
A Window of Cognition: Eyetracking the

Reasoning Process in Spatial Beauty

Contest Games

Chun-Ting Chen, Chen-Ying Huang and Joseph Tao-yi Wang*

June 14, 2018

Abstract

We study the reasoning process in an environment where final choices are well un-

derstood and the associated theory is procedural by introducing two-person beauty

contest games played spatially on two-dimensional grid maps. Players choose loca-

tions and are rewarded by hitting targets dependent on opponents’ choice locations.

By tracking subjects’ eye movements (lookups), we infer their reasoning process and

classify subjects into various levels. More than a half of the subjects’ classifications

coincides with their classifications using final choices, supporting a literal interpre-

tation of the level-k model for subject’s reasoning process. Lookup analyses reveal

that the center area is where most subjects initially look at. This sheds light on the

level-0 belief. Moreover, learning lookups of a trial on average could increase pay-

offs of that trial by roughly 60%, indicating how valuable lookups can help predict

choices.
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1 Introduction

Since Nash (1950) defined equilibrium as mutual best responses, game theory has been

focusing on interpreting observed choices as the outcome of strategic best responses to

consistent beliefs. This strategic approach has achieved tremendous success by simply as-

suming utility optimization and belief consistency. The focus on explaining final choices

is widespread. Nonetheless, this emphasis on final choices should not exclude the pos-

sibility of analyzing the decision-making process prior to final decision if the process is

observable and contains information about cognition, potentially hard to extract from

observing choices alone.

In this paper, we study the reasoning process as well as final choices in a game-

theoretic environment. We extend Costa-Gomes and Crawford (2006) and design the

two-person spatial beauty contest game, which is a graphical simplification of the two-

person guessing game played on two dimensional grid maps.1 It is known that initial

responses in the p-beauty contest games can be well explained by theories of heterogeneous

levels of rationality such as the level-k model.2 Since the level-k model predicts choices

well, it is plausible to come up with satisfactory hypotheses on the reasoning processes.

Taking the level-k model procedurally, we propose a natural hypothesis regarding the

reasoning process of the spatial beauty contest game. A key in the level-k model is that

players of higher levels of rationality best respond to players of lower levels, who in turn

best respond to players of even lower levels and so on. This best response hierarchy is

the perfect candidate for procedurally modeling the reasoning process of a subject prior

to making the final choice.3 As an example, a level-2 subject would first focus on what a

level-0 subject would choose since her opponent thinks of her as a level-0. She would next

consider what a level-1 opponent would choose since her opponent would best respond to

a level-0. Finally she would think about her level-2 choice since she would best respond

to her level-1 opponent. Since the graphical representation may induce the subject to go

through this hierarchical procedure of best responses by counting on the computer screen,

we trace subject’s eye-movements with video-based eyetracking. While the subject could

go through the level-k reasoning process entirely in her mind, we hypothesize that she

1Nagel (1995) and Ho et al. (1998) studied the p-beauty contest game. Variants of two-person guessing
games are studied by Costa-Gomes and Crawford (2006) and Grosskopf and Nagel (2008). In designing
our games, we attempt to mimic the Bertrand competition in price and quality. Imagine firms compete
by either cutting the price or increasing the quality of service. Suppose there is a common marginal cost
and a best obtainable quality of service. If one firm typically competes by cutting the price while the
other by increasing the quality of service, then the equilibrium is where price equals the marginal cost
and the best service is obtained.

2Level-k models are developed by Stahl and Wilson (1995), Nagel (1995), Costa-Gomes and Crawford
(2006), and Ho and Su (2013). Camerer et al. (2004) proposes the related cognitive hierarchy model.

3To avoid confusion, the subject is denoted by her while her opponent is denoted by him.
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would count on the screen since this reduces memory load. Then, the locations being

looked up reflect how a subject reasons before making her final choice. We eyetrack the

entire sequence of every location a subject has ever fixated at in the experiment real-time.

Following the convention, we call this real-time fixation data “lookups” even though there

is no hidden payoff-relevant information to be looked up.

We estimate a level-k lookup model as follows. When a subject reasons through a

particular best response hierarchy designated by her level-k type, each step of thinking is

characterized as a “state.” To describe changes between the thinking states, we construct

a constrained Markov-switching model. We classify subjects into various level-k types

based on maximum likelihood estimation using individual lookup data; Vuong’s test is

employed to ensure separation. Among the seventeen subjects we tracked, one follows the

level-0 (L0) best response hierarchy the closest with her lookups, six follow the level-1

(L1) hierarchy, four follow the level-2 (L2) hierarchy, another four follow the level-3 (L3)

hierarchy, and the remaining two follow the equilibrium (EQ) hierarchy, which coincides

with level-4 (L4) hierarchy in most games. The average thinking step is 2.00 (if EQ is

viewed as having 4 thinking steps), in line with results of other p-beauty contest games.

To see whether the lookup data indeed aligns well with choice data, we classify subjects

by using their final choice data only by following Costa-Gomes and Crawford (2006). After

all, if a subject reasons in her mind, one should not expect lookups being informative

about final choices. On the other hand, if she counts on the screen to go through the best

response hierarchy as we hypothesize, the estimated level based on lookups may coincide

with that based on choices since the level reflects her strategic sophistication. We find

that lookup-based and choice-based classifications are pretty consistent, classifying ten of

the seventeen subjects as the same type. This suggests that if a subject’s lookups are

classified as a particular level-k type, her final choices follow the prediction of that level-k

type as well, supporting a literal interpretation of the level-k model. This lends support

to the level-k model as a procedural theory in addition to a theory of final choices.

Since the level-k model explains both final choices and lookups well for more than

a half of our subjects, one might wonder what could lookup data tells us beyond which

can be learned from final choices. To infer empirical level-0 beliefs, we use initial lookups

to identify the starting point of reasoning as mostly the center. The top-left and the

top-center, though less likely, are also possible. Since the center and the top-left (due to

the reading habit in English) are salient, it hints on how salience may be important in

determining level-0 belief. We also find that relying on lookups of a trial to predict the

choice of that same trial is roughly as good as relying on choices of all other trials. Both

can increase payoffs of about 60%, indicating how informative lookups are.

In the related literature, procedural data are used to infer the reasoning process
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and identify the level of subjects. Closest to our work are Costa-Gomes and Crawford

(2006) and Costa-Gomes et al. (2001). Costa-Gomes and Crawford (2006) employs the

mouse-tracking technology “mouselab ” to study two-person guessing games and explic-

itly derive the procedural implication of level-k model by tracking how subjects click on

payoff-relevant information. Burchardi and Penczynski (2014) and Penczynski (2016) use

within-team text messages in the first trial of the p-beauty contest game to identify em-

pirical level-0 beliefs and the number of steps a subject reasons. These approaches are

complementary and confirm different aspects of the procedural process to be consistent

with the level-k model.4

The remaining of the paper is structured as follows: Section 2.1 describes the spatial

beauty contest game and its theoretical predictions; Section 2.2 describes details of the

experiment; Section 3 reports aggregate statistics on lookups; Section 4 reports classifica-

tion results based on lookups; Section 5 compares classification results based on lookups

with those based on final choices. Section 6 investigates additional insights of lookups,

and Section 7 concludes.

2 The Experiment

2.1 The Spatial Beauty Contest Game

We now introduce our design, the equilibrium prediction, the prediction by the level-k

model and formulate the hypotheses which will be tested. To create a spatial version of

the p-beauty contest game, we reduce the number of players to two, so that we can display

the choices of all players on the computer screen visually. Players choose locations (instead

of numbers) simultaneously on a 2-dimensional grid map attempting to hit one’s target

location determined by the opponent’s choice. The target location is defined as a relative

location to the other player’s choice of location by a pair of coordinates (x, y). We use the

standard Euclidean coordinate system. For instance, (0,−2), means the target location

of a player is “two steps below the opponent,” and (−4, 0) means the target location of a

player is “four steps to the left of the opponent.” These targets are common knowledge

to the players. Payoffs are determined by how “far” (the sum of horizontal distance and

vertical distance) a player is away from the target. The larger this distance is, the lower

her payoff is. Players can only choose locations on a given grid map, though one’s target

may fall outside if the opponent is close to or on the boundary.5 For example, consider

4Brocas, Carrillo, Wang and Camerer (2014) use mouselab to observe failure of acquiring payoff-
relevant information necessary to find an equilibrium. Agranov, Caplin and Tergiman (2015) create an
incentivized choice process protocol with random termination to identify level-0 behaviors.

5Similar designs could also be found in Kuo et al. (2009). They addressed different issues.
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the 7×7 grid map in Figure I. For the purpose of illustration, suppose a player’s opponent

has chosen the center location labeled O ((0, 0)) and the player’s target is (−4, 0). Then

to hit her target, she has to choose location (−4, 0). But location (−4, 0) is not on the

grid map, while choosing location (−3, 0) is optimal among all 49 feasible choices because

location (−3, 0) is the only feasible location that is one step from location (−4, 0).6

The spatial beauty contest game is essentially a spatial version of Costa-Gomes and

Crawford (2006)’s asymmetric two-person guessing games, in which one subject would like

to choose α of her opponent’s choice and her opponent would like to choose β of her choice.

Hence, similar to Costa-Gomes and Crawford (2006), the equilibrium prediction of this

spatial beauty contest game is determined by the targets of both players. For example, if

the targets of the two players are (0, 2) and (4, 0) respectively, the equilibrium consists of

both players choosing the top-right corner of the grid map. This conceptually coincides

with a player hitting the lower bound in the two-person guessing game of Costa-Gomes

and Crawford (2006) if αβ is less than 1, or all choosing zero in the p-beauty contest game

where p is less than 1.7 Note that in general the equilibrium needs not be at the corner

since targets can have opposite signs. For example, when the targets are (4,−2) and

(−2, 4) played on a 7× 7 grid map, the equilibrium locations for the two players are both

two steps away from the corner (labeled as E1 and E2 for the two players respectively in

Figure I).

Supplementary Appendix A1 derives the equilibrium predictions for general spatial

beauty contest games, while Supplementary Appendix A2 develops the predictions of the

level-k model and shows that all level-k types with k above a threshold level k coincide

with equilibrium. In Table I we list all the 24 spatial beauty contest games used in the

experiment, their various level-k predictions, equilibrium predictions and the thresholds

k. Notice that the first 12 games are “easy games” where targets of each player are 1-

dimensional, while the last 12 games are “hard games ” where targets are 2-dimensional.

Also, Games (2m− 1) and (2m) (where m = 1, 2, . . . , 12) are the same but with reversed

roles of the two players, so for instance, Games 1 and 2 are the same, Games 3 and 4 are

the same, etc.

The spatial beauty contest game extends the one dimensional two-person guessing

games in Costa-Gomes and Crawford (2006) to two dimensions. Extending to two dimen-

sions allows us to separate choices and the reasoning of two players better. In easy games

where targets are 1-dimensional, we let two players’ target be on different dimensions

so that the dimension corresponding to one’s target is presumably more salient for that

6For instance, to go from location (−3, 1) to (−4, 0), one has to travel one step left and one step down
and hence the distance is 2.

7However, choosing the top-right corner is not a dominant strategy in our design, unlike in the
symmetric two-person guessing game analyzed by Grosskopf and Nagel (2008).
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player (and differs from that for the other player). This may lead to more distinct rea-

soning processes and final choices, providing a better chance to identify when a player is

reasoning for herself instead of reasoning for her opponent. In hard games where targets

of both players are 2-dimensional, equilibrium choices do not coincide with the corners.

This separates equilibrium reasoning from corner-choosing heuristics.

The thresholds k for our 24 games are almost always 4, but some are 3 (Games 1,

10, 17), 5 (Games 5, 11, 12) or 6 (Game 6). This indicates that as long as we include

level-k types with k up to 3 and the equilibrium type, we will not miss the higher level-k

types much since higher types coincide with the equilibrium most of the time. Moreover,

as evident in Table I, different levels make different predictions. In other words, various

levels are strongly separated on the grid map.8 The level-k model predicts what final

choices are made for each level k. We assume that a subject is of a particular level-k type

in all games. This is formulated in Hypothesis 1.

Hypothesis 1 (Final Choice Data) Consider a series of one-shot spatial beauty contest

games without feedback, a subject’s final choices for games n = 1, 2, . . . , N follows the

prediction of a particular level-k type where k is constant across games.

Since our games are spatial, players can literally count using their eyes how many

steps on the grid map they have to move to hit their targets. Thus, a natural way to use

lookups is to take the level-k reasoning processes literally assuming subjects look through

the following best response hierarchy: An L1 best responds to an L0, an L2 best responds

to an L1, . . . , and an Lk best responds to an L(k − 1). Though this process could be

carried out solely in one’s mind, counting on the map reduces memory load and is more

straightforward. Hence, we formulate Hypothesis 2 and base our econometric analysis of

lookups on this.

Hypothesis 2 (Lookup Data) Consider a series of one-shot spatial beauty contest

games without feedback where subjects are assumed to carry out the reasoning process

on the grid map. A subject’s lookup sequence for games n = 1, 2, . . . , N should follow a

particular level-k type where k is constant across games, and:

(a) (Duration of Lookups): Focus on the associated level-k best response hierarchy

and fixate longer than random at locations of L0 player’s choices, . . . , own L(k−2)

player’s choices, opponent L(k − 1) player’s choices, and own Lk player’s choices.

(b) (Sequence of Lookups): Have adjacent fixations (from level i to i + 1) that cor-

respond to steps of the associated level-k best response hierarchy.

8The only exceptions are L3 and EQ in Games 1, 10, 17, L2 and L3 in Games 2, 6, 9, and L2 and
EQ in Game 18. See the underlined predictions in Table I.
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2.2 Experimental Procedure

We conduct 24 spatial beauty contest games (with various targets and map sizes) ran-

domly ordered without feedback at the Social Science Experimental Laboratory (SSEL),

California Institute of Technology.9 In addition to recording subjects’ final choices (Figure

II), we also employ Eyelink II eyetrackers (SR-research Inc.) to track the entire decision

process before the final choice is made. The experiment is programmed using the Psy-

chophysics Toolbox of Matlab (Brainard, 1997), which includes the Video Toolbox (Pelli,

1997) and the Eyelink Toolbox (Cornelissen et al., 2002). For every 4 milliseconds, the

eyetracker records the location one’s eyes are looking at on the screen and one’s pupil

sizes. Location accuracy is guaranteed by first calibrating subjects’ eyetracking patterns

(video images and cornea reflections of the eyes) when they fixate at certain locations on

the screen (typically 9 points), interpolating this calibration to all possible locations, and

validating it with another set of similar locations. Since there is no hidden information

in this game, the main goal of eyetracking is not to record information search. Instead,

the goal is to capture how subjects carry out reasoning before making their decisions

and to test whether they think through the best response hierarchy implied by a literal

interpretation of the level-k model.

Before each game, a drift correction is performed in which subjects fixate at the center

of the screen and hit a button (or space bar). This realigns the calibration at the center

of the screen. During each game, when subjects use their eyes to fixate at a location,

the eyetracker sends the current location back to the display computer, and the display

computer lights up the location (real time) in red (as Figure II shows). Seeing this red

location, if subjects decide to choose that location, they could hit the space bar. Subjects

are then asked to confirm their choices (“Are you sure?”). then have a chance to confirm

their choice (“YES”) by looking at the bottom left corner of the screen, or restart the

process (“NO”) by looking at the bottom right corner of the screen. In each session, two

students at Caltech were recruited through the SSEL website to be eyetracked. Since

there was no feedback, each subject was eyetracked in a separate room individually and

their results were matched with the other subject’s at end of the experiment. Three trials

were randomly drawn from the 48 trials played to be paid. Average payment is US$15.24

plus a show-up fee of US$20. A sample of the instructions can be found in Supplementary

Appendix A8. A quiz was administered after the instructions were read out to make sure

subjects understood the instructions (which all of them passed). Due to insufficient show-

up of eligible subjects, three sessions were conducted with only one subject eyetracked,

9Each game is played twice with two different presentations that are mathematically identical. Since
the results are similar, we focus on the presentation shown in Figure II that allows us to trace the
decision-making process through observing the lookups.
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and their results were matched with a subject’s from a different session. Hence, we have

eyetracking data for 17 subjects.

3 Lookup Summary Statistics

We first summarize subjects’ lookups to test Hypothesis 2a, namely, subjects do look at

and count on the grid map during their reasoning process. Here are two examples of the

raw data. Figure III shows the lookups of subject 2 in trial 14, acting as a Member B.

The diameter of each fixation circle is proportional to the length of each lookup. Note

that these circles fall almost exclusively on the best response hierarchy of an L2, which

is exactly her level-k type. Figure IV shows noisier lookups of an L3 type (subject 1) in

trial 8 acting as member A.

We present the aggregate data regarding empirical lookups for all 24 Spatial Beauty

Contest games in Supplementary Figures 1 through 24. For each game, we calculate the

percentage of time a subject spent on each location. The radius of the circle is proportional

to the average percentage of time spent on each location, so bigger circles indicate longer

time spent. The level-k choice predictions are labeled as L0, L1, L2, L3, E. Consistent with

Hypothesis 2a, subjects indeed spend more time at locations corresponding to the thinking

steps of a particular best response hierarchy, so the empirical lookups concentrate on

locations predicted by the level-k best response hierarchy. However, many other locations

are also looked up.

We attempt to quantify this concentration of attention game-by-game. First, we

define Hit area for every level-k type as the minimal convex set enveloping the locations

predicted by this level-k type’s best response hierarchy in game n. Figure V shows an

example of Hit areas for various level-k types in a 7× 7 spatial beauty contest game with

target (4,−2) and the opponent’s target (−2, 4) (Game 16). An L2 player 1 has a best

response hierarchy consisting of locations O, L12, L21. Thus we can construct a minimal

convex set enveloping these three locations (see the dashed line area in Figure V). For

each game, we then take the union of Hit areas of all level-k types and see if the aggregate

lookups of all subjects are indeed within the union.

We define the empirical percentage of time spent on an area as hit time, denoted as

ht, and define the size percentage of an area as hit area size, denoted as has. We calculate

the difference between hit time and hit area size, ht − has, to correct for the contribution

of hit area size, and report it for the union of Hit areas for various level-k types as the

LookupScore in Figure VI. Note that this is essentially Selten (1991)’s linear “difference

measure of predicted success.” In fact, if subjects scan randomly over the grid map, her

LookupScore for any area is expected to be zero, since the percentage of time she spends
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on an area will roughly equal the hit area size of that area. By subtracting the hit area

size, we can evaluate how high hit time is compared with what random scanning over the

grid map would imply. These measures are all positive (except for Game 22), strongly

rejecting the null hypothesis of random lookups. The p-value of one sample t-test is 0.0001,

suggesting that subjects indeed spend a disproportionately long time on the union of Hit

areas for various level-k types.

To sum up, the aggregate result is largely consistent with Hypothesis 2a that subjects

look at locations of the level-k best response hierarchy longer than random scanning

would imply, although the data is noisy. We next turn to test Hypothesis 2b and consider

whether individual lookup data can be used to classify subjects into various level-k types.

4 Markov-Switching Level-k Reasoning

We now analyze subjects’ lookups with a constrained Markov-switching model to classify

them into various level-k types to test Hypothesis 2b. As a part of the estimation, we

employ Vuong’s test for non-nested but overlapping models to ensure separation between

competing types. When performing this estimation, we use the entire sequence of lookups

on the grid map for each trial. We summarize the estimation method here and provide

the details in Supplementary Appendix A3.

We define each stage of the reasoning process as a state. The states are in the mind

of a subject. If she is a level-2, there are three states according to the best response

hierarchy of reasoning. For example, in Game 16 shown in Figure I, the three states are

s = 0 (she thinks her opponent thinks she is a level-0), s = −1 (she thinks her opponent

is a level-1), and s = 2 (she is a level-2). Note that to distinguish a state regarding beliefs

about self from beliefs about the opponent, if a state is about the opponent, we indicate

it by a minus sign.10

To account for the transitions of states within a subject’s mind, we employ a Markov-

switching model by Hamilton (1989) and characterize the transition using a Markov tran-

sition matrix. Instead of requiring a level-k subject to “strictly” obey a monotonic order

of level-k thinking going from lower states to higher states, we allow subjects to move back

from higher states to lower states. This is to account for the possibilities that subjects

may go back to double check as may be typical in experiments. However, since a level-k

10We hasten to point out that these states are in the mind of a subject. It is not the level of a player.
Take a level-2 subject as an example. Her level, according to the level-k model, is 2. But there are
three states, s = 0, s = −1, and s = 2, in her mind. Which state she is in depends on what she is
currently reasoning about. A level-2 subject could be at state s = −1 because at that point of time,
she is thinking about what her opponent would choose, who is a level-1 according to the best response
hierarchy. However, this state s = −1 is not to be confused with a level-1 subject (whose k = 1 and
states of thinking consist of s = −0 and s = 1).
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player best responds to a level-(k−1) opponent, it is difficult to imagine a subject directly

jumping from the reasoning state of say s = (k − 2) to that of s = k without first going

through the reasoning state of s = −(k − 1). Thus, we restrict the probabilities for all

transitions that involve a jump to higher states to be zero.

When a subject is in a particular state, her reasoning will be reflected in the lookups

which we can track. We now describe this mapping between the particular state a subject

is in and her lookup. For instance, if a level-2 player with target (4,−2) in Game 16

(player 1 as shown in Figure I) is at state s = 0 at a point of time, her state-to-lookup

mapping would give us the location (0, 0) which a level-0 player would choose (O in Figure

I) since at this particular point of time, she is thinking about what her opponent thinks

she would choose as a level-0. Similarly, if a level-2 player is in state −1, the mapping

would give us the location (−2, 3) which a level-1 opponent would choose (L12 in Figure

I) since at this particular point of time, she is thinking about what her opponent would

choose as a level-1. Finally, if a level-2 player 1 is in state 2, then the mapping would give

us the location (2, 1) which a level-2 subject would choose (L21 in Figure I) since at this

particular point of time, she is thinking about her choice as a level-2.

For a level-0 player in state s = 0 thinking about choosing the center, the state-to-

lookup mapping predicts her lookup should fall exactly on the location (0, 0). If her lookup

is not on that location, we interpret this as an error. We assume a logistic distribution

of error so that looking at locations farther away from (0, 0) is less likely, and estimate

the precision parameter λ of the logistic distribution of error. When λ → +∞, subjects

look at exactly (0, 0). When λ → 0, subjects look at all locations randomly with equal

probability.

To summarize, for each level k, we estimate a state transition matrix and a precision

parameter for the logistic distribution of error. Thus, for a given initial distribution of the

states, we can infer the probability distribution of states at any point of time using the

state transition matrix. Moreover, at any point of time, the mapping from the state to

the lookup gives us the lookup location corresponding to any state when there is no error.

Coupled with the error structure, we can calculate the probability distribution of various

errors and therefore the distribution of predicted lookup locations. We then maximize

the likelihood to explain the entire observed sequence of lookups. We do this for various

level-k types. The final step is to select the k in various level-k types to best explain the

observed sequence of lookups for each subject.

We caution that the above econometric model may be plagued by an overfitting prob-

lem because higher level-k types have more states and hence more parameters. It is not

surprising if one discovers that models with more parameters fit better.11 Hence, we need

11In particular, the Markov-switching model for level-k has (k + 1) states with a (k + 1) × (k + 1)
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to make sure our estimation does not select higher levels merely because it contains more

states and more parameters. However, usual tests for model restrictions may not apply,

since the parameters involved in different level-k types could be non-nested. In particular,

the state space of a level-2 subject {0,−1, 2} and the states of a level-1 subject {0, 1} are

not nested. Yet, the state space of a level-1 type, {0, 1}, is nested in the state space of a

level-3 type, {0, 1,−2, 3}. In order to evaluate the classification, we use Vuong’s test for

non-nested but overlapping models (Vuong, 1989).12

Let Lk∗ be the type which has the largest likelihood based on lookups. Let Lka be

an alternative type having the next largest likelihood among all lower level types based

on lookups.13 If according to Vuong’s test, Lk∗ is a better model than Lka, we can be

assured that the maximum likelihood criterion does not pick up the reported type by mere

chance. Thus, we conclude that the lookup-based type is Lk∗. If instead we find that

according to Vuong’s test, Lk∗ and Lka are equally good, then we conservatively classify

the subject as the second largest lower type Lka.

Table II shows the results of maximum likelihood estimation and Vuong’s test for each

subject. For each subject, we list her Lk∗ type, her Lka type, her Vuong’s test statistic,

and her lookup-based type according to Vuong’s test in order. Six of the seventeen

subjects (subjects 1, 5, 6, 8, 11, 13) pass Vuong’s test and have their lookup-based type

as Lk∗. The remaining eleven subjects are conservatively classified as Lka. The overall

results are summarized in column (A) of Table III. After employing Vuong’s test, the

type distribution for (L0, L1, L2, L3, EQ) is (1, 6, 4, 4, 2). The distribution is in line with

typical type distributions reported in previous studies. Treating the EQ type as having

a thinking step of 4, we find that the average number of thinking steps is 2.00.

Up to now, we have shown that lookups do fall on the hotspots of the best response

hierarchy (Hypothesis 2a). Classifying subjects based on lookups (Hypothesis 2b) gives

us a reasonable level of sophistication as argued above. However, one might still wonder

whether the results reported in Table II are merely a misspecification, as many assump-

tions are required for Hypothesis 2b to hold. In the next section, we take up this issue by

matching subject lookup results with their final choices. Our argument is that if we take

the level-k theory literally to interpret the underlying reasoning process, the classification

transition matrix. This gives the model k(k+3)
2 parameters in the transition matrix alone: Since each row

sums up to one and elements with the column index greater than the row index plus one are zero, we
have in total (k+ 1)(k+ 1)− (k+ 1)−k(k−1)/2 = k(k+ 3)/2 parameters. For example, a level-2 subject
has 3 states and 5 parameters, but a level-1 subject has only 2 states and 2 parameters.

12See Supplementary Appendix A4 for the details of Vuong’s test for non-nested but overlapping models.
Note that this is the generalized version of the well-known “nested” Vuong’s test.

13Recall that the reason why we use Vuong’s test is to avoid overfitting. Hence, if the alternative type
has a larger transition matrix (more parameters) but a lower likelihood, there is no point to perform a
test, since Lk∗ has fewer parameters but a higher likelihood. This leads us to consider only lower level
types as the alternative type.
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based on lookups should match well with the classification using final choices since the

level k reflects a player’s sophistication.

5 Matching Up with Final Choices

Following the literature, we classify individual subjects into various level-k types based

on final choices. In particular, similar to Costa-Gomes and Crawford (2006), we perform

a maximum likelihood estimation to classify each individual subject into a specific level-k

type with beliefs that a level-0 chooses (on average) the center. Subjects are modeled as

following a constant level-k and playing quantal response using a logistic error structure.

Supplementary Appendix A5 provides the details of maximum likelihood estimation. The

aggregate distribution of types is reported in row (B) of Table III. The type distribution

for (L0, L1, L2, L3, EQ) is (2, 4, 4, 4, 3). The average number of thinking steps is 2.12,

close to that based on lookup classifications.

If we consider the classification results on a subject-by-subject basis, the similarity

between the two classifications are even more evident. Table III compares the lookup-

based and choice-based classification results. For ten out of the seventeen subjects, their

lookup-based types and their choice-based types are the same. In other words, for those

subjects, when their choices reflect a particular level of sophistication, their lookup data

suggests the same level of sophistication. This supports a literal interpretation of the

level-k model—When a subject’s choice data indicates a particular level, her lookups

suggest that the best response hierarchy of that level is carried out when she reasons. We

also report the average response time for each level-k in Table III. It is mostly increasing

in k for both choice-based and lookup-based classifications. In other words, if anything,

we find subjects of higher levels of sophistication take longer to make choices.

As a robustness check, to examine whether there are clusters of subjects whose choices

resemble each other’s and thus predict other’s choices in the cluster better than the pre-

specified level-k types, we conduct the pseudotype test of Costa-Gomes and Crawford

(2006) and report the results in Supplementary Table 1(a).14 We find only one cluster of

pseudo-17 types, consisting of subject 3 and subject 17, indicating at most a small cluster

of subjects that are not explained well by the predefined level-k model.15

Since the classification based on lookups and that based on choices align for more than

a half of the subjects, we next turn to discuss the subtle differences between them. We

evaluate the robustness of individual choice-based classification by performing bootstrap

(Efron, 1979; Efron and Tibshirani, 1994; Salmon, 2001), as maximum likelihood esti-

14The idea of pseudotypes is to treat each subject’s choices as a possible type. Since we have 17
subjects, we include 17 pseudotypes, each constructed from one of our subject’s choices in 24 trials.

15The type distribution with pseudotypes is very similar and reported in row (C) of Table III.

11



mation may not have enough power to distinguish between various types. For example,

reading from Supplementary Table 1(a), for subject 14, the log likelihood is −98.89 for L0,

−84.17 for L1, −96.99 for L2, −76.67 for L3, and −74.45 for EQ. Maximum likelihood

estimation classifies her as EQ, although the likelihood of L3 is also close.

To bootstrap, suppose a subject is classified as a particular level-k type with the

logistic precision parameter λk from the maximum likelihood estimation. We then draw

(with replacement) 24 new trials out of the original dataset and re-estimate her k and

λk. We do this 1000 times to generate the discrete distribution of k (and corresponding

λk), and evaluate the robustness of k by looking at the distribution of k. Each level-k

type estimated from a re-sampled dataset that is not the same as her original level-k type

is viewed as a “misclassification,” and counted against the original classification k. By

calculating the total misclassification rate (out of 1000 re-samples), we can measure the

robustness of the original classification.

The results of this bootstrap procedure are listed in Table IV. For each subject, we

report the bootstrap distribution of k (the number of times a subject is classified into L0,

L1, L2, L3 or EQ in the 1000 re-sampled datasets). The bootstrap misclassification rate

(percentage of times classifying the subject as a type different from her original type) is

listed in the last column. For example, subject 14 is originally classified as EQ, but is only

re-classified as EQ 587 times during the bootstrap procedure. She is instead classified

as L3 228 times and as L1 185 times. Hence, the distribution on the number of times

that subject 14 is classified into L0, L1, L2, L3 or EQ in the 1000 re-sampled datasets is

(0, 185, 0, 228, 587) and the corresponding misclassification rate is 0.413.

The bootstrap results align surprisingly well with whether the lookup-based classi-

fications match their choice-based types. In particular, for the ten subjects whose two

classifications match, all but three of them have (choice-based) bootstrap misclassification

rates lower than 0.05, suggesting that their classifications are truly sharp.16 In contrast,

for six of the remaining seven subjects whose two classifications do not match, their

choice-based type have bootstrap misclassification rates higher than 18.4%. The differ-

ence is significant, having a p-value of 0.0123 according to Mann-Whitney-Wilcoxon rank

sum test. There may be some reasons why the two classifications sometimes disagree and

why their choices seem noisy as we discover in the bootstrap procedure. We attempt a

more systematic analysis using lookup and choice data next.

16One of these three subjects (subject 17) fails the pseudotype test and is unlikely to resemble any of
the level-k types. The remaining two subjects (subjects 2 and 4) have misclassification rates of 0.076 and
0.110, respectively. These are marginally higher than 0.05.
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6 Extracting Information From Lookups and Choices

To prepare us for a more systematic analysis, we first watch raw videos animating the

entire lookup sequences trial-by-trial to gain some insights. We briefly summarize our

observations though we caution that they are highly conjectural. More details are provided

in Supplementary Appendix A6. Two out of the seventeen subjects can be deemed as

textbook literal level-k types as their lookups follow the best response hierarchy very

precisely. Most level-1 subjects do not look at the opponent’s goal even once in many

trials, suggesting that whether the minimal knowledge of the opponent is looked up may be

the first criterion for judging a subject’s level of strategic sophistication. We also discover

some alternative ways which may have been used to simplify the reasoning process. These

include breaking the two-dimensional games into two one-dimensional games to reason

in order, adopting choosing-the-corner heuristic, and utilizing a short-cut by summing

up the targets of the subject and the opponent. Though these alternative ways are

harder to reconcile with the best response hierarchy we use, it remains to be seen how

prevalent they are before alternative procedural assumptions can be made. We leave

this for future research. Finally, one subject seems to be jumping between level-2 and

level-4, while another skips reasoning in some trials. Recall there is no feedback in the

experiment. Hence, alternating between different levels or skipping reasoning sometimes

poses interesting challenges to the usual assumption of treating each trial as a one-shot

game. This is beyond the scope of this paper.

We next turn to address what lookups can do whereas choices cannot. We explore

two possibilities. First, we narrow down a subject’s level-0 belief by analyzing where she

initially looks at in every game. Second, we attempt to predict the final choice of any

trial using only lookups of that particular trial. Choice data of several trials can be used

to predict the choice of some other trial. Yet because there is only one choice in each

trial, attempting to predict the choice using only the choice within a trial is impossible.

We will see how informative the within-trial lookups prior to choice are. Finally, on

examining whether subjects are literal constant level-k players, note that our lookups and

choice classifications so far are based on three implicit assumptions. First, subjects are

characterized by the level-k theory. Second, they have a constant k. Third, they are

literal. Hence, when their lookups follow a particular level, their choices will follow that

level as well. We will also examine these assumptions in a more systematic way.

6.1 Starting Point for Level-k Reasoning

One possibility lookups can help where final choices cannot is to narrow down level-0

belief. If a subject carries out the best response hierarchy, her initial lookups may reflect
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the level-0 play in her mind. To look into that, a natural way is to look at where initial

lookups distribute. Since the grid map of each game is different, we need a way to

summarize how initial lookups distribute over maps of different sizes.

Hence, for every game, we partition both dimensions of the map into three equal-sized

bins. This way we divide each map into 3×3 = 9 equal-sized areas. Most salient areas for

level-0 belief arguably are the center (O) and the top-left (TL), with the latter being focal

because of the reading habit in English. However, for completeness, we also include the

top-center (TC), the top-right (TR), the middle-left (ML), the middle-right (MR), the

bottom-left (BL), the bottom-center (BC) and the bottom-right (BR) of the map. When

subjects are free to look at any place in the map, we record which area their initial lookups

lie. In particular, we consider the first 1% of the time spent on the grid map and count

the percentage time spent in each area. The subject-by-subject percentage distribution of

the initial lookups is reported in Table V. We further illustrate the aggregate percentage

distribution over all subjects in Figure VII.

We find that O, TL, TC together account for 71% of the initial lookups. If subjects

scan on the map uniformly, these three areas should account for only 1/3 of the time.

Reading from the last column of Table V, eight out of the seventeen subjects have their

modal initial lookups at O whereas four at TL and the other four at TC. This is broadly

in support of using the center as the level-0 belief since indeed it is looked up most often

initially. Moreover, subject 3 has her modal initial lookups at TL, in agreement with the

observation that she starts her reasoning from TL reported in Supplementary Appendix

A6. The three subjects (8, 11, 15) suspected to first perform reasoning regarding the

horizontal dimension and then the vertical dimension in Supplementary Appendix A6,

as well as pseudotype subject 17, have modal initial lookups at TC. This is possible if

they start reasoning near the top row of the grid map. Finally, subject 14 is the only one

whose modal initial lookups are not at O, TL or TC but at BL. However, as we point out

in Supplementary Appendix A6, she has very few lookups and quickly chooses a corner.

Her initial lookups fall on the four corner areas (TL, TR, BL, BR) quite evenly, totaling

82.6% of the time. This may reflect her quick final choices closely since choosing the

corner directly does not rely on starting the reasoning process from any fixed location.

To summarize, we find evidence from initial lookups that the center area may most

often be where subjects start reasoning. The top-left and the top-center may also be

important but not as much as the center. Since the center and the top-left are salient, it

is consistent with the importance of salience in determining level-0 belief (Burchardi and

Penczynski, 2014).

Based on these results, we consider level-k types starting from the top-left. The last

column of Table IV report alternative choice-based level-k types if they yield maximum
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likelihood (across all level-k types starting from C and TL). Only four subjects have

maximum likelihood with level-0 belief of TL (subjects 3, 4, 7 and 17 as L1, L3, L2, and

L1 via TL, respectively), and they indeed have modal or large fractions of initial lookups

at TL.17 Including level-k types starting from TL in the lookup-based classification results

in subjects 3, 4, 7, 15, 17 being re-classified as L3 via TL, and all have modal or large

fractions of initial lookups at TL.

6.2 Trial-by-Trial Lookup Estimation

Another possibility that lookups can do whereas final choices cannot is a trial-by-trial

out-of-sample prediction. To this end, for each trial, we use lookups of only that trial to

predict the final choice of the same trial. Relying on choice data alone cannot make such

predictions because by definition each trial has only one choice data point, i.e. the choice

itself, giving no further choice data to base predictions on. Supplementary Appendix A7

describes in detail how we use lookups of a trial to predict the final choice of that trial

(shorthanded as the “1-trial lookup model”). In essence, taking the reasoning process

of a level-k type starting from the center literally would imply specific locations to be

looked at most often. We assume a subject looks uniformly over these locations, but

conditional on each location her lookups follow the same logistic distribution over the

grid map. Since there are k + 1 locations, her lookup distribution will be a mixture of

k+ 1 logistic distributions. We drop the last lookup since it is highly correlated with the

final choice we want to predict and take the subject’s lookup duration heatmap of the

entire trial as our empirical distribution, and classify her into the type which minimizes

the mean absolute difference between the mixture of logistic distributions of each level-k

type and the empirical duration heatmap. Her choice of that trial is then predicted to

be the choice of that classified level. In short, we classify every trial into a level based

on only lookups of that trial before choice. The subject is then predicted to make a final

choice of that level. We caution that such within-trial prediction may be noisy because

we constrain ourselves to use only lookups of a single trial. However, this arguably tests

whether lookups contain valuable information despite of the noisiness.

We use the economic value (EV) as our judgement criterion. EV is a widely-used

measure to indicate how well a model performs. It is normalized so that EV = 0% means

the model prediction leads to the same expected payoff of the actual subjects. On the

other hand, EV = 100% implies the model prediction leads to the highest possible payoff

as if playing the best response. Hence EV is interpreted as percentage gain from the

prediction of a model, treating actual payoffs as the baseline. Rightly because so, if the

17Further including level-k types starting from the top-center only reclassifies subject 9 as L2 via TC,
but she is reported to often skip reasoning in Supplementary Appendix A6.
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model performs worse than the actual subjects, EV could be negative.18 Compared with

hit or miss of a model prediction, EV has the advantage of distinguishing near-misses (with

EV close to 100%) from predictions that are much worse (with lower or even negative EV).

The level-k theory imposes the maximal prediction power of the 1-trial lookup model.

Take Figure I as an example. The level-k theory predicts that player 1 chooses O, L11,

L21, L31 or E1 if her level is 0, 1, 2, 3 or 4 correspondingly. Accordingly, the 1-trial lookup

model must eventually predict her choice to be from O, L11, L21, L31 or E1. Therefore

the prediction power of the 1-trial lookup model cannot exceed that of the best-predicting

level among all possible k’s. Hence, we first calculate the EV for each level k and find

the maximum over all possible k’s for each trial. We do this trial-by-trial, allowing the

best level to differ from trial to trial. We then average this maximum EV over all trials.

This is the maximal prediction power of the level-k theory with a trial-by-trial dependent

level k. It is reported in column 2 of Table VI as “Maximum Level-k EV.” Averaging

over all subjects, the maximum EV imposed by the level-k theory is 83.7%. This is quite

a significant amount, indicating that if the various best predicting level of every trial is

known, payoffs can be increased substantially. The question is whether the lookups before

the choice can help obtain this valuable information trial-by-trial.

To evaluate performance of the 1-trial lookup model, for each trial, we divide the

EV based on the prediction of the 1-trial lookup model by the maximum EV to obtain

the EV ratio of that trial. This ratio reflects the fraction of possible EV realized by the

1-trial lookup model in that trial. Averaging over all trials we construct a measure of

how well the 1-trial lookup model performs, compared with the upper bound imposed by

the level-k theory. This is reported in column 3 as “1-Trial Lookup.” Averaging over all

subjects, the EV ratio of the 1-trial lookup model is 0.71, roughly indicating that 0.71

of the 83.7% gain can indeed be realized by relying on the lookups of a trial to make a

prediction. Hence, if an opponent knows a subject’s lookups of a trial before making a

choice, his payoffs can be increased roughly by 60%. This supports that lookups contain

valuable information for making choices optimally.

For comparison, we also look into how valuable choice information is. Since there are

24 trials in the experiment, we conduct the leave-1-choice-out model. This assumes a

stable level for every 23 trials, and relies on choices of these 23 trials to classify a subject

into a level. She is then predicted to make a final choice of that level in the remaining

left-out trial. This is similar to what we did in Section 5 except we do it for every 23

18Precisely, EV=
πFollow − πActual

πBR − πActual
. To illustrate, suppose a model predicts subject 1 to be level-3.

Then πFollow is her opponent’s payoff should he follow the model prediction and best respond to level-3.
πActual is his actual payoff. πBR is her opponent’s payoff should he best respond to subject 1’s choice.
Hence EV is the percentage of the gain should a model be followed, compared with the maximum possible
gain implied by playing best response to subject 1’s choice.
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trials and hence 24 times. For each trial, we again divide the EV based on the prediction

of the leave-1-choice-out model by the maximum EV to obtain the EV ratio of that trial.

Averaging over all trials we construct a measure of how well the leave-1-choice-out model

performs, compared with the upper bound imposed by the level-k theory. This is reported

in column 5 of Table VI as “Leave-1-Choice-Out.” Averaging over all subjects, the EV

ratio of the leave-1-choice-out model is 0.72, similar to the EV ratio of the 1-trial lookup

model. In words, this means, in terms of playing optimally, learning the lookups of a

trial is as useful as learning choices of 23 trials. This is important in situations where the

entire history of choices is unavailable, in which case the 1-trial lookup model would be a

good substitute to make a prediction.

6.3 Literal Constant Level-k

We next turn to address whether the constant level-k reasoning process is carried out

literally. If a player is a literal level-k whose k is constant throughout, we argue three

criteria have to be met. First, the maximum EV the level-k theory imposes on has to

be high enough. After all, if the maximum EV is low, the level-k theory does not help

reaching optimal plays and some alternative theory may perform better. Second, the EV

ratio of the leave-1-choice-out model has to be high as well. Since the leave-1-choice-out

model assumes a stable level for every 23 trials, a low EV ratio could suggest a violation of

the stability of levels, questioning the constant level assumption. Third, the EV ratio of

the 1-trial lookup model has to be high too. Otherwise, one may doubt whether the literal

level-k reasoning process is carried out before the choice is made, suggesting alternative

reasoning processes that might be considered to reach the choice.

We use the criteria that the maximum EV has to be at least 70% and the two EV ratios

at least 0.7. Among all subjects, eleven pass the criteria. This suggests that for most

subjects, we cannot reject that the literal, constant level-k theory predicts optimal plays

quite well, even though we cannot directly prove that subjects are indeed carrying out the

constant level-k reasoning literally. This lends support to the level-k theory as coming

up with a good prediction as far as EV is concerned. This is in contrast to Georganas,

Healy and Weber (2015) which assigns the final choice to the closest level-k type and

finds individual type not persistent within the family of guessing games.19 Moreover, this

demonstrates that the lookup and choice analyses in Sections 4 and 5 are well-founded

because had the opponent assumed the literal constant level-k reasoning process of the

subject, this prediction serves him well by making his EV quite close to the best response

19Georganas, Healy and Weber (2015) cannot estimate both k and the logistic precision parameter
λ with one data point. Nonetheless, they also find persistence individual types within the family of
undercutting games. Arad and Rubinstein (2012) correlate level-k reasoning in 91–100 games and iterative
reasoning in a Blotto game.
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to the actual play of the subject.

The remaining six subjects, 14, 9, 4, 3, 7, 17 fail the criterion. We now look into why

their EV or EV ratio is not as high and how lookup information may help.

Subjects 3, 7 and 17 have the lowest maximum EV. While other subjects have a

maximum EV around 80% or higher, they all have maximum EV below 70%. This

indicates they likely do not follow the level-k model some way or the other. In fact,

the pseudotype test of Section 5 reveals that subject 3 and 17 are pseudotypes to each

other and subject 7 is classified as level-0, or close to random, both suggesting that the

level-k theory may not work well for them. Not surprisingly, the alternative estimation

in Section 6.1 allowing for level-k types starting from the top-left corner shows that they

indeed follow level-k reasoning with the alternative starting point of the top-left corner

instead of the center. We thus expand the 1-trial lookup model by adding alternative

types which start the reasoning process from the top-left corner. If we classify every trial

of a subject into a level of this expanded set based on only lookups of that trial, the EV

ratios of the 1-trial lookup model in column 3 of Table VI are substantially increased

from -0.08 to 2.36 for subject 3, from 0.74 to 0.98 for subject 7 and from 0.94 to 1.33 for

subject 17. The fact that the EV ratio is higher than 1 for subjects 3 and 17 implies that

allowing the reasoning process from the top-left corner makes the 1-trial lookup model

even more informative than the maximum level-k model. We thus are even more confident

that subjects 3 and 17 might have started their reasoning process from the top-left corner

as this makes their lookups become so informative presumably because starting from the

top-left corner fits their lookups well.

Subjects 9 and 4 have maximum EV around 80%, but especially low EV ratios (0.47

and 0.36 respectively) for the leave-1-choice-out model. This suggests that we may ques-

tion the stability of a fixed level for them. As we find in Supplementary Appendix A6,

subject 9 initially behaves like level-2, but eventually has very few lookups (indicating

not reasoning) and chooses the center as level-0 in the later trials. Subject 4 seems to

jump around initially, but eventually settles down as level-1 and hits the level-1 choice

perfectly in the last 8 trials. Hence the stability of levels may indeed be questionable for

them. Relying on their lookups instead, their 1-trial lookup model has somewhat higher

EV ratios (0.71 for subject 9 and 0.57 for subject 4) presumably because the 1-trial lookup

model does not assume a fixed level. Hence the trade-offs of relying on the 1-trial lookup

model are that within-trial predictions by lookups potentially could be noisy. Yet the

noisy prediction has the flexibility to predict better when levels are not constant.

Subject 14 has a maximum EV of 87.1%, but a low EV ratio of 0.30 for the 1-trial

lookup model. This suggests that she likely does not follow level-k reasoning literally. As

we indicate in Section 6.1, subject 14 has very few lookups and seems to jump straight
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to a corner. We conjecture she follows the corner heuristics by choosing the equilibrium

corner in easy games, but the corner in the direction of her goals in hard games. In fact,

if we include this particular corner heuristic, her EV ratio is significantly improved from

0.30 to 1.29. Hence, the low EV ratio of the 1-trial lookup model helps indicate that this

subject might perform an alternative reasoning process to arrive at the same choice.

Overall, in terms of EV, for eleven subjects, we find support that the literal, constant

level-k theory predicts optimal plays quite well. This echoes our finding in Section 5

that subjects’ lookup-based types and their choice-based types are quite consistent. For

the remaining subjects, lookup information can help us confirm whether they start the

reasoning process instead from the top-left corner (for subjects 3 and 17), they might

not have a stable level (subjects 9 and 4) or they may not go through the best response

hierarchy literally (subject 14).

7 Conclusion

We introduce the spatial beauty contest game in which the process of reasoning can be

tracked, and provide theoretical predictions together with a procedural interpretation of

the level-k theory. This procedural interpretation yields a plausible hypothesis on the

decision-making process. We then conduct a laboratory experiment using video-based

eyetracking technology to test this hypothesis, and fit the eyetracking data on lookups

using a constrained Markov-switching model of level-k reasoning. Results show that

based on lookups, subjects’ lookup sequences could be classified into following various

level-k best response hierarchies, which for more than a half of them coincide with levels

that they are classified into using final choices. Finally, initial lookup data and trial-

by-trial lookup estimation indicate that most subjects indeed follow the constant level-k

reasoning literally on the grid map starting from the center. In fact, lookups of a trial

contain valuable information to predict the choice of that same trial well.

Analyzing reasoning processes is a hard task. The spatial beauty contest game is de-

signed to fully exploit the structure of the p-beauty contest so that subjects are induced

to literally count on the grid map to carry out their reasoning as implied by the best

response hierarchy of a level-k theory. The high percentage of subjects whose classifica-

tions based on lookups and those based on choices align could be read as a support to

the level-k model as a complete theory of reasoning and choice altogether in the spatial

beauty contest game. Whether this holds true for more general games remains to be seen.

Nevertheless, the paper adds on the literature and points out a possibility of analyzing

reasoning before arriving at choices. To best utilize the procedural data, a design which

suits the tracking technology used is indispensable.
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Supplementary Appendices [For Online Reference]

A1 Equilibrium of the Spatial Beauty Contest Game

We derive the equilibrium predictions for the general case as follows. Formally, consider a

spatial beauty contest game with targets (a1, b1) and (a2, b2) where ai, bi are integers. With

some abuse of notation, suppose player i chooses location (xi, yi) on a map G satisfying

(xi, yi) ∈ G ≡ {−X,−X + 1, ..., X} × {−Y,−Y + 1, ..., Y } where |ai| ≤ 2X, |bi| ≤ 2Y .

Here, (0, 0) is the center of the map. X is the rightmost column a player can go and Y is

the topmost row a player can go. For instance, (xi, yi) = (X, Y ) means player i chooses the

Top-Right corner of the map. The other player −i also chooses a location (x−i, y−i) on the

same map: (x−i, y−i) ∈ G. The payoff to player i in this game is:

pi(xi, yi;x−i, y−i; ai, bi) = s̄− (|xi − (x−i + ai)|+ |yi − (y−i + bi)|)

where s is a constant. Notice that payoffs are decreasing in the number of steps a player is

away from her target, which in turn depend on the choice of the other player. There is no

interaction between the choices of xi and yi. Hence the maximization can be obtained by

choosing xi and yi separately to minimize the two absolute value terms. We thus consider

the case for xi only. The case for yi is analogous.

To ensure uniqueness, in all our experimental trials, a1 + a2 6= 0. Without loss of

generality, we assume that a1 + a2 < 0 so that the overall trend is to move leftward.1 Since

the overall trend is to move leftward, at least one player has to move leftward. Suppose it is

player 1 so a1 < 0. If a2 > 0, since player 1 would like to move leftward but player 2 would

like to move rightward, due to the overall trend to move leftward, it is straightforward to

see that the force of equilibrium would make player 1 hit the lower bound while player 2 will

best respond to that. The equilibrium choices of both, denoted by (xe1, x
e
2), are characterized

by xe1 = −X and xe2 = −X + a2. If a2 ≤ 0, since both players would like to move leftward,

they will both hit the lower bound. The equilibrium is characterized by xe1 = xe2 = −X.

To summarize, when a1 + a2 < 0, only the player whose target is greater than zero will not

hit the lower bound. Therefore, as a spatial analog to Observation 1 of Costa-Gomes &

Crawford (2006), we obtain:

Proposition 1. In a spatial beauty contest game with targets (a1, b1) and (a2, b2) where

two players each choose a location (xi, yi) ∈ G satisfying |a1|, |a2| ≤ 2X, |b1|, |b2| ≤ 2Y ,

and G ≡ {−X,−X + 1, ..., X} × {−Y,−Y + 1, ..., Y }, the equilibrium choices (xei , y
e
i ) are

1Due to symmetry, all other cases are isomorphic to this case.
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characterized by: (I{·} is the indicator function){
xei = −X + ai · I{ai > 0} if ai + a−i < 0

xei = X + ai · I{ai < 0} if ai + a−i > 0

and {
yei = −Y + bi · I{bi > 0} if bi + b−i < 0

yei = Y + bi · I{bi < 0} if bi + b−i > 0

Proof. Consider the case that a1 + a2 < 0. We first argue that in equilibrium it cannot

be the case that both choose an interior location so no player hits a bound. To see that,

suppose there is an equilibrium (xe1, x
e
2) where both choose an interior location. Then it

must be that both players are best responding by choosing her target location xe1 = xe2 + a1

and xe2 = xe1 +a2. This is because if for any player i xei = xe−i+ai does not hold, then either

xei > xe−i + ai or xei < xe−i + ai. But then to get closer to her target location, player i could

increase her profit by moving leftward when xei > xe−i + ai and by moving rightward when

xei < xe−i + ai. Both are possible because xei is an interior location. This implies there is a

profitable deviation, contradicting (xe1, x
e
2) as an equilibrium. However, if xe1 = xe2 + a1 and

xe2 = xe1 + a2, then summing both gives a1 + a2 = 0, a contradiction to a1 + a2 < 0. Thus

we conclude at least one player hits a bound in equilibrium.

Without loss of generality, assume a1 < 0. There are two possible cases, a2 > 0 or

a2 ≤ 0.

When a2 > 0 , since at least one player hits a bound, we consider first player 2 hits a

bound. If player 2 hits the lower bound or xe2 = −X, then since a1 < 0, to best respond

to player 2, player 1 hits the lower bound as well or xe1 = −X. But then to best respond

to player 1, 2 will want to move rightward because xe1 + a2 = −X + a2 > −X. This

implies a profitable deviation of player 2, a contradiction. Similarly, if 2 hits the upper

bound or xe2 = X, then to best respond to player 2, player 1 will choose her target location

xe1 = X + a1. This target location is feasible because |a1| ≤ 2X or a1 ≥ −2X, and hence

xe1 = X + a1 ≥ −X. But then to best respond to player 1, player 2 would like to move

leftward since xe1 +a2 =X+a1 + a2 < X. This again implies a profitable deviation of player

2, which is impossible. Hence it could not be player 2 hitting a bound. We are left with the

possibility that player 1 hits a bound. If she hits the upper bound or xe1 = X, then since

a2 > 0, to best respond to player 1, player 2 hits the upper bound as well or xe2 = X. But

then to best respond to player 2, 1 will want to move leftward because xe2+a1 = X+a1 < X.

This implies a profitable deviation of player 1, a contradiction. Lastly, if player 1 hits a lower

bound or xe1 = −X, then since a2 > 0, to best respond to player 1, player 2 chooses her

target location or xe2 = −X + a2. Again, this target location is feasible because |a2| ≤ 2X
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or a2 ≤ 2X, and hence xe2 = −X + a2 ≤ X. Now for player 1 to best respond to player

2, her target location is xe2 + a1 = −X + a2+a1 < −X. So at best she could choose the

lower bound −X. This shows players 1 and 2 are both best responding to each other and

we have an equilibrium. To sum up, when a2 > 0, player 1 hits the lower bound and player

2 chooses her target location −X + a2 is the only equilibrium.

When a2 ≤ 0 , we first rule out any player hitting the upper bound. If player 1 hits

the upper bound or xe1 = X, then to best respond, player 2 will choose her target location

xe2 = xe1 + a2 = X + a2. This target location is feasible because |a2| ≤ 2X or a2 ≥ −2X,

and hence X + a2 ≥ −X. But then to best respond to player 2, player 1 would like to

move leftward because xe2 + a1 = X+a2 + a1 < X. This implies a profitable deviation of

player 1, which is impossible. On the other hand, if player 2 hits the upper bound or

or xe2 = X, then to best respond to player 2, player 1 will choose her target location

xe1 = X + a1. This target location is feasible because |a1| ≤ 2X or a1 ≥ −2X, and hence

xe1 = X + a1 ≥ −X. But then to best respond to player 1, player 2 would like to move

leftward because xe1 + a2 = X + a1 + a2 < X. This again implies a profitable deviation of

player 2, which is impossible. We are left with the case where at least a player hits the

lower bound. But no matter who hits the lower bound, since the other player would like

to go even lower (since a1 < 0 and when a2 < 0) or exactly matches (when a2 = 0), the

other player hits the lower bound too. This shows both best respond to the other hitting

the lower bound by hitting the lower bound herself. Hence when a2 ≤ 0, both players hit

the lower bound or xe1 = xe2 = −X is the only equilibrium.

A2 The Level-k Model for Spatial Beauty Contest Games

In addition to the equilibrium prediction, one may also specify various level-k predictions.

First, we need to determine the anchoring L0 player who is non-strategic or näıve. Con-

ceptually, the L0 player could choose any location as her starting point, either randomly or

deterministically, if no further presumption is made. Nonetheless, it is usually assumed in

the literature that players choose randomly.2 In a spatial setting, Reutskaja et al. (2011)

find the center location focal, while Crawford & Iriberri (2007a) define L0 players as be-

ing drawn toward focal points in the non-neutral display of choices. Therefore, a natural

assumption here is that an L0 player will either choose any location on the map randomly

(according to the uniform distribution), which is on average the center (0, 0), or will simply

choose the center.

An L1 player i with target (ai, bi) would best respond to an L0 opponent who either

2See Costa-Gomes et al. (2001), Camerer et al. (2004), Costa-Gomes & Crawford (2006) and Crawford

& Iriberri (2007b).
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chooses the center on average or exactly chooses the center. As a von Neumann-Morgenstern

utility maximizer, she would choose the same location no matter which of the two ways her

opponent behaves. This is true because our payoff structure is point symmetric by (0, 0)

over the grid map. Hence, it makes no difference for an L1 opponent whether we assume

an L0 player chooses randomly (on average the center) or exactly the center.3

If an L0 player chooses (on average) the center, to best respond, an L1 player would

choose the location (ai, bi) unless X, Y is too small so that it is not feasible.4 Similarly, for

an L2 opponent j with the target (aj, bj) to best respond to an L1 player i who chooses

(ai, bi), he would choose (ai + aj, bi + bj) when X, Y is large enough. Repeating this

procedure, one can determine the best responses of all higher level-k (Lk) types. Moreover,

since the grid map is of a finite size, eventually when k for a level-k type is large enough,

the Lk prediction will coincide with the equilibrium. Figure I shows the various level-k

predictions of a 7× 7 spatial beauty contest game for two players with targets (4,−2) and

(−2, 4). To summarize, we have

Proposition 2. Consider a spatial beauty contest game with targets (a1, b1) and (a2, b2)

where two players choose locations (x1, y1), (x2, y2) satisfying (xi,yi) ∈ G ≡ {−X,−X +

1, ..., X} × {−Y,−Y + 1, ..., Y }, |a1|, |a2| ≤ 2X and |b1|, |b2| ≤ 2Y . Denote the choice of

a level-k player i by (xki , y
k
i ), then for any given level-0 player’s choice (x0

1, y
0
1) = (x0

2, y
0
2)

(arbitrary point on the map), there exists a smallest positive integer k such that for all

k ≥ k, (xki , y
k
i ) = (xei , y

e
i ).

Proof. Following the notations defined above, to find (xki , y
k
i ) that solves

max
x,y

u (s− [|xi − (x−i + ai)|+ |yi − (y−i + bi)|]) ,

we may solve xki and yki separately since there is no interaction between the choice of xki and

yki . Hence, by symmetry we only need to show that xki = min
{
X,max{−X, ai + xk−1

−i }
}

.

Notice that

min
{
X,max{−X, ai + xk−1

−i }
}

=


−X, xk−1

−i + ai < −X
xk−1
−i + ai, xk−1

−i + ai ∈ {−X,−X + 1, . . . , X}.
X, xk−1

−i + ai > X

In other words, when the unadjusted best response xk−1
−i +ai is lower than the lowest possible

choice of xki on the grid map, the adjusted best response is the lower bound −X. When it

3See Proposition 3 below. Also, in our estimation, we incorporate random L0 as a special case (when

the logit precision parameter is zero).
4In this case, an L1 player would choose the closest feasible location.
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is higher than the highest possible choice of xki on the grid map, the adjusted best response

is the upper bound X. When the unadjusted best response xk−1
−i + ai is within the possible

range of xki on the grid map, the adjusted best response coincides with the unadjusted best

response. Notice that:

1. If xk−1
−i + ai ∈ {−X, . . . , X}, min

x∈{−X,...,X}

∣∣x− (xk−1
−i + ai)

∣∣ = 0 at x = xk−1
−i + ai.

2. If xk−1
−i + ai > X, min

x∈{−X,...,X}

∣∣x− (xk−1
−i + ai)

∣∣ = −X + (xk−1
−i + ai) at x = X.

3. If xk−1
−i + ai < −X, min

x∈{−X,...,X}

∣∣x− (xk−1
−i + ai)

∣∣ = −X − (xk−1
−i + ai) at x = −X.

Thus, xki = min
{
X,max{−X, xk−1

−i + ai}
}

indeed maximizes player i’s utility (which is

decreasing in the distance between the target xk−1
−i + ai and the choice).

For the second half, it suffices to show that there exists a smallest positive integer k

such that (xki , y
k
i ) = (xei , y

e
i ) for all k ≥ k when a1 + a2 < 0. All other possibilities can be

argued analogously. There are 2 cases to consider: ai < 0 ≤ a−i and a1, a2 < 0.

Case 1: ai < 0 ≤ a−i: We show that when xki > −X, xk+2
i is strictly less than xki , and

when xki = −X, xk+2
i = −X. Then all subsequences taking the form of {xki , xk+2

i , xk+4
i , . . .}

will eventually converge to xei = −X, implying {x0
i , x

1
i , x

2
i , . . .} also converges to xei = −X.

For any nonnegative integer k, xk+2
i − xki = min

{
X,max{−X, xk+1

−i + ai}
}
− xki where

xk+1
−i = min

{
X,max{−X, xki︸︷︷︸

≥−X

+ a−i︸︷︷︸
≥0

}
}

= min{X, xki + a−i}.

If xki > −X, xk+2
i − xki = min

{
X,max{−X, xk+1

−i + ai}
}
− xki

= min
{
X,max

{
−X,min{X, xki + a−i}+ ai

}}
− xki

= min
{
X,max

{
−X,min{X + ai︸ ︷︷ ︸

<X

, xki + a−i + ai}︸ ︷︷ ︸
<X

}
︸ ︷︷ ︸

<X

}
− xki

= max
{
−X,min{X + ai, x

k
i + a−i + ai}

}
− xki

= max
{
−X − xki︸ ︷︷ ︸

<0

,min{X + ai, x
k
i + a−i + ai︸ ︷︷ ︸

<xki

}

︸ ︷︷ ︸
<xki

−xki
}
< 0.
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If xki = −X, xk+2
i − xki = min

{
X,max{−X, xk+1

−i︸︷︷︸
=min{X,xki +a−i}

+ai}
}
− xki

= min
{
X,max

{
−X,min{X,−X + a−i}+ ai

}}
− (−X)

= min
{
X,max

{
−X,min{X + ai,−X + a−i + ai︸ ︷︷ ︸

<0

}

︸ ︷︷ ︸
<−X

−(−X)

= min{X,−X} − (−X) = −X − (−X) = 0.

For player−i, we know from Case 1 that there exists a positive integer ki where the opponent

chooses xki = xei = −X for all k ≥ ki. This implies xk+1
−i = xe−i = −X + a−i for all k ≥ ki

since xk+1
−i = min

{
X,max{−X, xki + a−i}

}
.

Case 2: a1, a2 < 0: As in Case 1, again we show that when xki < −X, xk+2
i is

strictly less than xki , and when xki = −X, xk+2
i = −X. Then all subsequences taking the

form of {xki , xk+2
i , xk+4

i , . . .} will eventually converge to xei = −X, implying the sequence

{x0
i , x

1
i , x

2
i , . . .} also converges to xei = −X. Since

xk+1
−i = min

{
X,max{−X, xki︸︷︷︸

≤m

+ a−i︸︷︷︸
<0

}
}

= max{−X, xki + a−i},

we have

xk+2
i − xki = min

{
X,max{−X, xk+1

−i + ai}
}
− xki

= min
{
X,max

{
−X,max{−X, xki + a−i}+ ai

}}
− xki

= min
{
X,max

{
−X,max{−X + ai︸ ︷︷ ︸

<−X

, xki + a−i + ai}
}}
− xki

= min
{
X,max{−X, xki + a−i + ai}

}
− xki .

If xki > −X, xk+2
i − xki = min

{
X − xki ,max{−X − xki︸ ︷︷ ︸

<0

, a−i + ai︸ ︷︷ ︸
<0

}
}
< 0.

If xki = −X, xk+2
i − xki = min

{
X,max

{
−X,−X + a−i + ai︸ ︷︷ ︸

<−X

} − (−X)

= min{X,−X} − (−X) = −X − (−X) = 0.

Then, we can argue as in Case 1 that player i will eventually choose xk−i = xe−i = X.

For random L0 case, we have
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Proposition 3. For choice (xi, yi) and target (ai, bi), player i’s monetary payoff is

πi(xi, yi;x−i, y−i; ai, bi) = s− (|xi − (x−i + ai)|+ |yi − (y−i + bi)|) , s is a constant.

Suppose player i is level-1 with a continuous Von Neumann-Morgenstern utility function

u(·) that values only monetary payoffs. Then, choosing location (ai, bi) is the best response

to a level-0 opponent −i who chooses randomly over the entire map,

G ≡ {−X,−X + 1, ..., X} × {−Y,−Y + 1, ..., Y }.

Proof. To best respond to the choice of player −i, player i should find (xi, yi) that solves

the maximization

(xi, yi) = arg max
x,y

Y∑
y−i=−Y

X∑
x−i=−X

u (s− [|xi − (x−i + ai)|+ |yi − (y−i + bi)|])
(2X + 1)(2Y + 1)

.

To show that (xi, yi) = (ai, bi) indeed achieves the maximum, it suffices to show that

(x′, y′) = (0, 0) solves the maximization

(x′, y′) = arg max
x′,y′

Y∑
y−i=−Y

X∑
x−i=−X

1

(2X + 1)(2Y + 1)
u (s− [|x′ − x−i|+ |y′ − y−i|]) . (1)

For any given y−i and y′, let Y−i = y′ − y−i. Then, the summation over x is

X∑
x−i=−X

u (s− Y−i − |x′ − x−i|) (2)

which is symmetric over x′ = 0.

Without loss of generality, consider x′ = t,X ≥ x′ > 0 and x′ = 0. Player i’s utility

when choosing x′ = t differs from that when choosing x′ = 0 by

X∑
x−i=−X

u (s− Y−i − |t− x−i|)−
X∑

x−i=−X

u (s− Y−i − |0− x−i|)

=
2X−t∑
k=−t

u (s− Y−i − |X − k|)−
2X∑
k=0

u (s− Y−i − |X − k|)

=
−1∑
k=−t

u (s− Y−i − |X − k|)−
2X∑

k=2X−t+1

u (s− Y−i − |X − k|)

=
X∑

k=X+1−t

u (s− Y−i − |t+ k|)− u (s− Y−i − |k|) < 0 (3)
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where the last equality holds since |t + k| > |k| for all X + 1 − t ≤ k ≤ X (notice that

X ≥ t implies that X + 1− t ≥ 1), and u(·) is increasing. Hence, choosing x′ = t is worse

than choosing x′ = 0. Since the summation over x is symmetric over x′ = 0, the same

argument applies to show that choosing x′ = −t is worse than choosing x′ = 0. Thus x′ = 0

maximizes the over x for any given y−i and y′. Similarly, y′ = 0 maximizes

Y∑
y−i=−Y

X∑
x−i=−X

u (s− (|0− x−i|+ |y′ − y−i|)) .

Thus, if the (level-0) opponent chooses uniformly on the map, (xi, yi) = (ai, bi) is indeed

optimal.

A3 The Markov-Switching Level-k Model for Lookups

A3.1 The State Space

According to Hypothesis 2b, a level-k type subject i goes through a particular best response

hierarchy associated with her level-k type during the reasoning process, and carries out

transitions from
(
xK−1
−i,n , y

K−1
−i,n

)
to
(
xKi,n, y

K
i,n

)
, for K = k, k − 2, · · · , and transitions from(

xK−1
i,n , yK−1

i,n

)
to
(
xK−i,n, y

K
−i,n
)

for K = k − 1, k − 3, · · · . Taking level-2 as an example, the

two key transition steps are from (x0
i,n, y

0
i,n) to (x1

−i,n, y
1
−i,n), thinking as a level-1 opponent,

best-responding to her as a level-0 player and from (x1
−i,n, y

1
−i,n) to (x2

i,n, y
2
i,n), thinking as

a level-2 player, best-responding to a level-1 opponent. Hence, the reasoning process of

a level-2 subject i consists of three stages. First, she would fixate at (x0
i,n, y

0
i,n) since she

believes her opponent is level-1, who believes she is level-0. Then, she would fixate at

(x1
−i,n, y

1
−i,n), thinking through her opponent’s choice as a level-1 best responding to a level-

0. Finally, she would best respond to the belief that her opponent is a level-1 by making

her choice fixating at (x2
i,n, y

2
i,n). These reasoning processes are gone through in the mind

of a subject and may be reflected in her lookups.

For a level-k subject, we define s = k as the highest state indicating that she is con-

templating a choice by fixating at the location (xki,n, y
k
i,n), best responding to an opponent

of level-(k − 1). Imagining what an opponent of level-(k − 1) would do, state s = −(k − 1)

is defined as the second highest state when her fixation is at the location (xk−1
−i,n, y

k−1
−i,n) con-

templating her opponent’s choice by best responding to herself as a level-(k − 2).5 Lower

5We use the minus sign (−) to refer to players contemplating about their opponent. Note that the lowest

state 0 can be about one’s own or the opponent. Thus the state 0 and −0 should be distinguished. For the

ease of exposition, we do not make this distinction and call the lowest state 0 later on.
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states s = k − 2, s = −(k − 3), ..., etc. are defined similarly. Then, steps of reasoning of a

subject’s best response hierarchy of Hypothesis 2b (associated with a particular “k”) can

be expressed as “0, . . . , k−2,−(k−1), k.” We regard these (k+ 1) steps of reasoning as the

(k+ 1) states of the mind for a level-k player i. Hence, for a level-k subject, state space Ωk

consists of all thinking steps in the best response hierarchy of this particular level-k type.

Thus, Ωk = {0, ...,−(k − 3), k − 2,−(k − 1), k}.

A3.2 The Constrained Markov Transition Process

Suppose the subject is a particular level-k. Let st be the realization of the random variable

representing subject’s state at time t, drawn from Ωk = {0, ...,−(k − 3), k − 2,−(k − 1), k},
denoted as the state space. Denote the state history up to time t by St ≡ {s1, ..., st−1, st}.6

Since lookups may be serially correlated, we model this by estimating a constrained Markov

stationary transition matrix of states. Let the transition probability from state st−1 to st

be Pr(st|st−1) = πst−1→st . Thus, the state transition matrices θk for k ∈ {0, 1, 2, 3, 4} are

θ0 = (π0→0) = (1) , θ1 =

(
π0→0 π0→1

π1→0 π1→1

)
, θ2 =

 π0→0 π0→−1 0

π−1→0 π−1→−1 π−1→2

π2→0 π2→−1 π2→2

 ,

θ3 =


π0→0 π0→1 0 0

π1→0 π1→1 π1→−2 0

π−2→0 π−2→1 π−2→−2 π−2→3

π3→0 π3→1 π3→−2 π3→3

 ,

θ4 =


π0→0 π0→−1 0 0 0

π−1→0 π−1→−1 π−1→2 0 0

π2→0 π2→−1 π2→2 π2→−3 0

π−3→0 π−3→−1 π−3→2 π−3→−3 π−3→4

π4→0 π4→−1 π4→2 π4→−3 π4→4

 .

Note that elements in the upper triangle where the column number is greater than one plus

the row number is restricted to zero since we do not allow for jumps.

A3.3 From States to Lookups

For each game n, Gn =
{

(x, y)
∣∣x, y ∈ Z, |x| ≤ Xn, |y| ≤ Yn

}
is the map on which she can

fixate at. Define the state-to-lookup mapping lkn : Ωk → Gn which assigns each state s a

6In the experiment, subjects could look at the entire computer screen. Here, we only consider lookups

that fall on the grid map and drop the rest.
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corresponding lookup location on the map Gn according to the level-k model. The lookup

sequence in trial n is a time series over t = 1, ..., Tn where Tn is the number of her lookups

in this game n. Because of the logit error, a level-k subject may not look at a location with

certainty. Therefore, at the t-th lookup, let the random variable Rt
n be the probabilistic

lookup location in Gn and its realization be rtn. Denote the lookup history up to time t by

Rt
n ≡ {r1

n, . . . , r
t−1
n , rtn}.

Conditional on st, the probability distribution of a level-k subject’s probabilistic lookup

Rt
n is assumed to follow a logit error quantal response model (centered at lkn(st)), indepen-

dent of lookup history Rt−1
n . In other words,

Pr(Rt
n = rtn|st,Rt−1

n ) =
exp

(
−λk

∥∥rtn − lkn(st)
∥∥)∑

g∈Gn

exp (−λk ‖g − lkn(st)‖)
. (4)

where λk ∈ [0,∞) is the precision parameter. If λk = 0, the subject randomly looks at

locations in Gn with equal probability. As λk →∞, her lookups concentrate on the lookup

location lkn(st) predicted by the state st of a level-k.

Combining the state transition matrix and the logit error, we can calculate the proba-

bility of observing lookup rtn conditional on past lookup history Rt−1
n :

Pr(Rt
n = rtn|Rt−1

n ) =
∑
st∈Ωk

Pr(st|Rt−1
n ) · Pr(Rt

n = rtn|st,Rt−1
n ) (5)

where

Pr(st|Rt−1
n ) =

∑
st−1∈Ωk

Pr(st−1|Rt−1
n ) · Pr(st|St−1 = st−1,Rt−1

n ) (6)

=
∑

st−1∈Ωk

Pr(st−1|Rt−1
n ) · πst−1→st

=
∑

st−1∈Ωk

Pr(st−1|Rt−2
n ) Pr(Rt−1

n = rt−1
n |st−1,Rt−2

n )

Pr(Rt−1
n = rt−1

n |Rt−2
n )

· πst−1→st . (7)

The second equality in equation (7) follows since according to the Markov property, st−1

is sufficient to predict st. Note that equation (7) depends on the Markov transition matrix.

Meanwhile, the second term on the right hand side of equation (5) (Pr(Rt
n = rtn|st,Rt−1

n ))

depends on the logit error. Notice that all the terms on the last line of equation (7) are

now expressed with the time index moving backwards by one period. Hence, for a given

game n, coupled with the initial distribution of states, the joint density of a level-k subject’s

empirical lookups, denoted by

fkn(r1
n, ..., r

Tn−1
n , rTnn ) ≡ Pr(r1

n, ..., r
Tn−1
n , rTnn )

= Pr(r1
n) Pr(r2

n|r1
n) Pr(r3

n|r1
n, r

2
n)...Pr(rTnn |r1

n, r
2
n, ..., r

Tn−1
n ), (8)
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can be derived.7 The log likelihood over all 24 trials is thus

L(λk, θk) = ln

[
24∏
n=1

fkn(r1
n, ..., r

Tn−1
n , rTnn )

]
. (9)

Since level-k reasoning starts from the lowest state (here state 0), we assume this initial

distribution of states degenerates to a mass point at the lowest state corresponding to

level-0 (of herself if k is even and of her opponent if k is odd). With this assumption, we

estimate the precision parameter λk and the constrained Markov transition matrix θk using

maximum likelihood estimation for each k, and classify subjects into the particular level-k

type which has the largest likelihood.

A3.4 Initial Distribution of States

We start with the assumption that Pr(s0) = 1 when the initial state s0 is 0 and zero

otherwise. Then we derive the following step by step. First, for Pr(s0) given by the ini-

tial distribution of states and Pr(s1|s0) given by the Markov transition matrix, Pr(s1) =∑
s0∈Ωk

[Pr(s0) Pr(s1|s0)]. Second, Pr(r1
n) =

∑
s1∈Ωk

[
Pr(s1) Pr(r1

n|s1)
]

for Pr(s1) given by the

first step and Pr(r1
n|s1) given by the logit error.

Third, we update the state by the current lookup or Pr(s1|r1
n) =

Pr(s1) Pr(r1
n|s1)

Pr(r1
n)

where

terms in the numerator and denominator are derived in the second step.

Fourth, for Pr(s1|r1
n) derived in the third step and Pr(s2|s1) given by the Markov tran-

sition matrix, we derive the next state from the current lookup, or

Pr(s2|r1
n) =

∑
s1∈Ωk

[
Pr(s1|r1

n) Pr(s2|r1
n, s1)

]
=
∑
s1∈Ωk

[
Pr(s1|r1

n) Pr(s2|s1)
]

where the second equality follows because by Markov, the transition to the next step

only depends on the current state. Fifth, for Pr(s2|r1
n) given by the fourth step and

Pr(r2
n|r1

n, s2) = Pr(r2
n|s2) given by the logit error, we derive the next lookup from the

current lookup or Pr(r2
n|r1

n) =
∑
s2∈Ωk

[
Pr(s2|r1

n) Pr(r2
n|r1

n, s2)
]
. Sixth, as in the third step, we

update the state by the lookups up to now or Pr(s2|r1
n, r

2
n) =

Pr(s2|r1
n) Pr(r2

n|r1
n, s2)

Pr(r2
n|r1

n)
where

terms in the numerator and the denominator are both derived in the fifth step. Seventh,

as in the fourth step, for Pr(s2|r1
n, r

2
n) derived in the sixth step and Pr(s3|s2) given by the

Markov transition matrix, we derive the next state from the lookups up to now, or

Pr(s3|r1
n, r

2
n) =

∑
s2∈Ωk

[
Pr(s2|r1

n, r
2
n) Pr(s3|r1

n, r
2
n, s2)

]
=
∑
s2∈Ωk

[
Pr(s2|r1

n, r
2
n) Pr(s3|s2)

]
.

7See Appendix A3.4 for a formal derivation.
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Eighth, as in the fifth step, for Pr(s3|r1
n, r

2
n) given by the seventh step and Pr(r3

n|r1
n, r

2
n, s3) =

Pr(r3
n|s3) given by the logit error, we derive the next lookup from the lookups up to now or

Pr(r3
n|r1

n, r
2
n) =

∑
s3∈Ωk

[
Pr(s3|r1

n, r
2
n) Pr(r3

n|r1
n, r

2
n, s3)

]
..

Continuing in this fashion and multiplying altogether the second step, the fifth step,

the eighth step, and so on, we derive Pr(r1
n) Pr(r2

n|r1
n) Pr(r3

n|r1
n, r

2
n)...Pr(rTnn |r1

n, r
2
n, ..., r

Tn−1
n )

or (8). Regarding the assumption on the initial state, alternatively, we could follow the

tradition in the Markov literature and assume uniform priors, or Pr(s0) = 1
k+1

for all

s0 ∈ Ωk. But it is not clear how subjects could figure out locations of higher states without

even actually going through the best response hierarchy. This is the reason why we employ

the current assumption that Pr(s0) = 1 when the initial state s0 is 0 and zero otherwise.

A4 Vuong’s Test for Non-Nested But Overlapping Models

Let Lk∗ be the type having the largest likelihood with corresponding parameters (λk∗ , θk∗).

Let Lka be an alternative type with corresponding parameters (λka , θka). We choose a

critical value from the standardized normal distribution to test if these two competing

types, Lk∗ and Lka, are equally good at explaining the true data, or one of them is a better

model. If the absolute value of the test statistic is no larger than the critical value, we

conclude that Lk∗ and Lka are equally good at explaining the true data. If the test statistic

is higher than the critical value, we conclude that Lk∗ is a better model than Lka. Lastly, if

the test statistic is less than the negative of the critical value, then we conclude that Lka is a

better model than Lk∗. Equation (9) can be rearranged as L(λk, θk) =
24∑
n=1

lrn(λk, θk) where

lrn(λk, θk) = ln fkn(r1
n, . . . , r

Tn−1
n , rTnn ). This indicates that we assume subject’s lookups are

independent across trials and follow the same Markov switching process, although each

trial’s lookups sequence may be serially-correlated.

To perform Vuong’s test, we construct the log-likelihood ratio trial-by-trial:

mn = lrn(λk∗ , θk∗)− lrn(λka , θka) for trial n = 1, . . . , 24.

Letm = 1
N

∑N
n=1mn (where in our experimentN = 24). Vuong (1989) proposes a sequential

procedure (p.321) for overlapping models. Its general result describes the behavior of

V =

√
N
[

1
N

∑N
n=1mn

]
√

1
N

∑N
n=1(mn −m)2

,

when the sample variance ω2
N = 1

N

∑N
n=1(mn −m)2 is significantly different from zero (the

variance test). If the variance test is passed (which is the case for all of our subjects), V

has the property that (under standard assumptions):

12



(V1) If Lk∗ and Lka are equivalently good at fitting the data, V D
−→N(0, 1).

(V2) If Lk∗ is better than Lka at fitting the data, V A.S.
−→∞.

(V3) If Lka is better than Lk∗ at fitting the data, V A.S.
−→ −∞.

Hence, Vuong’s test is performed by first conducting the variance test, then calculating V

and applying the above three cases depending on whether V < −c, |V | < c, or V > c.

(c = 1.96 for p-value = 0.05.) Notice that this is the generalized version of the well-known

“nested” Vuong’s test, which does not require the variance test prior to calculating V .

Note that in our case Lk∗ is the type with the largest likelihood based on lookups, and

the alternative type Lka is the type having the next largest likelihood among all lower level

types. Hence, either (V2) applies so that Lk∗ is a better model than Lka, or (V1) applies

so that Lk∗ and Lka are equally good (and we conservatively classify the subject as the

second largest lower type Lka). (V3) does not apply since V > 0 by construct.

A5 Level-k Classification Based on Final Choices

Like Costa-Gomes & Crawford (2006), we classify subjects into various behavioral types

based on their final choices using maximum likelihood estimation. In addition, a bootstrap

procedure is employed to evaluate its robustness. Let all possible level-k types be k =

1, . . . , K and each subject goes through trial n = 1, . . . , 24. For a given trial n, according

to Hypothesis 1, a level-k subject i’s final choice is denoted as ckn =
(
xki,n, y

k
i,n

)
∈ Gn where

Gn =
{

(x, y)
∣∣x ∈ {−Xn,−Xn + 1, . . . , Xn}, y ∈ {−Yn,−Yn + 1, . . . , Yn}

}
is the finite choice

set for trial n. |Gn| = (2X + 1)(2Y + 1) is the number of elements in Gn, which depends

on the map size (X, Y ) of the game in that particular trial.8 For any two elements of Gn,

g1 = (x1, y1) and g2 = (x2, y2), their distance is defined as ||g1 − g2|| = |x1 − x2|+ |y1 − y2|,
i.e. the “steps” on the map (the sum of vertical and horizontal distance) between g1 and

g2. Then, if a subject chooses a location gn = (xi,n, yi,n) in trial n, the distance between her

choice gn and the choice of a level-k subject ckn is ||gn − ckn|| = |xi,n − xki,n|+ |yi,n − yki,n|. In

a logit error model with precision λk, the probability of observing gn is9

dk(gn) =
exp

(
−λk × ||gn − ckn||

)∑
g∈Gn

exp
(
−λk × ||g − ckn||

) .
8For instance, as shown in Figure I, the grid map of Game 16 (as listed in Table I) has a choice set of

Gn =
{

(x, y)
∣∣x ∈ {−3,−2, . . . , 3}, y ∈ {−3,−2, . . . , 3}

}
consisting of the 7× 7 = 49 locations.

9Since we do not have a large choice set as in Costa-Gomes & Crawford (2006), we employ a “logit”

specification instead of a “spike-logit” specification to describe the error structure of subjects’ choices.
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When λk → 0, dk(gn) = 1
|Gn| and the subject randomly chooses from the choice set Gn. As

λk →∞, dk(gn) =

{
1, if gn = ckn
0, if gn 6= ckn

and the choice of the subject approaches to the level-k

choice ckn. The log likelihood over all trials with choices (g1, g2, . . . , g24) trial-by-trial can

then be expressed as ln
24∏
n=1

dk(gn).

For each k, we estimate the precision parameter λk by fitting the data with the logit

error model to maximize empirical likelihood. Then we choose the k which maximizes the

empirical likelihood and classify the subject into this particular level-k type. We consider all

the level-k types separable in our games: L0, L1, L2, L3, and EQ. Results are reported in

column (B) of Table III. Among the 17 subjects, there are two L0, four L1, four L2, four L3,

and three EQ. The average number of thinking steps is 2.12, similar to the lookup-based

classifications.10

One possible concern is whether some subjects do not follow any of the pre-specified

level-k types, so the model is misspecified. To incorporate all empirically possible behavioral

types, we follow Costa-Gomes & Crawford (2006) and perform the pseudotype test by

including 17 pseudotypes, each constructed from one of our subject’s choices in 24 trials.

This is to see whether there are clusters of subjects whose choices resemble each other’s

and thus predict other’s choices in the cluster better than the pre-specified level-k types.

We report results of the pseudotype test in Supplementary Table 1(a) where pseudo-i is the

pseudotype constructed from subject i. We find that two subjects (subject 3 and subject

17) have likelihoods for each other’s pseudotype higher than all other types. So, based on

the same criteria of Costa-Gomes & Crawford (2006), these two subjects could be classified

as a cluster (pseudo-17). In other words, there may be a cluster of pseudo-17 type subjects

(subjects 3 and 17) whose behaviors are not explained well by the predefined level-k types.

Despite of this, there are still 15 subjects out of 17 who can be classified into level-k

types, comparable to Costa-Gomes & Crawford (2006), who find 12.5% (11/88) of their

subjects fail the pseudotype test and could be classified as 5 different clusters. Table III

lists the classification with and without pseudotypes in columns (C) and (B) respectively.

The distribution of level-k types in column (C) of Table III does not change much even

if we include pseudotypes, having two L0, three L1, four L2, three L3, and three EQ.

The average of thinking steps is 2.13, nearly identical to that without pseudotypes.11 This

suggests that in our games, the level-k classification is quite robust to empirically omitted

types that explain more than one subject. In other words, Hypothesis 1 is confirmed is the

10We treat the EQ type as having 4 thinking steps in calculating the average number of thinking steps.
11In calculating the average number of thinking steps, we ignore the two pseudo-17 subjects. For these

two pseudo-17 subjects, one is re-classified as L1, and the other L3 when pseudotypes are not included.
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sense that most subjects indeed follow the prediction of a particular level-k type for choices,

and few alternative models can explain the behavior of more than one subject.12

In addition to the original presentation using a two-dimensional grid map (Figure II),

subjects also played the same game as two one-dimensional choices chosen separately (Sup-

plementary Figure 25). Half of the subjects are shown the original presentation first in

trials 1-24 and the alternative presentation later in trials 25-48, while the rest are shown

the alternative first (trials 1-24) and original later (trials 25-48). None of the subjects two

sets of final choices differ significantly.

A6 Raw Lookup Data

The eyetracker’s analysis software (Data Viewer, SR-Research) is capable of reading in the

raw lookup data and provides animated videos of entire lookup sequences trial-by-trial.

Though it is difficult to quantify these videos, we draw insights from these videos, and base

subsequent lookup analyses on these insights to gain intuition about possible alternative

reasoning processes.

We attempt to understand what viewing the animated videos of lookups and subsequent

analysis reveal beyond final choices. To do so, we focus primarily on the seven subjects whose

lookup-based types differ from their choice-based types. We discuss briefly for those whose

lookup-based types and choice-based types are the same at the end. Though the analysis

is preliminary and highly conjectural, we use lookups to identify reasoning of pseudotypes

(subject 3) and various ways subjects might have used to simplify the reasoning process. The

simplifications include breaking the spatial beauty contest games on two-dimensional grid

maps into two one-dimensional choices to reason one dimension by one dimension (subject

8), adopting heuristics such as choosing-the-corner (subject 14), and utilizing a short-cut

by summing up the targets of self and opponent to combine two levels of reasoning into

one step (subjects 11 and 15). Finally, some subjects seem to be jumping between related

levels (subjects 6) or skipping reasoning in some trials (subject 9).

To begin with, subject 3 is grouped with subject 17 to form a distinct pseudotype in the

pseudotype test. From the lookup videos of subject 3, we suspect this subject used the top-

left corner (instead of the center) as the starting point and perform level-k reasoning. To

verify this, we calculate her LookupScore for the union of Hit areas for various level-k types

using the top-left corner as the starting point. In Supplementary Table 2, the LookupScore

for this new class of level-k types is much higher than that of the level-k types using the

12Given that we have only seventeen subjects, it is true that we cannot rule out the possibility that our

small pool of subjects did not capture all possible behavioral types. However, Costa-Gomes & Crawford

(2006) also find few omitted types in their pool of 88 subjects.
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center as the starting point (0.31 compared to −0.01). In fact, all original level-k types

have LookupScores close to zero (ranging from −0.05 to 0.03), implying they are not that

different from uniformly random scanning.13

To see how this lookup result translates into final choices, we estimate subjects 3’s level-

k type using final choices by including level-k types starting from the top-left corner in

addition to level-k types starting from the center. We report in Supplementary Table 3

that level-1 starting from the top-left corner yields the largest likelihood (logL = −69.67).

In fact, the other pseudotype (subject 17) is also classified as level-1 starting from the top-

left corner with the largest likelihood (logL = −65.84) when these alternative level-k types

are included.14

The level-k model will have the most power when level-0 behavior is correctly specified.

Even though the center may arguably be the most natural candidate for a level-0 belief in

our design, by directly observing where a subject focuses her attention on at the beginning of

the reasoning process, we could examine whether this is indeed the case. Alternatively one

may allow many anchoring level-0 types and see which fits the data the best. However, doing

so will sacrifice parsimony of the model and may result in overfitting of data. Observing

where a subject focuses on at the beginning of a trial may be an useful alternative to help

identify her level-0 belief.

Secondly, choice-based model classifies subject 8 robustly as an equilibrium type with

zero misclassification in the bootstrap, even though lookup-based classification suggests

level-3. How does she figure out the equilibrium choices so well? Lookup videos suggests

that instead of conducting reasoning for both dimensions at the same time, she simplified

the task by first reasoning regarding the horizontal dimension on the top row of the grid

map, and then reasoned about the vertical dimension on the column corresponding to her

horizontal final choice. Indeed, in Supplementary Table 2 her LookupScore for the union

of the top row and the corresponding horizontal choice column is very high (0.58), much

13The other pseudotype subject 17 yields similar results: When we calculate her LookupScore for the

union of Hit areas for various level-k types using the top-left corner as the starting point, we obtain

a LookupScore of 0.26, which is a large difference between lookup time and Hit area. In fact, this is

much higher than the LookupScore calculated for individual Hit areas for various level-k types who start

reasoning from the center, as well as the union of these Hit areas, which are all close to zero (ranging from

−0.11 to 0.03 in column 2 to 7 of Supplementary Table 2).
14Interestingly, subject 3 had several exact hits for level-3 starting from the top-left corner, all in the hard

games. In fact, level-3 starting from the top-left corner yields the largest likelihood (logL = −19.02) if we

consider only hard games. If one considers only easy games, level-1 starting from the top-left corner yields

the largest likelihood (logL = −26.64). This explains why other level-k types starting from the top-left

corner might also explain choice data well (for instance logL = −72.48 for level-2 and logL = −74.84 for

level-3).
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higher than that of any other level-k type (ranging from −0.06 to 0.13). She seemed

able to calculate the equilibrium as if following the textbook instruction, but she did this

by looking at the two dimensions separately. By utilizing lookups, one could potentially

identify alternative reasoning processes that lead to the same equilibrium behavior.

Thirdly, subject 14 is classified as an equilibrium type based on final choices, even though

lookup-based classification suggests only level-1. In lookup videos, she had very few lookups

and quickly chose a corner location. This leads us to suspect she is performing some kind

of corner heuristic, which the hard games were designed to separate (from truly equilibrium

behavior) because equilibrium predictions in hard games do not coincide with the corner.

Her average number of lookups on the map per trial is only 3.92 (3.69), much smaller than

the average of 23.61 (20.09) for all subjects (s.d. in parenthesis). In fact, her maximal

number of lookups in a trial is only 15. Looking into her choices trial-by-trial, we find

that except for the last two trials, subject 14’s final choices always coincide with either the

corner of equilibrium (when the game is easy) or the corner closest to her own target (when

the game is hard). She might have intuitively felt that choosing the corner is a good idea.

But like most intuitive reasoning, it serves the purpose well in simple situations but fails in

more complicated ones. In fact, choosing the corner does not help her achieve equilibrium

in hard games.15 The small number of lookups directly indicates some form of heuristic

reasoning without pre-specifying this possibility. The same heuristic could potentially be

generalized to other games as well.16

Fourth, subject 11 and subject 15 are classified as level-2 and level-3, respectively, using

final choices. From their lookup videos, we suspect they might simplify reasoning in two

ways. First, like subject 8, they seemed to first perform reasoning regarding the horizontal

dimension, and then reasoned about the vertical dimension.17 Second, in each dimension,

they took a short-cut in hard games. They did so by reasoning for self and opponent jointly

instead of reasoning for self in one step and for opponent in another step as level-k model

15Taking Game 16 illustrated in Figure I as an example, player 1’s target is (4,−2), or “right 4, below 2.”

The bottom-right corner is closest to her own target, while the top-right corner is closest to equilibrium (E1

and E2). When we calculate subject 14’s LookupScore for the heuristic of jumping to the corner closest to

her own target, we find that in hard games, it is very high (0.60), and much higher than the LookupsScore

for the heuristic of jumping to the corner closest to equilibrium (−0.02). Thus the heuristic does not help

her find equilibrium. In easy games, the heuristic serves her well. Her LookupsScore for the heuristic of

jumping to the corner of equilibrium is very high (0.76).
16For instance, in the two-person guessing game of Costa-Gomes & Crawford (2006), the corner heuristic

corresponds to “choosing either the upper or lower bound depending solely on α · β > 1 or < 1.”
17This can be seen from Supplementary Table 2. Looking through all possible combinations of any single

row and any single column, the maximal LookupScore on a single row and a single column is 0.60 for

subject 11 and 0.63 for subject 15, much higher from the LookupScore for various level-k types.
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assumes. In particular, we speculate subject 11 added up targets of self and opponent for

each dimension, and jumped directly to the short-cut level-2 location, instead of going from

level-0 location to opponent’s level-1 location and then to own level-2 location. On the other

hand, after performing the first level of reasoning to reach level-1, subject 15 seemed to add

up targets of self and opponent for each dimension and jumped directly to the short-cut

level-3 location, instead of going from own level-1 to opponent’s level-2 and back to own

level-3. A key feature of their lookups is they are more concentrated than what a full-fledged

level-k reasoning would imply. For instance, if on the horizontal dimension own target is

one step to the left and opponent’s target is four steps to the right, a full-fledged level-2

subject will first go rightward by four steps and then go leftward by one step. Taking a

short-cut instead implies summing up one step to the left and four steps to the right to get

three steps to the right. Thus a subject could jump to three steps to the right without first

going rightward and then leftward.18 Indeed, when subject 11 is playing the 12 hard games,

the average lookup time spent on the short-cut path (Lookup time normalized by Hit area

size) is 5.9 times of random lookup, but only 4.3 times on the standard level-2 path. See

game-by-game results of subject 11 shown in Supplementary Figure 26. Similarly, when

subject 15 is playing the 12 hard games, the average lookup time spent on the short-cut

path is 5.4 times of random lookup, but only 4.8 times on the standard level-3 path. This is

illustrated in Supplementary Figure 27. Mann-Whitney-Wilcoxon test indicates significant

difference between the short-cut path and the corresponding level-k path for both subjects

(p < 0.01) when comparing average lookup time game-by-game.19 Short-cutting may be

one way to achieve high levels of reasoning without going through the sophistication these

levels may have required, which results in final choices very similar to standard level-k types.

Thus it is hard to identify short-cutting by final choices alone.

18Taking this short-cut implies jumping only in hard games. In easy games there is always a player

whose target is zero in that dimension, hence taking this short-cut does not imply jumping and cannot be

distinguished from a full-fledged level-k reasoning. For instance, if on the horizontal dimension own target

is one step to the left and opponent’s target is zero, a full-fledged level-2 subject will first stay at the center

and then go leftward by one step. Taking a short cut instead implies summing up one step to the left and

zero step to get one step to the left as well.
19The reason we report lookup time normalized by hit area size instead of LookupScore is because

LookupScore is not informative here. Recall LookupScore of any area is positive as long as subjects scan

over that area more than uniform scanning would imply. Hence even if lookups are more concentrated and

fall on a subset S of what a full-fledged level-k reasoning would imply (call this full-fledged area F ), as long

as subjects scan over the complement (F\S) more than uniform scanning would imply, LookupScore of

the complement (F\S) will be positive, driving a higher LookupScore for the area of a full-fledged level-k

reasoning (F ). This is based on the observation that LookupScore of any area F equals that of a subset S

and the complement F\S since LookupScore is simply lookup time minus hit area size and thus additive.
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Fifth, subject 6 is classified as a level-2 based on final choices, even though lookup-

based classification suggests equilibrium. From her videos, we suspect she is going back

and forth between being level-2 and level-4 (which coincides with equilibrium most of the

time). Indeed, calculating the LookupScore trial-by-trial, we find her having the highest

LookupScore at level-1 at the beginning, but eventually switching and alternating between

level-2 and level-4, yielding LookupScore of 0.52 and 0.64 in the last 16 trials for the two lev-

els, respectively. Supplementary Figure 28 plots the 3-trial moving average of LookupScore

for various level-k types, which shows the same trend.

Finally, subject 9 is classified as level-0 based on final choices, even though lookup

classification suggests level-2. In the lookup videos, she seemed to have “given up” reasoning

and chose the center location several times toward the end of the experiment. Indeed,

subject 9 had 3 trials with only 3 lookups and 7 trials with 13 lookups or less. In most of

these trials she chose the center. Excluding the 3 trials with the least lookups (1/8 of total

trials), we reclassify her as level-2 based on the remaining 21 final choices, consistent with

the lookup classification (logL = −80.89).20 If indeed a subject skips reasoning in some

trials maybe due to exhaustion, without lookups, one could not have identified and exclude

these “lazy” trials in which she skips reasoning.

For the remaining ten subjects whose lookup-based types and choice-based types are the

same, though we also notice some similar features as above, however, they seem to exhibit

these features in a more subtle way. However, we do notice two which we can quantify.

First, two subjects (subjects 1 and 10) can be called the textbook literal level-k type.

Their videos indicate that they follow the best-response hierarchy almost perfectly. In fact,

column 4 of Table VI reports that their estimated logit precision parameter λ has a median

of 8.58 and 9.00, which is extremely high, compared with the rest who at most has a median

of 2.35.

Second, three subjects (subjects 4, 10, 12) have many trials in which they do not look

at the opponent’s goal even once. Out of 24 trials, both subjects 4 and 10 have 16 such

trials and subject 12 has 14. Since they seldom look at opponent’s goal, at most they can

be level-1. Indeed, they are all classified as level-1. We further notice that subject 4 has 10

such trials in the second half (12 trials) of the game.

A7 Trial-by-trial Level-k Lookup Estimation

We want to classify subjects into various behavioral types based on their trial-by-trial

lookups. Estimating the full-blown Markov-switching model trial-by-trial may not be pos-

sible since lookups in a single trial might be too short to identify the transition matrix. For

20Excluding the 7 trials with 13 lookups or less also classifies her as level-2 (logL = −65.55).

19



instance, an L1 Markov switching model, which consists of a two-state transition matrix,

requires at least four observations: the transitions from L0 to L0, from L0 to L1, from L1

to L0, and from L1 to L1. Hence we need at least four lookups to estimate these transi-

tions. In general, an Lk transition matrix, which consists of k + 1 states, needs at least

k + (k + 1)(k + 2)/2 observations and therefore at least k + (k + 1)(k + 2)/2 lookups to

estimate the transitions. We propose a different way to use the lookups even when they

are short (or consists of only one trial). Since an Lk player’s lookups should fall on some

particular locations if the best response hierarchy is gone through, we aim at investigating

how close the empirical lookups are to the mixture of these locations.

To illustrate our method, let’s first consider an L1 player’s lookups. In a game where

the target of an L1 player is two steps to the right of her opponent’s choice, she would

calculate her best response by counting two steps to the right from the center. Her lookups

will fall on the center, the location one step to the right of it, and the location two steps

to the right of it, which is her final choice. These three particular locations are defined as

the heatmap for an L1 player. We assume a subject looks uniformly over this particular

heatmap, but conditional on each location her lookups follow the logit error distribution

over the grid map. Since there are three locations in this heatmap, her lookup distribution

will be the mixture of these three logit error distributions.

In general, if an Lk player’s heatmap consists of m locations lk1 , ..., l
k
m, her lookup dis-

tribution will be the mixture of m logit error distributions. To be specific, her lookup Rk

is distributed according to the following distribution: For any location r ∈ G on the grid

map,

Pr
(
Rk = r

∣∣heatmap = {lk1 , ..., lkm}
)

=
1

m

m∑
j=1

(
exp(−λk × ||r − lkj ||)∑

g∈G
exp(−λk × ||g − lkj ||)

)

where λ ∈ [0,∞) is the precision parameter. In words, this is the probability of observing

the location r with m equal likely logit error distributions where each logit error distribution

is centered on one particular location in the heatmap.

We take a subject’s lookup duration heatmap as our empirical distribution, and then

classify her into the type in which the mixture of logit distribution is closest to the empirical

one. How close these two distributions are is determined by minimizing the mean absolute

difference between the mixture of the logit distribution of every level-k type and the empir-

ical duration heatmap over the precision parameter. Precisely, suppose a subject’s lookup

duration percentage on the location r ∈ G is dr, we classify this subject into level k∗ such

that:

k∗ ∈ arg min
k

[
min
λk

(∑
r∈G

∣∣∣∣∣∣dr − Pr
(
Rk = r

∣∣heatmap = {lk1 , ..., lkm}
)∣∣∣∣∣∣)]
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In words, for each location r, we use the lookup duration percentage on r as the empirical

probability of observing r and see whether this empirical probability is close to the predicted

probability Pr
(
Rk = r

∣∣heatmap = {lk1 , ..., lkm}
)
.

We do this for each trial of each subject and report the results in Supplementary Table

1(b). Hence a subject could be classified into different Lk types in different trials.
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EXPERIMENT INSTRUCTIONS 

 

The experiment you are participating in consists of 48 rounds.  At the end, you will be paid 

the amount you have earned from THREE randomly drawn rounds, plus a $20 show-up 

fee.  Everybody will be paid in private, and you are under no obligation to tell others how 

much you earned.  During the experiment all the earnings are denominated in FRANCS.  

Your dollar earnings are determined by the FRANC/$ exchange rate: 3 FRANCS = $1.   

 

You will wear an eye-tracking device which will track your eye movements.  Please make 

sure you are not wearing contact lenses.  You will be seated in front of the computer screen, 

showing the earnings tables, and make your choice by looking at the boxes on the screen.  

When looking at a box, it will light up, and will become your choice of action if you hit “space”.   

 

At the beginning of the session, the experimenter will adjust and calibrate the eye-tracker.  

To perform a calibration, look at the center of the screen (black dot) and hit space once.  

Then, the dot will disappear and move to a new location.  Follow the black dot with your 

eyes and fixate at the new location until it disappears again.  This procedure will be repeated 

until the dot returns to the center.  (The same procedure will be repeated to validate the 

calibration.)  At the start of each round, you will perform a self-correction by looking at the 

center of the screen (black dot) and hit the space bar.   

 

 
Roles 

 

You and the other participant are paired to form a group, in which one participant will be 

member A, and the other member B.  The roles of member A and B will be decided 

randomly by a die roll and you will maintain the same roles throughout the experiment.   

 

The Decision 

 

There are 3 practice rounds and 48 real rounds.  In each round, each of you simultaneously 

chooses a location (X, Y) on a given map, and your earnings are determined by your location 

and the other participant’s location.  In particular, each of you will have a “goal” which 

(together with the other participant’s location) determines your “target location” for each 

round.  Then, your earnings will be determined by how close you hit your target location.  

 

 

For example, suppose the map consists of X=1~5 and Y=1~7, and your goals are: 

 



Member A  Member B 

LEFT 2    BELOW 4 

 

(This means that member A’s target location is to choose two blocks to the LEFT of 

member B’s location, while member B’s target location is to choose four blocks below 

member A’s location.) 

 

Suppose member A’s location is (Xa, Ya), and member B’s location is (Xb, Yb).  The target 

location for member A is (Xb – 2, Yb), and the target location of member B is (Xa, Ya + 4).  

The earnings for member A is (in FRANCS): 

 

20 – | Xa – (Xb - 2) | – | Ya – (Yb+ 0) | 

 

While the earnings for member B is (in FRANCS): 

 

20 – | Xb – (Xa + 0) | – | Yb – (Ya + 4) | 

 

Note that the target location may be outside the map so you might not achieve 20.  Also, 

note that the X’s increase from left to right, and the Y’s increase from top to bottom. 

 

 
In each round, you will make a similar decision with different goals on a different map, 

which is shown to both sides.  However, no feedback will be provided after each round. 

In each round, the goals of member A and B will be shown on the top-left and top-right 

corner.  When you look at a location (X, Y), it will light up with a red frame. 

 



 
 

When looking at the box you want to choose, press “space” to make your choice.  Then, the 

box will become red, and you will be asked “Are you sure?”  Look at the bottom-left (YES) 

to confirm, or the bottom-right (NO) to start over again.  

 



 
 

QUIZ 

 

In order to make sure you understand how your earnings are determined, we will now 

preform a quiz.  Suppose you are member B, and the range of locations are X=1~5 and 

Y=1~7. Please write down your location choice. Then, the experimenter will tell you the 

(hypothetical) other’s location choice, so you may calculate earnings for each member. 

 

Member A  Member B 

LEFT 2    BELOW 4 

 

Member B’s location choice:  X=_________ __________,  Y=__________________ 

 

Member A’s location choice:  X=___________________,  Y=__________________ 

 

Member B’s target location: X=___________________,  Y=__________________ 

 

Member A’s target location: X=___________________,  Y=__________________ 

 

Member B’s earning: 20 – _________- _________=_________ 

 

Member A’s earning: 20 – _________ - _________=_________ 

 

Please tell the experimenter if you have any concerns.  Your payments will be rounded 

up to the next dollar.  Thank you for your participation!



 

 



 
































