Assignment 3

Due on June 5, 2009

For a finite set S, write $\# S=$ the cardinality of S. Let $\mathcal{O}=$ the ring of algebraic integers of \mathbb{C}. For a number field $K \subset \mathbb{C}$, write $\mathcal{O}_{K}=\mathcal{O} \cap K ;[K: \mathbb{Q}]=r+2 s$, where $r=\#$ of real embeddings of K.

1. ([1, Ex 5.43]) Let K be a normal extension of \mathbb{Q} with Galois group G.
(a) Prove that K has degree 1 or 2 over $K \cap \mathbb{R}$.
(b) Prove that $K \cap \mathbb{R}$ is a normal extension of \mathbb{Q} iff $K \cap \mathbb{R}$ has no non-real embeddings in \mathbb{C}.
(c) Let U be the group of units in $\mathcal{O} \cap K$. Prove that $U /(U \cap \mathbb{R})$ is finite iff complex conjugation is in the center of G.
2. ([1, Ex 5.48]) For $m \geq 3$, set $\omega=\exp \left(\frac{2 \pi i}{m}\right), \alpha=\exp \left(\frac{\pi i}{m}\right)$.
(a) Show that

$$
1-\omega^{k}=-2 i \alpha^{k} \cdot \sin \left(\frac{k \pi}{m}\right)
$$

for all $k \in \mathbb{Z}$; conclude that

$$
\frac{1-\omega^{k}}{1-\omega}=\alpha^{k-1} \cdot \frac{\sin (k \pi / m)}{\sin (\pi / m)} .
$$

(b) Show that if k and m are not both even, then $\alpha^{k-1}= \pm \omega^{h}$ for some $h \in \mathbb{Z}$.
(c) Show that if k is relatively prime to m then

$$
u_{k}=\frac{\sin (k \pi / m)}{\sin (\pi / m)}
$$

is a unit in $\mathbb{Z}[\omega]$.
3. ([1, Ex 6.4]) Let K be a number field. An element $\alpha \in \mathcal{O}_{K}$ is called totally positive iff $\sigma(\alpha)>0$ for every real embedding $\sigma: K \rightarrow \mathbb{R}$. Let \mathcal{O}_{K}^{+}denote the set of all totally positive numbers of \mathcal{O}_{K}. Define a relation $\dot{\sim}$ on the nonzero ideals of \mathcal{O}_{K} as follows:

$$
I \stackrel{\sim}{\sim} \text { iff } \alpha I=\beta J \text { for some } \alpha, \beta \in \mathcal{O}_{K}^{+} .
$$

(a) Prove that this is an equivalent relation.
(b) Prove that the equivalent classes under this relation form a group G^{+}in which the identity element is the class consisting of all principal ideals $(\alpha), \alpha \in \mathcal{O}_{K}^{+}$. (Use the fact that the ordinary ideal classes from a group. Notice that $\alpha^{2} \in \mathcal{O}_{K}^{+}$for every nonzero $\alpha \in \mathcal{O}_{K}$.)
(c) Show that there is a group-homomorphism $f: G^{+} \rightarrow G$, where G is the ideal class group of \mathcal{O}_{K}.
(d) Prove that the kernel of f has at most 2^{r} elements, where r is the number of embeddings $K \rightarrow \mathbb{R}$. Conclude that G^{+}is finite.
4. ([1, Ex 6.5]) Continuing the notation of exercise 3, assume that K has at least one real embedding $\sigma: K \rightarrow \mathbb{R}$. Fix this σ and let U be the group of units in \mathcal{O}_{K}.
(a) What can you say about the roots of 1 in \mathcal{O}_{K} ?
(b) Show that $U=\{ \pm 1\} \times V$, where V consists of those $u \in U$ such that $\sigma(u)>0$. Using [1, Thm 38], prove that V is a free abelian group of rank $r+s-1$.
(c) Let $U^{+}=U \cap \mathcal{O}_{K}^{+}$. Then $U^{+} \subset V$, and clearly U^{+}contains $V^{2}=\left\{v^{2}: v \in V\right\}$. Use this to prove that U^{+}is a free abelian group of rank $r+s-1$. (See [1, Ex 2.24].)
5. ([1, Ex 6.10]) Fix a nonzero ideal M in \mathcal{O}_{K} and define a relation $\dot{\sim}_{M}$ on the set of ideals of \mathcal{O}_{K} which are relative prime to M, as follows:

$$
I \stackrel{\circ}{\sim}_{M} J \text { iff } \alpha I=\beta J \text { for some } \alpha, \beta \in \mathcal{O}_{K}^{+}, \alpha \equiv \beta \equiv 1 \quad(\bmod M)
$$

(a) Prove that this is an equivalent relation.
(b) Prove that the equivalent classes from a group G_{M}^{+}in which the identity element is the class consisting of all principal ideals $(\alpha), \alpha \in \mathcal{O}_{K}^{+}, \alpha \equiv 1(\bmod M)$. (Hint: To show that a given class has an inverse, fix I in the class and use the Chinese Remainder Theorem to obtain $\alpha \in I, \alpha \equiv 1(\bmod M)$.) The equivalence classes are called ray classes and G_{M}^{+}is called a ray class group.
(c) Show that there is a group-homomorphism $f: G_{M}^{+} \rightarrow G^{+}$, where G^{+}is as in Ex 3 .
(d) Prove that the kernel of f has at most $\#\left(\mathcal{O}_{K} / M\right)^{\times}$elements, where $\left(\mathcal{O}_{K} / M\right)^{\times}$is the multiplicative group of the finite ring \mathcal{O}_{K} / M. Conclude that G_{M}^{+}is finite.
6. ([1, Ex 7.8]) Use [1, Cor 2 of Thm 43] to determine the density of the set of primes $p \in \mathbb{Z}$ such that
(a) 2 is a square $\bmod p$;
(b) 2 is a cube $\bmod p$;
(c) 2 is a fourth power $\bmod p$.
(Note: If $p \not \equiv 1(\bmod 3)$ then everything is a cube $\bmod p$; however $x^{3}-2$ does not split completely $\bmod p$ unless $p \equiv 1(\bmod 3)$ and 2 is a cube $\bmod p$. Similar remarks hold for fourth powers.)
7. ([1, Ex 7.11]) Let L be a normal extension of K with cyclic Galois group. Prove that infinitely many primes of K remain prime in L. What is the density of the set of primes of K which split into a given number of primes in L ?

References

[1] D.A. Marcus, Number fields. Universitext. Springer-Verlag, New York-Heidelberg, 1977.

