
Assignment 2

Due on May 22, 2009

Let O = the ring of algebraic integers of C. For a number field K ⊂ C, write OK = O ∩K;
write ClK = the class group OK and UK = the group of units of OK . For a finite set S, write
#S = the cardinality of S.

1. For a number field K, let diff K = diff(OK/Z) = the different ideal of OK over Z (see [1,
Ex 3.33]). It is an ideal of OK .

(a) Let K = Q(
√
m). Show that diff K is the principal ideal generated by

√
discK.

(b) Fix an odd prime p ∈ Q; let K = Q(ω), where ω = e2πi/p. show that diff Kp is the
principal ideal generated by p/(1− ω).

(c) Suppose K/Q is Galois with [K : Q] = n. Show that (diff K)n is the principal ideal
generated by discK.

(Hint: You may want to use [1, Ex 3.35(f), 3.37(d), 3.39(c)].)

2. Let K = Q(
√
−m), where m is a positive square-free integer. Show that

#UK =


4 if m = 1
6 if m = 3
2 otherwise.

3. ([1, Ex 3.16]) Let K and L be number fields, K ⊂ L.

(a) Show that there is a homomorphism ClL → ClK defined by taking any I in a given
class C and sending C to the class containing NmL

K(I). (Why is this well-defined?)

(b) Let Q be a prime of OL lying over a prime P of OK . Let dQ denote the order of the
class containing Q in ClL, dP the order of the class containing P in ClK . Prove that

dP |dQf(Q/P ).

4. ([1, Ex 3.30])

(a) Let f be any nonconstant polynomial over Z. Prove that f has a root mod p for
infinitely many primes p. (Suggestion: Prove this first under the assumption f(0) = 1
by considering prime divisors of the number f(n!). Then reduce to this case by setting
g(x) = f(xf(0))/f(0).)

(b) Let K be any number field. Prove that there are infinitely many primes P in K such
that f(P/p) = 1, where p is the prime of Z lying under P .

(c) Prove that for each m ∈ Z there are infinitely many primes p ≡ 1 (mod m).

(d) Let K and L be number fields, K ⊂ L. Prove that infinitely many primes of K split
completely (split into [L : K] distinct factors) in L. (Hint: Apply (b) to the normal
closure of L over K.)
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(e) Let f be a nonconstant monic irreducible polynomial over a number ring R. Prove
that f splits into linear factors mod P for infinitely many primes P of R.

5. ([1, Ex 4.12])

(a) Let K be a subfield of Q[ω], ω = e2πi/m. Identify (Z/m)× with the Galois group
of Q[ω] over Q in the usual way, and let H be the subgroup of (Z/m)× fixing K
pointwise. For a prime p ∈ Z not dividing m, let f denote the least positive integer
such that p̄f ∈ H, where the bar denotes the congruence class mod m. Show that
f is the inertial degree f(P/p) for any prime P of K lying over p. (Suggestion:
f(P/p) is the order of the Frobenius automorphism φ(P/p). Use [1, exercise 4.11(b)].
Alternatively, use [1, Theorem 33].)

(b) Let p be a prime not dividing m. Determine how p splits in Q[ω + ω−1]. (What is
H?)

(c) Let p be a prime not dividing m, and let K be any quadratic subfield Q[
√
d] ⊂ Q[ω].

With notations as in part (a), show that if p is odd then p̄ ∈ H iff d is a square mod
p; and if p = 2, then p̄ ∈ H iff d ≡ 1 (mod 8). (Use [1, Theorem 25]. Note that if
p 6 |m then p is unramified in Q[ω], hence also in Q[

√
d].)

6. ([1, Ex 4.14]) Let ω = e2πi/m, and fix a prime p in Z. Write m = pkn, where p 6 |n. The
Galois group of Q[ω] over Q is isomorphic to (Z/m)×, which is isomorphic in a natural
way to the direct product (Z/pk)× × (Z/n)×. Describe D and E (corresponding to p) in
terms of this direct product.

7. ([1, Ex 5.10]) Let m be a squarefree negative integer, and suppose that O ∩ Q[
√
m] is a

principal ideal domain.

(a) Show that m ≡ 5 mod 8 except when m = −1,−2, or −7. (Consider a prime lying
over 2.)

(b) Suppose p is an odd prime such that m < −4p. Show that m is non-square mod p.

(c) Prove that if m < −19, then m is congruent to one of these mod 840:

−43,−67,−163,−403,−547,−667.

(d) Prove that the values of m given in [1, Exercise 5.9] are the only ones with 0 > m >
−2000 for which O ∩ Q[

√
m] is a principal ideal domain. (Actually it is known that

they are the only ones with m < 0. See H.M. Stark, A complete determination of the
complex quadratic fields of class-number one, Mich. Math. (1967), 1-27.)

8. ([1, Ex 5.33])

(a) Let m be a squarefree positive integer, and assume first that m ≡ 2 or 3 (mod 4).
Consider the numbers mb2±1, b ∈ Z, and take the smallest positive b such that either
mb2 +1 or mb2−1 is a square, say a2, a > 0. Then a+b

√
m is a unit in Z[

√
m]. Prove

that it is the fundamental unit. (Hint: In any case it is a power of the fundamental
unit (why?). What if the exponent is greater than 1?)

(b) Establish a similar procedure for determining the fundamental unit in O∩Q[
√
m] for

squarefree m > 1,m ≡ 1 (mod 4). (Hint: mb2 ± 4.)
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