Quiz III

2013 / 5 / 17

Problem 1 Prove that if T is a self adjoint operator on a finite dimensional inner product space V, then every eigenvalue of T is real.

Problem 2 Let T be a linear operator on a finite dimensional inner product space V. Prove the following:

(a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$. (b) $rank(T) = rank(T^*)$ (c) For any $n \times n$ matrix A, $rank(A^*A) = rank(AA^*) = rank(A)$

Problem 3 Let $T: V \to W$ be a linear transformation, where V and W are finite dimensional inner product spaces. Prove that $(R(T^*))^{\perp} = N(T)$.