Assignment 3

Due on June 5, 2009

For a finite set S, write #S = the cardinality of S. Let $\mathcal{O} =$ the ring of algebraic integers of \mathbb{C} . For a number field $K \subset \mathbb{C}$, write $\mathcal{O}_K = \mathcal{O} \cap K$; $[K : \mathbb{Q}] = r + 2s$, where r = # of real embeddings of K.

- 1. ([1, Ex 5.43]) Let K be a normal extension of \mathbb{Q} with Galois group G.
 - (a) Prove that K has degree 1 or 2 over $K \cap \mathbb{R}$.
 - (b) Prove that $K \cap \mathbb{R}$ is a normal extension of \mathbb{Q} iff $K \cap \mathbb{R}$ has no non-real embeddings in \mathbb{C} .
 - (c) Let U be the group of units in $\mathcal{O} \cap K$. Prove that $U/(U \cap \mathbb{R})$ is finite iff complex conjugation is in the center of G.
- 2. ([1, Ex 5.48]) For $m \ge 3$, set $\omega = \exp(\frac{2\pi i}{m}), \alpha = \exp(\frac{\pi i}{m})$.
 - (a) Show that

$$1 - \omega^k = -2i\alpha^k \cdot \sin\left(\frac{k\pi}{m}\right)$$

for all $k \in \mathbb{Z}$; conclude that

$$\frac{1-\omega^k}{1-\omega} = \alpha^{k-1} \cdot \frac{\sin(k\pi/m)}{\sin(\pi/m)}.$$

- (b) Show that if k and m are not both even, then $\alpha^{k-1} = \pm \omega^h$ for some $h \in \mathbb{Z}$.
- (c) Show that if k is relatively prime to m then

$$u_k = \frac{\sin(k\pi/m)}{\sin(\pi/m)}$$

is a unit in $\mathbb{Z}[\omega]$.

3. ([1, Ex 6.4]) Let K be a number field. An element $\alpha \in \mathcal{O}_K$ is called *totally positive* iff $\sigma(\alpha) > 0$ for every real embedding $\sigma : K \to \mathbb{R}$. Let \mathcal{O}_K^+ denote the set of all totally positive numbers of \mathcal{O}_K . Define a relation \sim on the nonzero ideals of \mathcal{O}_K as follows:

 $I \sim J$ iff $\alpha I = \beta J$ for some $\alpha, \beta \in \mathcal{O}_K^+$.

- (a) Prove that this is an equivalent relation.
- (b) Prove that the equivalent classes under this relation form a group G^+ in which the identity element is the class consisting of all principal ideals $(\alpha), \alpha \in \mathcal{O}_K^+$. (Use the fact that the ordinary ideal classes from a group. Notice that $\alpha^2 \in \mathcal{O}_K^+$ for every nonzero $\alpha \in \mathcal{O}_K$.)
- (c) Show that there is a group-homomorphism $f: G^+ \to G$, where G is the ideal class group of \mathcal{O}_K .

- (d) Prove that the kernel of f has at most 2^r elements, where r is the number of embeddings $K \to \mathbb{R}$. Conclude that G^+ is finite.
- 4. ([1, Ex 6.5]) Continuing the notation of exercise 3, assume that K has at least one real embedding $\sigma: K \to \mathbb{R}$. Fix this σ and let U be the group of units in \mathcal{O}_K .
 - (a) What can you say about the roots of 1 in \mathcal{O}_K ?
 - (b) Show that $U = \{\pm 1\} \times V$, where V consists of those $u \in U$ such that $\sigma(u) > 0$. Using [1, Thm 38], prove that V is a free abelian group of rank r + s 1.
 - (c) Let $U^+ = U \cap \mathcal{O}_K^+$. Then $U^+ \subset V$, and clearly U^+ contains $V^2 = \{v^2 : v \in V\}$. Use this to prove that U^+ is a free abelian group of rank r + s 1. (See [1, Ex 2.24].)
- 5. ([1, Ex 6.10]) Fix a nonzero ideal M in \mathcal{O}_K and define a relation \sim_M on the set of ideals of \mathcal{O}_K which are relative prime to M, as follows:

$$I \overset{\circ}{\sim}_M J$$
 iff $\alpha I = \beta J$ for some $\alpha, \beta \in \mathcal{O}_K^+, \alpha \equiv \beta \equiv 1 \pmod{M}$.

- (a) Prove that this is an equivalent relation.
- (b) Prove that the equivalent classes from a group G_M^+ in which the identity element is the class consisting of all principal ideals $(\alpha), \alpha \in \mathcal{O}_K^+, \alpha \equiv 1 \pmod{M}$. (Hint: To show that a given class has an inverse, fix I in the class and use the Chinese Remainder Theorem to obtain $\alpha \in I, \alpha \equiv 1 \pmod{M}$.) The equivalence classes are called *ray classes* and G_M^+ is called a *ray class group*.
- (c) Show that there is a group-homomorphism $f: G_M^+ \to G^+$, where G^+ is as in Ex 3.
- (d) Prove that the kernel of f has at most $\#(\mathcal{O}_K/M)^{\times}$ elements, where $(\mathcal{O}_K/M)^{\times}$ is the multiplicative group of the finite ring \mathcal{O}_K/M . Conclude that G_M^+ is finite.
- 6. ([1, Ex 7.8]) Use [1, Cor 2 of Thm 43] to determine the density of the set of primes $p \in \mathbb{Z}$ such that
 - (a) 2 is a square mod p;
 - (b) 2 is a cube mod p;
 - (c) 2 is a fourth power mod p.

(Note: If $p \not\equiv 1 \pmod{3}$ then everything is a cube mod p; however $x^3 - 2$ does not split completely mod p unless $p \equiv 1 \pmod{3}$ and 2 is a cube mod p. Similar remarks hold for fourth powers.)

7. ([1, Ex 7.11]) Let L be a normal extension of K with cyclic Galois group. Prove that infinitely many primes of K remain prime in L. What is the density of the set of primes of K which split into a given number of primes in L?

References

[1] D.A. Marcus, Number fields. Universitext. Springer-Verlag, New York-Heidelberg, 1977.