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Abstract

We study how people learn the correct action irr@babilistic
situation. In particular, we create a modifiedsian of the Monty
Hall problem, and conduct laboratory experimentssbhow how a
100-door variant of the problem helps people |d¢arplay optimally
(always switch). Experimental results show thatrafplaying the
100-door variant, subjects obtain an average simigctate above 80%
in the 3-door problem, higher than most of the mes work without
subject communication and/or competition. Moreovwesults from
estimating structural learning models using subeetl data show
that the individual learning process is more likedybe an epiphany

rather than a gradual one.
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Epiphany L earning for Bayesian Updating:

Overcoming the Generalized M onty Hall Problem

I ntroduction

In 1991, British Petroleum (BP) announced a “no lanles” policy regarding
oil exploration, counting every drill that did nptoduce oil as a failure. Unlike
traditional expected-value calculations, this nehqy prevented BP’s explorers from
using probabilistic predictions as a cover of falusuch as, “if we drill ten of these
1-in-10 wells, we’ll hit at least one of them an@’livall make a lot of money"
This policy also forced them to carefully evaluale available information before
going ahead, instead of learning from holes that wot hit. In consequence,
explorers started to systematically aggregate uaraspects that support an oil field,
and only drilled locations where all geologicalt$eare positive. By 2000, BP’s hit
rate increased to an industry-leading 2 in 3, winctinree times to the success rate of
1989 (1 in 5%

This is an example of people learning the corretiba (to drill or not) in a
probabilistic situation. In particular, investigats prior to the policy change
showed that BP explorers were very accurate when dstimated a probability of
hitting between 20 and 70 percent, but an “estichat®@bability of 10 percent” was
more like 1 percent. Hence, the company policy of no dry holes fordd®d
explorers to stop fudging with the low probabiktjeand concentrate on accurately

estimating the high probabilities that would evetifulead to an action. Though we

! Heath and Heath (2010), p.89.
2 See p.87-93 of Heath and Heath (2010) for thesfolly of BP. For example, the authors also
discuss another reason why the BP campaign wasssfot: the new policy forced management to
stop drilling holes that they deem as “strategicsually to please a government or business partner
relationship they want to maintain) against thel@atgon of frontline technical teams.
% Heath and Heath (2010), p.88-89.
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cannot verify whether BP explorers actually learte@stimate various probabilities
more accurately (since they no longer drilled hadlleat they perceived as low
probability), BP’s success in terms of drilling méte (2 out of 3), as well as the
resulting decrease in exploration cost, is an ingmrachievement at where it counts,
namely the “economic value” (Camerer, Ho and Ch@@f)4) of correct probability
estimation.

Interestingly, such success is not a result ottreventional adaptive learning
models usually discussed in economics, such asfhmsed fictitious play (Boylan
and El-Gamal, 1993), reinforcement learning (Ened Roth, 1998), or hybrid models
like experience-weighted attraction (EWA) learnirif@amerer and Ho, 1999).
Though these learning models have been successfulescribing experimental
choices in controlled environments that are enaredt repeatedly (See Camerer,
2003, Chapter 6 for a review), they are usually soaplified to capture actually
learning behavior in more realistic situatidnsinstead, BP’s success is an example
of firms implementing changes by fine-tuning théuaiion at hand to create a
“simpler” environment for its employees to learrdaadopt the better practice. In
fact, after adopting the no dry holes policy, BRotogees could no longer blame their
failures on bad luck, and had to take full resphifigy for their wrong decisions.
This policy made the environment “simpler” for p&opgo learn to make better
decisions. In this regard, they are more closecl&ssroom experiments where
instructors use simplified situations to teach stud about more complicated settings
(See for example, Ball, Eckel and Rojas, 2006; RicR006; Durham, Mckinnon and

Schulman, 2007).

* For example, Erev, Roth, Slonim and Barron (200fund that learning models based on small
sampling updates (the Inertia, Sampling and Wenightnodel, I-SAW) outperform conventional
models in randomized environments. Using eyetragkiata, Knoepfle, Wang and Camerer (2009)
foundthat the lookup patterns of experimental sttbjeeject conventional adaptive models in favor of
more complicated models such as “anticipatory iegn(Selten, 1991).
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In additional to classroom experiments, severamestudies in experimental
economics have also dealt with similar issues. example, Bednar, Chen, Liu and
Page (2009) found that when playing two differegpperated games simultaneously,
self-interest behavior in the stage-game prisorditésnma “spilled over” to the other
game played, while the presence of a “hard” gambe(es the Pareto dominant
dynamic equilibrium is alternating between two ames) requires a larger cognitive
load and induces the use of “simpler” strategieshsas stage-game dominant
strategies in the other game. Dufwenberg, SundaasnButler (2010) found that
subjects learned to play the “game of 21" (a pérnfgformation game similar to Nim
that requires forward looking ability) if they pleg the simplified “game of 6” first.

In this paper, the BP success is replicated inlaberatory: We identify a
particular environment where it is difficult to leathe optimal action under a
probabilistic situation, and design a simplified/eanment where subjects can learn
to make the correct decision, which will be carrmtk to the original environment.
In particular, the difficult environment consists a modified version of the Monty
Hall problem, a situation commonly used to studysbs in human decision making
(Friedman, 1998; Kluger and Wyatt, 2004; Kluger dfmiedman, 2010). Indeed,
experimental subjects fail to learn the optimalaceven after 30 rounds of repeated
play. Then, we design a simplified version of ¢fa@ne (100-door instead of 3-door),
and demonstrate how most subjects can learn to thlayoptimal action (always
switch) within 15 rounds after playing first 15 rals of the simplified game.

The Monty Hall problem is one of the strongest choanomalies studied
during the past decade. Originated from a famausegshow, the problem involves
the decision of a contestant choosing between tHoees, in which one of them
contains a big prize. After selecting one dooe tfame show host (Monty) opens

one of the remaining two doors revealing that @éngpty. Then, the contestant has to
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decide whether to switch to the other opaque doorkeep their initial choice.
Assuming the host always randomly opens one empby (hmong all empty doors
not chosen), Bayes’' rule suggests the contestaotighalways switch so the
probability of winning the prize would be 2/3 comge to 1/3 (if one does not
switch). However, most people simply cannot leénat switching is the best
strategy, even after experiencing the same situdtioty or forty times (Friedman,
1998).

Researchers have used the Monty Hall problem asolatd study judgment
errors in finance (Kluger and Wyatt, 2004) andratited to use various treatments to
teach people how to respond optimally to this pFohli.e. to always switch. These
treatments include group competition and commuiuna({Slembeck and Tyran,
2004), providing past history (Friedman, 1998)radtcing financial market (Kluger
and Friedman, 2010), and so on. One striking rasulhat it is very difficult for
subjects to learn to switch. To achieve a switghate of 70% or higher, one would
have to introduce sophisticated institutions, sashgroup competition or financial
markets. This leaves one to wonder whether theistsea “simple” way to teach
subjects to achieve a switching rate of 70% or éigh

In this paper, we take on the challenge to desiginmgple treatment to induce
subjects to learn that switching is always optir@hen faced with two doors).
Specifically, subjects play 15 rounds of a 100-deemiant of the Monty Hall problem,
and then play the original 3-door version for aeotii5 rounds. The 100-door
variant consists of 100 doors. After choosing doer, the host opens 98 doors
according to the same rules of the standard Moral ptoblem, randomizing with
equal probability when he has a choice, and allthes subject to switch. The
winning probability for switching now soars to 9001, while not switching wins only

one out of a hundred times. As Marilyn vos Savaitially discussed in her news
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paper columrAsk Marylin “Suppose there are a million doors, and you pickr ddo
Then the host, who knows what's behind the doadsnlh always avoid the one with
the prize, opens them all except door #777,777 u'd¥switch to that door pretty fast,
wouldn't you? (Savant, 1997)

This design is adopted for several reasons. #&iratl, in the 100-door variant,
the probability of winning if one switches is 99%atching the BP story where the
prior probabilities of the new environment are elds one after they adopted the “no
dry holes” policy. Secondly, Page (1998) showeal thubjects do switch in the
100-door variant, but this knowledge does not caugr to the 3-door version when
both games were played simultaneously, but onlyeonéience, it is plausible that
knowledge gained in the 100-door variant couldl spiér to the 3-door version after
sufficient learning.

A third design issue we had to face is that theeesame rules of thumb other
than Bayesian updating that would also lead tochwig in the Monty Hall Problem.
For example, the heuristic of “Irrelevant Therefdmgariant (IT1)”, documented by
Shimojo (1989), states that since the host’s acivas irrelevant to the contestant’s
initial choice, the probability of winning with thaitial choice is therefore unchanged
by the host’s action. Thus, the (posterior) charmafewinning if one switches is one
minus the (prior) winning probability of the initizhoice. Since both ITI and
Bayesian updating lead to the same choice of simctwe cannot distinguish the
two reasoning in the standard game.

Therefore, in our experiments, subjects play aaveirof the Monty Hall problem
so that ITI and Bayesian updating would predictedént behavior: One of the three
doors is transparent, showing that it is empty, emoosing this door would end the

game immediately. All other aspects of the ganeetlae same. By introducing the



transparent door, we shift the prior probabilitgrr (1/3, 1/3, 1/3) to (1/2, 1/2, 9),
making subjects who follow the ITI heuristic in@difent between switching and not.
In contrast, if one carefully performs Bayesian afpth, one would realize that there
are two separate situations after the host opengldlor: If the host opens the other
non-transparent door, it is obvious one should svatch (since one loses for sure
switching to a transparent door); if the host opirestransparent door, switching is
the optimal strategy since the winning probabitifyswitching is still 2/3 and that of
not switching is 1/3 (same as in the standard gam@pserving behavior in this new
Monty Hall problem, we are able to separate thoke adopt the ITI heuristic from
those who truly follow Bayesian updating. Finalthis variant also makes the
experiment closer to the BP example---subjectsaihjitsee only two possible choices,
drill or not (take the outside option) each havihg same chance of success, but after
investigation (Monty’s move), the posterior probipishifts to 2/3. As BP moves
from the status quo to the “no dry holes” policyd@or to 100-door), the posterior
probability becomes 99/100.

Comparing the results of subject who underwent i@@-door treatment with
those who played the same 3-door treatment, weeadsldhe following questions:
Does the 100-door treatment “teach” subjects toagbnswitch in the 3-door one?

For those who learn the optimal strategy duringetkgeriment, how did they learn?

Experimental Design
Participants and Procedure

Participants in the experiment were National Taiwhamversity (NTU) students
recruited through the Taiwan Social Science Expenit@l Laboratory (TASSEL)

website or from various intermediate-level econ@mtourses in NTU. They were

® Or (1/100, ..., 1/100) to (1/2, 1/2, 0, ..., 0) in the0-door variant.
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assigned randomlyo one of the two groupsControl group (43 students) a
Treatment group (39 studen They were paid a 100 NT dolléapprox. US$3.0C
show up fee, and earndd NT dollars (approx. US$0.3@ach time they chose t
door containing the prize.

Each subject individually playthe generalizedMonty Hall problen, either the
3-door versiorwith prior probability (1/2, 1/2, (, or the 100door versiol with prior
probability (1/2, 1/2, Q,., Q). In the treatment group, subjects fiptay the 10-door
gamefor 15 periods andhen play the 3-door version fa5 period, while in the
control group, subjectirst played the 3-door ganfer 15 periods and repeanother
15 periods of the sangame
Optimal Strategy

Although the modifiec game is more complex, according Baye¢ Rule, the
optimal strategy is still to switch whenever oneestwo gpaque dool, and this
would gives the subjea 2/3 (or 99/100 in the 108eor version) chance to w
Figure 1 illustratesthis with an example of the 8eor game whe door 3 is
transparentand the subject chooses dooilinitially. If door 3 is opened by tf

computer and thsubject choosi to switch (to door 2), s/he will wig/3 of thetime.

You shouldn’t switch

Pri i
Prize in 3 .
You should switch

Figure 1



Results
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We first compare aggregate switchilbbehavior between the treatment :
control group. Note thahere are chances that a subject would face onspiaaen
door and one opaque door if icomputer opens the othepaque door for hinCases
in which this particular situationhappens are not interestirggnce it is common
knowledge that one may win for sure choosingto stay. As a result, v drop these
cases and show fgure : the 3-period moving averageith standard error barof
the switching ratdor cases in whic subjects have a ofte between two opaq!
doors.The treatment group starts with a switching rateselto 60%, and quick
learns to always switch (> 95%) in the -door gameMost subject then carry this
knowledge over to the 8eor game, resulting in a stable switcl rate around 80%
In contrast, the control group starts with a switghrate below 40%, and onl
gradually increaset® 60%

Moreover, we conduca probit regressionwith random effecs, predicting



switching behavior (the probability that the dumwayiable Switchequals to 1) with

a constant term, the period number (correlated Wwitv many periods the subject
have played the relevant case), and two varialflas represent past experience:
Switch_bonus(the cumulative earning difference between alwaystching and
always remaining) an8witch_wona dummy variable which equals to 1 if switching
would have won the prize in the most recent periddyimilar model was used by
Friedman (1998) to support reinforcement learni@gnsistent with the findings of
Friedman (1998), results in Table 1 show that theable Switch_bonusis strongly

correlated witlSwitch(p < 0.05), whileSwitch_wornis not (p > 0.1).

1) (2) 3) 4)
Control_1 Control_2 Treatment_1Treatment_2
VARIABLES Switch

(=1 if and only if subject switch, =0 otherwise)

Switch_bonus 0.0234*** 0.0119**  0.112** 0.0265***

(0.00654)  (0.00475) (0.0460) (0.00674)
Switch_won 0.113 -0.0276 0.271 -0.225
(0.180) (0.164) (0.391) (0.210)
Period -0.0318 0.0221 -0.495 -0.0942**
(0.0347) (0.0243) (0.372) (0.0374)
Constant -0.533*  -1.022** 0.671 0.411
(0.272) (0.435) (0.509) (0.458)
Observations 461 495 294 439
Number of subject 43 43 39 39

Standard errors in parentheses
*** n<0.01, ** p<0.05, * p<0.1
We drop all observations where there was only qraxjae door left.

Table 1: Probit regression (with random effects) for switching behavior
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Individual learning model analysis

In addition to the aggregate results, we (strudiggrastimate individual learning
patterns with two different learning models, epiphand reinforcement, to calibrate
individual switching data. The epiphany model i tme that the subject chooses not
to switch in the firstn periods until a certain “epiphany point” where thagbject
realizes the optimal strategy and starts to alwaygch from then on. Hence, the
probabilistic model predicts a subject to switchthaprobability 1e before the given
epiphany point and switch with probabiligyafter that. The parametemsande are
estimated by maximizing empirical likelihood forchasubject.

On the other hand, the reinforcement model we useal special case of the
Experienced-Weighted Attraction (EWA) model (Came&eHo 1999, 2002 In this
model, the probability that a subject chooses (two$switch increases if and only if he
choses (not) to switch in the previous period aod the prize, but decays by a fixed
proportion in all other cases.

In particular, we use a logit (exponential) reicfement model to calibrate the
data in both stages and both groups and the coohliat of the two stages in the
control group (30 periods in total). In this mod#le subject chooses his strategy

according to the following formula:

1
eMRE(D)

1 _
PP(t+1) = eMRL(D) 4 oMR2(D)

Where P (t+1) indicates subject’s probability of choosisgategy 1 (switch) at
period t+1, is a parameter that is estimated via maximumitibeld, and Rt) is the

attraction at period t if one chooses strate@y1 if switch), modeled as:

ORIt — 1) + () ,if s(t) = s

RO = {chi(t -1) ,if s(t) # st

® We do not estimate the full EWA model (with 3 free@meters) since we have at most 30 data points
per subject, which was shown by Salmon (2001) toédféicient to identify the parameter precisely.
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where ¢ is also a parameter that is estimated via maxirketihood, n(t) is
the pay-off that the subject receive at periodt},is the subject’s strategy at period t,
s indicates the subject’s strategy choices i (=risfeitch), and R0) = 50. We again
estimate the value o andA by maximizing empirical likelihoods. The estimatio
results (see supplemental material) show that pigghany model has higher mean log
likelihood for more than 90 percent of the subjentboth the control and treatment
group. In other words, though aggregate results ftioe probit regressions support
some form of reinforcement learning, individual ustural estimations indicate
subjects seem to learn by “epiphany” instead ofely) reinforcement.

Moreover, by estimating the epiphany point for eexhvidual, we can measure
the speed subjects learn to play the optimal gfyate the control group it takes an
average of 17.65 (standard deviation 12.25) oW8Qoperiods to learn, while in the
100-door game, it takes only 1.21(1.79) periodgeAexperiencing the 100-door
game, it now takes subjects only 2.54 (4.86) partodearn ( to switch) in the 3-door

game.

Discussion and Conclusion

Results from our experiment show that, even thowghintroduced a more
difficult and counter-intuitive version of the MagntHall Problem, our 100-door
treatment effectively teaches subjects to learnagpiemal strategy. However, it is
not clear from the behavioral results alone whethdsjects learned true Bayesian
updating or not. To at least partially address,thie conducted post experimental
guestionnaires and asked subjects to report thediefbabout the probabilities of
wining if they choose to switch/stay. The resdtow that more subjects in the
treatment group report the exact probabilities §6%, 66.6%, 66%, or 67%) than

those in the control group (23.08% versus 6.98%hus, in addition to learning to
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switch and reap the “economic value” (Camerer, Hd &hong, 2004) of correct
probability estimation, we also have some evidethed people do learn the correct
probabilities themselvés.

Moreover, close to 40% of the subjects started wsiilitching. This is much
higher than what is documented in the literatureesiFriedman (1998) reported an
initial switching rate around 10%. This could be tresult of Asian students being
more capable of mathematics. However, it could bisdue to the fact that the Monty
Hall problem is more well-known now (say due to thevie “21”) than ten years ago.
Initially, we did not ask subjects whether they Isagn a similar game before, but we
started to ask this question after seven of thst {80 subjects reported exact
probabilities. Among the remaining 52 subjects,oi&em claimed to have at least
seen a similar game before, while 34 did not. Agtirose who have seen it before,
four of them reported exact probabilities (22.2%#jle among those who never seen
it, only one reported exact probabilities (2.9%).

Thirdly, although aggregate regression results ccouldicate reinforcement
learning, a comparison between the individual egiyhmodel and the reinforcement
model suggests that at least 90% of the subjeetmare likely to be classified as an
epiphany learner. Hence, we believe that most ofsobjects can learn the optimal
strategy in the 100-door game because a “eurekahenb occurred after several
periods, and this epiphany is transferred to tle&- game.

Finally, although we now know that epiphany is dtddemodel to calibrate
subjects’ learning behavior in this case, we sdl not know the actual learning
mechanism behind it. Is it like a real “epiphanybrh God in which the subject

suddenly realizes the optimal strategy at sometpoithe experiment? Or, is it like a

" If we allow an estimating error of 5%, the numbbesome 30.77% (in the treatment group) and
11.63% (in the control group).
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neuron stimulation process with a preset thresididre subjects aggregate stimuli
when exposed to the games repeatedly and reakzeptimal strategy after passing
the threshold, such as the model estimated by KtgjArmel and Rangel (2010)?

Answers to these questions would await furtheranete
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Supplemental Online Material

1% Stage Aggregate 3-period Moving Average

1* Stage
Control Treatment
Period Switch Chances Ratio Switch  Chances Ratio
1~3 33 91 36.26% 37 63 58.73%
2~4 42 93 45.16% 44 62 70.97%
3~5 41 99 41.41% 50 64 78.13%
4~6 41 104 39.42% 56 65 86.15%
5~7 37 103 35.92% 59 64 92.19%
6~8 36 98 36.73% 55 58 94.83%
7~9 36 93 38.71% 50 50 100.00%
8~10 39 93 41.94% 50 50 100.00%
9~11 40 88 45.45% 56 58 96.55%
10~12 33 84 39.29% 63 65 96.92%
11~13 31 77 40.26% 66 68 97.06%
12~14 38 84 45.24% 56 57 98.25%
13~15 52 89 58.43% 50 51 98.04%

2" Stage Aggregate 3-period Moving Average

2" stage
Control Treatment
Period  Switch Chances Ratio Switch  Chances Ratio
1~3 43 102 42.16% 77 95 81.05%
2~4 43 99 43.43% 71 92 77.17%
3~5 47 103 45.63% 70 91 76.92%
4~6 47 104 45.19% 67 87 77.01%
5~7 39 99 39.39% 65 85 76.47%
6~8 38 103 36.89% 66 85 77.65%
7~9 47 100 47.00% 69 86 80.23%
8~10 47 99 47.47% 75 89 84.27%
9~11 45 92 48.91% 71 86 82.56%
10~12 43 93 46.24% 74 91 81.32%
11~13 48 89 53.93% 65 84 77.38%
12~14 55 92 59.78% 64 79 81.01%
13~15 57 96 59.38% 64 80 80.00%
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Maximum Likelihood Estimation Results for Epiphasyd Reinforcement Learning

Control Group 1st stage only Both stages

Obs. with 2doors Epiphany Reinforcement Epiphany Reinforcement

Subj. 1st 2nd mean Epiphany mean mean log-L mean Epiphany mean mean log-L
ID# Stage Stage log-L  Point log-L difference log-L Point log-L difference
1 12 10 0.00 0 -0.12 0.12 -0.54 0 -0.52 -0.02
2 13 12 -0.54 8 -0.68 0.14 -0.59 8 -0.69 0.10
3 10 13 -0.50 15 -0.69 0.19 -0.46 23 -0.63 0.17
4 6 13 0.00 14 -0.46 0.46 0.00 30 -0.15 0.15
5 12 8 0.00 14 -0.17 0.17 -0.42 17 -0.59 0.16
6 13 11 0.00 15 -0.05 0.05 0.00 27 -0.30 0.30
7 11 9 -0.59 5 -0.66 0.07 -0.56 30 -0.65 0.09
8 12 12 0.00 0 -0.12 0.12 0.00 0 -0.06 0.06
9 12 11 0.00 0 -0.06 0.06 0.00 0 -0.03 0.03
10 12 11 -0.67 13 -0.75 0.08 -0.63 30 -0.72 0.09
11 12 13 -0.56 15 -0.46 -0.10 -0.37 28 -0.47 0.10
12 9 9 -0.53 4 -0.67 0.14 -0.64 4 -0.66 0.03
13 11 11 -0.47 6 -0.68 0.21 -0.66 27 -0.69 0.03
14 11 11 -0.30 14 -0.60 0.30 -0.40 14 -0.53 0.13
15 13 15 -0.54 3 -0.64 0.10 -0.67 20 -0.69 0.02
16 12 12 0.00 15 -0.06 0.06 0.00 30 -0.09 0.09
17 13 14 -0.27 14 -0.59 0.32 -0.48 27 -0.63 0.15
18 13 8 -0.27 12 -0.58 0.31 -0.41 27 -0.57 0.16
19 12 11 0.00 12 -0.25 0.25 0.00 12 -0.13 0.13
20 9 10 0.00 8 -0.22 0.22 -0.58 26 -0.67 0.09
21 10 12 -0.33 15 -0.14 -0.19 -0.30 21 -0.32 0.01
22 11 12 -0.30 14 -0.56 0.26 -0.39 30 -0.56 0.18
23 10 12 -0.61 13 -0.59 -0.02 -0.59 22 -0.59 0.00
24 12 14 -0.45 14 -0.69 0.24 -0.62 30 -0.69 0.08
25 6 12 -0.64 12 -0.69 0.06 -0.35 30 -0.45 0.10
26 11 11 -0.66 1 -0.65 -0.01 -0.54 1 -0.52 -0.02
27 13 12 -0.43 15 -0.64 0.21 -0.44 29 -0.59 0.15
28 8 9 -0.56 8 -0.69 0.13 -0.65 30 -0.69 0.04
29 10 10 -0.50 15 -0.52 0.02 -0.33 30 -0.26 -0.06
30 9 11 -0.68 0 -0.76 0.08 -0.70 23 -0.69 0.00
31 12 13 0.00 13 -0.06 0.06 0.00 30 -0.03 0.03
32 11 15 -0.31 12 -0.54 0.23 -0.44 30 -0.53 0.09
33 10 13 -0.33 3 -0.52 0.20 -0.57 3 -0.62 0.05
34 12 13 0.00 0 -0.06 0.06 0.00 0 -0.03 0.03
35 8 13 0.00 10 -0.18 0.18 -0.60 10 -0.65 0.05
36 11 12 0.00 0 -0.06 0.06 0.00 0 -0.03 0.03
37 10 10 0.00 0 -0.07 0.07 0.00 0 -0.03 0.03
38 12 13 0.00 1 -0.36 0.36 -0.17 1 -0.32 0.15
39 9 11 -0.35 6 -0.67 0.33 -0.50 6 -0.67 0.17
40 8 10 0.00 14 -0.09 0.09 0.00 30 -0.04 0.04
41 7 11 -0.41 2 -0.55 0.14 -0.21 2 -0.22 0.01
42 13 11 -0.43 13 -0.59 0.16 -0.51 21 -0.66 0.15
43 9 12 0.00 0 -0.08 0.08 0.00 0 -0.03 0.03

Mean 8.56 17.65

(std) (5.93) (12.25)



Treatment Group 1st stage 2nd stage

Obs. with 2doors Epiphany Reinforcement Epiphany Reinforcement
Subj. 1st 2nd mean Epiphany mean mean log-L mean Epiphany mean mean log-L
ID# Stage Stage log-L  Point log-L difference log-L  Point log-L difference
1 6 13 0.00 0 -0.12 0.12 -0.43 0 -0.56 0.13
2 8 14 0.00 1 -0.17 0.17 0.00 0 -0.10 0.10
3 8 13 0.00 3 -0.26 0.26 -0.43 7 -0.57 0.14
4 8 8 0.00 1 -0.17 0.17 -0.38 13 -0.36 -0.02
5 5 9 0.00 1 -0.28 0.28 -0.35 15 -0.56 0.21
6 7 13 -0.60 0 -0.58 -0.02 -0.43 0 -0.48 0.05
7 6 9 0.00 0 -0.12 0.12 -0.35 13 -0.39 0.39
8 9 10 0.00 2 -0.15 0.15 -0.33 0 -0.47 0.47
9 10 13 0.00 3 -0.28 0.28 0.00 0 -0.05 0.05
10 5 10 0.00 1 -0.28 0.28 0.00 0 -0.14 0.14
11 4 12 0.00 0 -0.17 0.17 -0.64 1 -0.57 0.12
12 9 10 -0.53 4 -0.62 0.09 -0.50 11 -0.53 0.03
13 5 11 0.00 0 -0.14 0.14 -0.59 0 -0.65 0.06
14 6 12 0.00 0 -0.12 0.12 0.00 0 -0.06 0.06
15 8 12 0.00 0 -0.09 0.09 -0.45 5 -0.68 0.23
16 9 10 0.00 2 -0.23 0.23 0.00 0 -0.07 0.07
17 12 10 0.00 1 -0.12 0.12 0.00 0 -0.07 0.07
18 9 12 0.00 0 -0.08 0.08 -0.29 0 -0.32 0.04
19 9 12 0.00 4 -0.31 0.31 0.00 0 -0.06 0.06
20 7 12 0.00 0 -0.10 0.10 0.00 0 -0.06 0.06
21 5 11 0.00 4 -0.55 0.55 -0.69 0 -0.43 -0.05
22 9 10 -0.35 0 -0.28 -0.07 0.00 0 -0.07 0.07
23 9 11 0.00 0 -0.08 0.08 0.00 0 -0.06 0.06
24 10 10 0.00 0 -0.07 0.07 0.00 0 -0.07 0.07
25 6 11 0.00 1 -0.23 0.23 0.00 0 -0.06 0.06
26 9 9 0.00 0 -0.08 0.08 0.00 0 -0.15 0.15
27 5 11 0.00 0 -0.14 0.14 0.00 0 -0.06 0.06
28 7 13 0.00 0 -0.10 0.10 -0.27 4 -0.27 0.00
29 2 13 0.00 0 -0.35 0.35 -0.67 0 -0.69 0.02
30 6 7 -0.70 6 -0.81 0.11 -0.76 2 -0.79 0.04
31 10 14 0.00 5 -0.28 0.28 -0.65 15 -0.69 0.28
32 7 9 0.00 1 -0.20 0.20 0.00 0 -0.08 0.08
33 7 13 0.00 1 -0.20 0.20 0.00 0 -0.05 0.05
34 7 12 -0.41 0 -0.36 -0.05 -0.29 0 -0.32 0.04
35 7 12 0.00 0 -0.10 0.10 0.00 0 -0.06 0.06
36 8 11 0.00 0 -0.09 0.09 0.00 0 -0.13 0.13
37 8 9 0.00 6 -0.26 0.26 -0.69 12 -0.69 0.34
38 7 12 0.00 0 -0.10 0.10 -0.45 0 -0.29 -0.16
39 7 14 0.00 0 -0.10 0.10 -0.26 1 -0.42 0.17
Mean 1.21 2.54
(std) (1.79) (4.86)

Note:

These tables report the MLE result of fitting individual choices into different learning models.
The last column reports the differences between two models' log-liklihood result.

Shaded row are those subjects who are better predict under the reinforcement model.



Questionnaire Result (Control)

Subject
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Partlpl

75
60
50
50
80
50
60
66
66.6
20
50
50
50
75
50
50
50
30
20
70
10
40
50
40
20
70
40
40
18
0.5
40
50
50
66
50
66
60
67
60
20
30
60
50

Partlp2

25
40
50
50
20
50
40
34
333
80
50
50
50
25
50
50
50
50
80
30
90
60
50
60
80
30
60
60
82
0.5
60
50
50
33
50
33
40
33
40
80
70
40
33

Part2pl

0.5
60
50
50
66
50
66
60
50
50
20
90
60
50

Part2p?2

25
50
75
40
20
30
60
34
50
30
50
20
50
25
50
50
50
50
20
50
10
50
25
50
60
10
50
60
95
0.5
40
50
50
33
50
33
40
50
50
80
10
40
33



Questionnaire Result (Treatment)

Subject  Partlpl  Partlp2  Part2pl  Part2p2

1 99 1 50 50
2 100 0 75 25
3 50 50 70 30
4 30 70 50 50
5 1 99 50 50
6 90 10 90 10
7 25 75 50 50
8 50 50 100 0
9 100 0 60 40
10 99.5 0.5 06.7 33.3
11 99 1 07 33
12 50 50 70 30
13 0 100 50 50
14 99 1 07 33
15 50 50 50 50
16 100 0 100 0
17 99 1 50 50
18 99 1 06 34
19 100 0 90 10
20 99 1 06 33
21 100 0 50 50
22 100 0 50 50
23 99 1 07 33
24 50 50 06.7 33.3
25 100 0 70 30
26 99 1 75 25
27 100 100 70 100
28 100 0 50 50
29 100 0 50 50
30 50 60 50 60
31 100 0 50 50
32 100 0 80 20
33 100 0 87.5 12.5
34 100 0 50 50
35 80 20 66 34
36 05 35 60 40
37 100 0 66 34
38 90 10 50 50
39 100 0 50 50

The second and fourth column report subject’s bal®ut the wining probability of
choosing to switch (partl means in tiesiage), and the third and fifth column report
the opposite probability.



