Assignment 1

Due on March 31, 2009

The following notations will be used in the sequel. For a positive integer m, we set $\omega_{m}=$ $\exp (2 \pi i / m) \in \mathbb{C}$, and let $K_{m}=\mathbb{Q}\left(\omega_{m}\right) \subset \mathbb{C}$. Let $\mathcal{O}=$ the subset of all algebraic integers in \mathbb{C}. For a subset $K \subset \mathbb{C}$, write $\mathcal{O}_{K}=K \cap \mathcal{O}$.

1. Let m_{1}, m_{2} be two positive integers. Show that

$$
\begin{aligned}
K_{m_{1}} \cdot K_{m_{2}} & =K_{\bar{m}} \\
K_{m_{1}} \cap K_{m_{2}} & =K_{\underline{m}}
\end{aligned}
$$

where $\bar{m}=\operatorname{lcm}\left(m_{1}, m_{2}\right)$ and $\underline{m}=\operatorname{gcd}\left(m_{1}, m_{2}\right)$.
2. ([1, Ex 2.8])
(a) Let p be an odd rational prime. Show that

$$
K_{p} \ni\left\{\begin{array}{cll}
\sqrt{p} & \text { if } p \equiv 1 & (\bmod 4) \\
\sqrt{-p} & \text { if } p \equiv-1 & (\bmod 4)
\end{array} .\right.
$$

(Hint: Recall that disc $\left(\omega_{p}\right)= \pm p^{p-2}$ with + holding iff $p \equiv 1(\bmod 4)$.)
(b) Show that K_{8} contains $\sqrt{2}$.
(c) Show that every quadratic field is contained in a cyclotomic field. In fact, $\mathbb{Q}(\sqrt{m}) \subset$ K_{d} where $d=\operatorname{disc} \mathcal{O}_{\mathbb{Q}(\sqrt{m})}$.
3. ([1, Ex 2.11])
(a) Suppose all roots of a monic polynomial $f \in \mathbb{Q}[x]$ of degree n have absolute value 1 . Show that the coefficient of x^{r} in f has absolute value $\leq\binom{ n}{r}$.
(b) Show that there are only finitely many algebraic integers α of fixed degree n, all of whose conjugate (including α) have absolute value 1 .
(c) Show that α as in (b) must be a root of 1. (Show that its powers are restricted to a finite set.)
4. ([1, Ex 2.42]) Let $K=\mathbb{Q}[\sqrt{m}, \sqrt{n}]$ where m, n are distinct square-free integers $\neq 1$. Then K contains $\mathbb{Q}[\sqrt{k}]$, where $k=m n /(m, n)^{2}$.
(a) For $\alpha \in K$. Show that $\alpha \in \mathcal{O}_{K}$ iff the relative norm and trace $\operatorname{Nm}_{\mathbb{Q}[\sqrt{m}]}^{K}(\alpha)$ and $\operatorname{Tr}_{\mathbb{Q}[\sqrt{m}]}^{K}(\alpha)$ are in \mathcal{O}.
(b) Suppose $m \equiv 3, n \equiv k \equiv 2(\bmod 4)$. Show that every $\alpha \in \mathcal{O}_{K}$ has the form

$$
\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{k}}{2}
$$

for some $a, b, c, d \in \mathbb{Z}$. (Suggestion: Write α as a linear combination of $1, \sqrt{m}, \sqrt{n}, \sqrt{k}$ with rational coefficients and consider all three relative traces.) Show that a and b
must be even and $c \equiv d(\bmod 2)$ by considering $\operatorname{Nm}_{\mathbb{Q}[\sqrt{m}]}^{K}(\alpha)$. Conclude that an integral basis for \mathcal{O}_{K} is

$$
\left\{1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}
$$

(c) Suppose $m \equiv 1, n \equiv k \equiv 2$ or $3(\bmod 4)$. Again show that each $\alpha \in \mathcal{O}_{K}$ has the form $(\boldsymbol{\oplus})$. Show that $a \equiv b(\bmod 2)$ and $c \equiv d(\bmod 2)$. Conclude that an integral basis for \mathcal{O}_{K} is

$$
\left\{1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right\}
$$

(d) Suppose $m \equiv n \equiv k \equiv 1(\bmod 4)$. Show that every $\alpha \in \mathcal{O}_{K}$ has the form

$$
\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{k}}{4}
$$

with $a \equiv b \equiv c \equiv d(\bmod 2)$. Show that by adding an appropriate integer multiple of

$$
\left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{k}}{2}\right)
$$

we can obtain a member of \mathcal{O}_{K} having the form

$$
\frac{r+s \sqrt{m}+t \sqrt{n}}{2}
$$

with $r, s, t \in \mathbb{Z}$; moreover show that $r+s+t \equiv 0(\bmod 2)$. Conclude that an integral basis for \mathcal{O}_{K} is

$$
\left\{1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2},\left(\frac{1+\sqrt{m}}{2}\right)\left(\frac{1+\sqrt{k}}{2}\right)\right\} .
$$

(e) Show that (b), (c), (d) cover all cases except for rearrangements of m, n, k.
(f) Show that

$$
\operatorname{disc} \mathcal{O}_{K}=\left\{\begin{array}{cc}
64 m n k & \text { in (b) } \\
16 m n k & \text { in (c) } \\
m n k & \text { in (d) }
\end{array}\right.
$$

(Suggestion: In (b), for example, compare disc \mathcal{O}_{K} with $\operatorname{disc}(1, \sqrt{m}, \sqrt{n}, \sqrt{k})$.) Verify that in all cases $\operatorname{disc} \mathcal{O}_{K}$ is the product of the discriminants of the three quadratic subfields.

References

[1] D.A. Marcus, Number fields. Universitext. Springer-Verlag, New York-Heidelberg, 1977.

