
Assignment 3

Due on June 5, 2009

For a finite set S, write #S = the cardinality of S. Let O = the ring of algebraic integers
of C. For a number field K ⊂ C, write OK = O ∩ K; [K : Q] = r + 2s, where r = # of real
embeddings of K.

1. ([1, Ex 5.43]) Let K be a normal extension of Q with Galois group G.

(a) Prove that K has degree 1 or 2 over K ∩ R.

(b) Prove that K ∩ R is a normal extension of Q iff K ∩ R has no non-real embeddings
in C.

(c) Let U be the group of units in O ∩ K. Prove that U/(U ∩ R) is finite iff complex
conjugation is in the center of G.

2. ([1, Ex 5.48]) For m ≥ 3, set ω = exp(2πi
m ), α = exp(πim ).

(a) Show that

1− ωk = −2iαk · sin
(
kπ

m

)
for all k ∈ Z; conclude that

1− ωk

1− ω
= αk−1 · sin(kπ/m)

sin(π/m)
.

(b) Show that if k and m are not both even, then αk−1 = ±ωh for some h ∈ Z.

(c) Show that if k is relatively prime to m then

uk =
sin(kπ/m)
sin(π/m)

is a unit in Z[ω].

3. ([1, Ex 6.4]) Let K be a number field. An element α ∈ OK is called totally positive iff
σ(α) > 0 for every real embedding σ : K → R. Let O+

K denote the set of all totally positive
numbers of OK . Define a relation ∼̊ on the nonzero ideals of OK as follows:

I ∼̊ J iff αI = βJ for some α, β ∈ O+
K .

(a) Prove that this is an equivalent relation.

(b) Prove that the equivalent classes under this relation form a group G+ in which the
identity element is the class consisting of all principal ideals (α), α ∈ O+

K . (Use the
fact that the ordinary ideal classes from a group. Notice that α2 ∈ O+

K for every
nonzero α ∈ OK .)

(c) Show that there is a group-homomorphism f : G+ → G, where G is the ideal class
group of OK .
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(d) Prove that the kernel of f has at most 2r elements, where r is the number of embed-
dings K → R. Conclude that G+ is finite.

4. ([1, Ex 6.5]) Continuing the notation of exercise 3, assume that K has at least one real
embedding σ : K → R. Fix this σ and let U be the group of units in OK .

(a) What can you say about the roots of 1 in OK?

(b) Show that U = {±1}×V , where V consists of those u ∈ U such that σ(u) > 0. Using
[1, Thm 38], prove that V is a free abelian group of rank r + s− 1.

(c) Let U+ = U ∩ O+
K . Then U+ ⊂ V , and clearly U+ contains V 2 = {v2 : v ∈ V }. Use

this to prove that U+ is a free abelian group of rank r + s− 1. (See [1, Ex 2.24].)

5. ([1, Ex 6.10]) Fix a nonzero ideal M in OK and define a relation ∼̊M on the set of ideals
of OK which are relative prime to M , as follows:

I ∼̊M J iff αI = βJ for some α, β ∈ O+
K , α ≡ β ≡ 1 (mod M).

(a) Prove that this is an equivalent relation.

(b) Prove that the equivalent classes from a group G+
M in which the identity element

is the class consisting of all principal ideals (α), α ∈ O+
K , α ≡ 1 (mod M). (Hint:

To show that a given class has an inverse, fix I in the class and use the Chinese
Remainder Theorem to obtain α ∈ I, α ≡ 1 (mod M).) The equivalence classes are
called ray classes and G+

M is called a ray class group.

(c) Show that there is a group-homomorphism f : G+
M → G+, where G+ is as in Ex 3.

(d) Prove that the kernel of f has at most #(OK/M)× elements, where (OK/M)× is the
multiplicative group of the finite ring OK/M . Conclude that G+

M is finite.

6. ([1, Ex 7.8]) Use [1, Cor 2 of Thm 43] to determine the density of the set of primes p ∈ Z
such that

(a) 2 is a square mod p;

(b) 2 is a cube mod p;

(c) 2 is a fourth power mod p.

(Note: If p 6≡ 1 (mod 3) then everything is a cube mod p; however x3 − 2 does not split
completely mod p unless p ≡ 1 (mod 3) and 2 is a cube mod p. Similar remarks hold for
fourth powers.)

7. ([1, Ex 7.11]) Let L be a normal extension of K with cyclic Galois group. Prove that
infinitely many primes of K remain prime in L. What is the density of the set of primes
of K which split into a given number of primes in L?
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