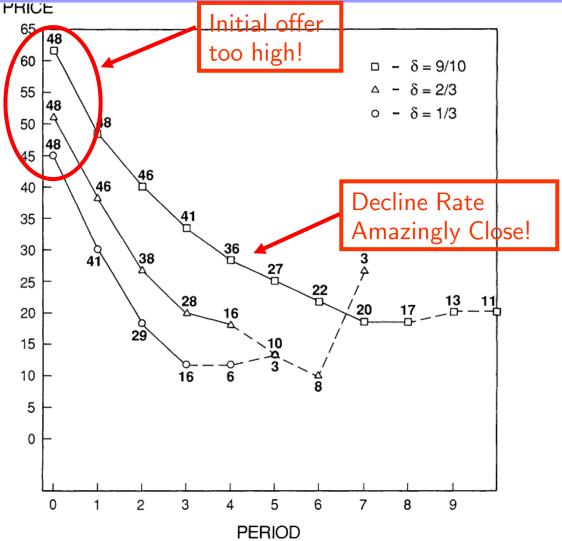
Outside Option and Threat Points

- ▶ Binmore, Shaked and Sutton (QJE 1989)
 - ▶ 2 players bargain over £7, discount factor $\delta = 0.9$
 - ▶ Rubinstein-Stahl solution is $\left(\frac{1}{1+\delta}, \frac{\delta}{1+\delta}\right)$
 - ▶ Player 2 has outside option of £0, £2, or £4
- ▶ Split-the-difference (NBS): 47%, 64%, 76%
 - Divide surplus beyond the threat points
- ▶ Deal-me-out (SPE): 47%, 47%, 57%(=4/7)
 - ▶ Ignore non-credible options or $\left(\frac{\delta}{1-\delta}\right)$
- ▶ BGT, Figure 4.4: Deal-me-out wins
 - ▶ £0, £2: spike around 50% / £4: cluster @ 57%

2021/4/10 Bargaining Joseph Tao-yi Wang

Incomplete Information (資訊不透明)

- Add Asymmetric Information to bargaining
- More realistic, but
 - Hard to bargain for a bigger share AND convey information at the same time
- Might need to turn down an offer to signal patience or a better outside option


- Rapoport, Erve, and Zwick (MS 1995)
- Seller: Own item (worthless to herself)
- Buyer: Private reservation price is unif.[0,1]
- Seller makes an offer each period
- **Lesson** Common discount factor δ

- Unique Sequential Equilibrium:
- Seller Offer:

$$p_0 = \gamma \cdot \frac{1-\delta}{1-\gamma \cdot \delta}, \quad \gamma = \frac{1-\sqrt{1-\delta}}{\delta}$$
 Subsequently: $p_t = p_0 \cdot \gamma^t$

- \blacktriangleright Buyer Accepts if $p_t \leq v \cdot \frac{1-\delta}{1-\gamma \cdot \delta}$

- Complicate Strategy: Depend on δ
 - Price discriminate high/low-value buyers
 - Price declines slow enough so high-value buyers will not want to wait
- Can subjects get these in experiments?
 - ▶ Different δ : H (0.90), M (0.67), L (0.33)
 - ▶ Opening p_0 : H (0.24), M (0.36), L (0.45)
 - ▶ Discount γ : H (0.76), M (0.68), L (0.55)

- Can subjects get these in experiments?
 - ▶ Different δ : H (0.90), M (0.67), L (0.33)
 - ▶ Opening p_0 : H (0.24), M (0.36), L (0.45)
 - ▶ Discount γ : H (0.76), M (0.68), L (0.55)
- ▶ Buyers accept the 1st or 2nd offer below v
 - Accept offers too soon
- Sellers ask for higher prices (than equil.)
 - ▶ But discount γ : H (0.81), M (0.68), L (0.55)

Strikes and 1-Sided Information

- ▶ Forsythe, Kennan and Sopher (AER 1991)
- Only Informed bargainer | sees pie size
 - ▶ Either large (π_q) or small (π_b)
- Free-form bargaining
- lacktriangle Uninformed lacktriangle can strike to shrink pie by γ
- Can we predict what happens?

- ▶ Forsythe, Kennan and Sopher (AER 1991)
 - lacktriangle Only Informed bargainer I sees pie size π_g or π_b
- lacktriangle Uninformed lacktriangle can strike to shrink pie by γ
- Can we predict what happens?
 - Free-form bargaining
- Myerson (1979): Revelation Principle
 - I announces true state
 - U strikes to shrink pie by γ_g or γ_b
 - ▶ I gives U (based on true state) x_g or x_b

▶ IC requires:

$$(\gamma_g - \gamma_b)\pi_b \le x_g - x_b \le (\gamma_g - \gamma_b)\pi_g$$

▶ Interim Incentive Efficiency requires:

$$\gamma_g = 1, x_g - x_b = (1 - \gamma_b)\pi_g$$

- lacksquare Strike $(\gamma_b\!<\!1)$ if and only if $p\pi_g>\pi_b$
- Deriving this is complicated...
- Could ANY subject get close to this?

- ▶ Random Dictator (RD) Axiom:
 - Agree fair mix between each being dictator to propose mechanism
- ▶ Then:

$$\gamma_g = 1, x_g = \frac{\pi_g}{2}, \gamma_b = \frac{1}{2}, x_b = 0 \text{ if } p\pi_g > \pi_b$$

$$\gamma_g = 1, x_g = \frac{\pi_b}{2}, \gamma_b = 1, x_b = \frac{\pi_b}{2} \text{ if } p\pi_g < \pi_b$$

- ▶ This is a win-win experiment:
 - Success if theory predictions are close
 - If not, will point to which assumption fails
- Forsythe et al. (AER 1995):
 - ▶ 10 minute sessions; written messages
- Is Myerson (1979) confirmed?
 - Surprisingly yes, though not perfect...

Strike Condition Off

$p\pi_g < \pi_b$

	Game	p	State	π	π_U	π_I	Total	% Strike
	Ш		b	2.80				
		0 5	g	<i>g</i> 4.20				
		0.5	aver.	2 50	1.50	1.80	3.29	% Strike 6.0% 0.0% 7.4% 0.0%
			pred.	3.50	1.40	2.10	3.50	
	IV		b	2.40				
		0.05	g	6.80				
		0.25	aver.	3.50	1.21	2.04	3.24	7.4%
			pred.		1.20	2.30	3.50	0.0%

Strike Condition On

 $p\pi_g > \pi_b$

	Game	p	State	π	π_U	π_I	Total	% Strike
	ľ		b	1.00				
		0 5	$oldsymbol{g}$	6.00				
		0.5	aver.	2 50	1.05	2.00	3.05	13.0%
			pred.	3.50	1.50	1.75	3.25	
	II		b	2.30				
		0.75	g	3.90				
		0.75	aver.	3.50	1.41	1.76	3.18	9.3%
			pred.		1.46	1.75	3.21	8.3%

- Both buyers and sellers have private information
- Sealed-Bid Mechanism
 - Both write down a price
 - lacktriangledown Trade at the average if $p_b>p_s$
 - Call Market: Many buyers vs. many sellers
- Two-Person Sealed-Bid Mechanism
 - One form of bilateral bargaining

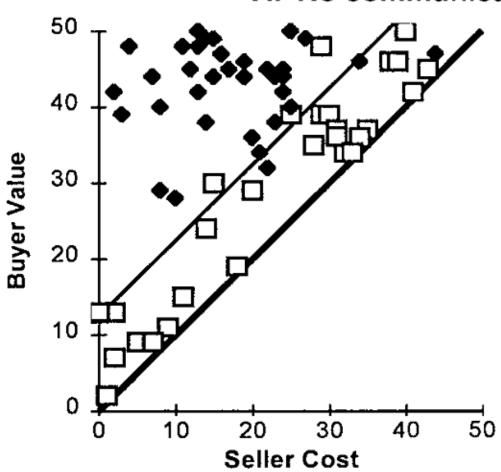
- ▶ Two-Person Sealed-Bid Mechanism
- ▶ Buyer *V*: unif.[0,100]; Seller *C*: unif.[0,100]
- Piecewise-linear equilibrium: (not unique)
 - ▶ Chatterjee and Samuelson (1983)
 - ▶ Max. ex ante gains (Myerson & Satterthwaite 83)

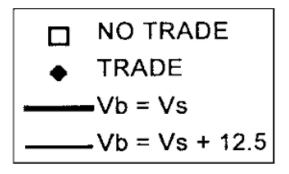
$$p_b = \begin{cases} V & \text{if } V < 25\\ \frac{25}{3} + \frac{2}{3}V & \text{if } V \ge 25\\ p_s = \begin{cases} 25 + \frac{2}{3}C & \text{if } C < 75\\ C & \text{if } C \ge 75 \end{cases}$$

- Radner and Schotter (JET 1989): 8 sessions
- ▶ 1, 2, 8: Baseline as above
- \blacktriangleright 3: Trade at price $(v+c+50) \ / \ 3$ if v>c+25
 - lacktriangle Should bid their values $v=V,\ c=C$
- ▶ 4: Price = v, (Buyers should bid v = V/2)
- ▶ 5,6: Alternative distribution for more learning
 - ▶ Distribution w/ more trade (for learning): m=0.438
- ▶ 7: Face-to-face bargaining

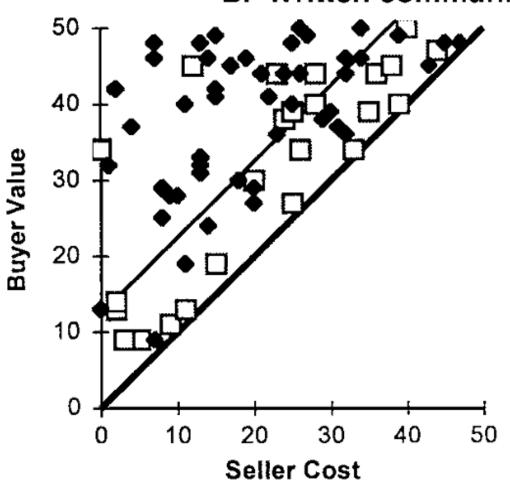
Estimated Buyer Bid Function Slope									
	Below	Cutoff		Above (Cutoff				
Session	β	\hat{eta}	t-stat	β	\hat{eta}	t-stat			
1	1	1.00	(0.01)	0.67	0.85*	(4.14)			
2	1	0.91	(-0.52)	0.67	1.06	(1.28)			
8	1	0.91	(-0.14)	0.67	0.80*	(2.32)			
3	1	0.92	(-0.88)	1	0.73*	(-2.64)			
4	0.5	0.55	(0.66)	0.5	0.58*	(2.32)			
5	1	0.80*	(-4.17)	0.438	0.50	(1.12)			
6 (-20)	1	0.85	(-1.40)	0.438	0.40	(0.56)			
6 (21-)	1	1.11	(0.70)	0.438	0.32	(-1.55)			
2021/4/10 Bargaining Joseph Tao-yi Wang									

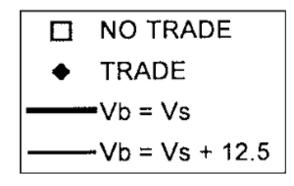
Estimated Seller Bid Function Slope

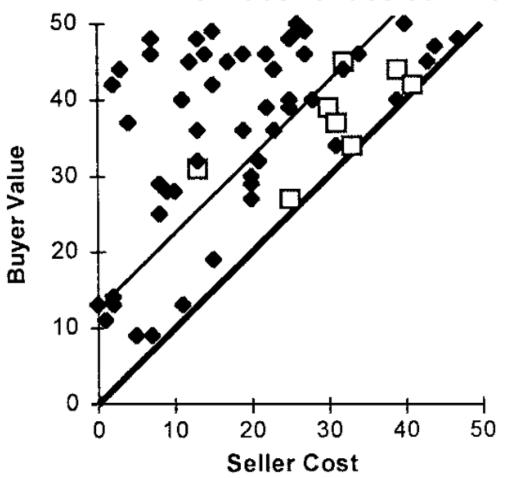

	Below Cutoff			Above Cutoff		
Session	β	\hat{eta}	t-stat	β	\hat{eta}	t-stat
1	0.67	0.58	(-1.38)	1	0.97	(-0.32)
2	0.67	0.74	(1.28)	1	1.07	(0.14)
8	0.67	0.75	(1.65)	1	1.07	(0.17)
3	1	1.06	(1.04)	1	0.67	(-0.58)
5	0.438	0.48	(0.87)	1	1.00	(0.60)
6 (-20)	0.438	0.57*	(2.16)	1	0.97	(-0.79)
6 (21-)	0.438	0.52	(1.20)	1	0.95	(-0.69)

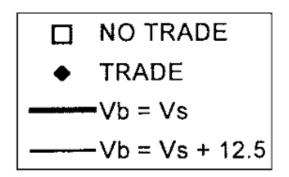

- ▶ Face-to-face yields efficiency 110%
 - ▶ Some truthfully reveal; others do not
- Radner and Schotter (1989, p.210):
 - ▶ The success of the face-to-face mechanism, if replicated, might lead to a halt in the search for better ways to structure bargaining in situations of incomplete information.
 - It would create, however, a need for a theory of such structured bargaining in order to enable us to understand why the mechanism is so successful.

- Follow-up Studies:
- Schotter, Snyder and Zheng (GEB 2000)
 - Add agents
- Rapoport and Fuller (1995)
 - Strategy method; asymmetric value dist.
- ▶ Daniel, Seale and Rapoport (1998)
 - Asymmetric value distribution (20 vs. 200)
- Rapoport, Daniel and Seale (1998)
 - ▶ Flip buyer-seller asymmetry; fixed pairing


- ▶ Valley et al. (GEB 2002): Communication
- Buyer/Seller Values/Costs: uniform[0, \$50]
 - ▶ Bargain by stating bids; 7 periods; no rematch
 - ▶ Half had no feedback
- No communication: Sealed-bid in 2 minutes
- Written communication: Exchange messages for 13 minutes before final bid
- ▶ Face-to-face: Pre-game communication







- ▶ Empirical bid function slope = 0.7 (~0.67)
- Why are there "gains of communication"?
- ▶ Slope of buyer bids against seller bids=0.6
- Buyers bid higher when seller bids higher
 - Mutual bidding of values (common in students)
 - Mutual revelation of values (com. in students)
 - ▶ Coordinating on a price (40% written; 70% face)

- Coordinating on a price
 - ▶ Happens 40% in written, 70% in face-to-face
- ▶ Not truth-telling (only 1/3)
 - ▶ TT not coordinated (4% written, 8% face)
- ▶ Feel each other out; give enough surplus
 - ▶ Modal equal split of surplus
- Variance of surplus doubles (by mismatch)

Conclusion

- Unstructured Bargaining
 - Focal divisions; competing focal points
 - Self-serving bias (erased by veil of ignorance or stating weakness of own case)
- Structured Bargaining
 - Deviate toward equal splits
 - Social preference models could explain this
 - ▶ But Johnson et al. (JET 2002) suggest limited look-ahead as reason for such deviations

Conclusion

- Outside options affect bargaining divisions only if threats are credible
 - Lower fixed cost player gets everything
- Information Asymmetry: One-Sided
 - ▶ Revelation Principle + Random Dictator: Good
 - ▶ Bazaar mechanism:
 - Offers decline as theory predicts, but start too high and respond to δ wrongly
 - Buyers accept too early

Conclusion

- Bilateral Bargaining: Two-Sided
 - Sealed-bid mechanism: between truthful revelation and piecewise-linear equilibrium
- Players over-reveal values in face-to-face
 - Too honest, but "more efficient"
- ▶ Communication → agree on a single price
- Why theory does better in sealed-bid than alternative-offer bargaining?
 - ▶ Is sealed-bid cognitively more transparent?