Quiz III

$$
2013 / 5 / 17
$$

Problem 1 Prove that if T is a self adjoint operator on a finite dimensional inner product space V, then every eigenvalue of T is real.

Problem 2 Let T be a linear operator on a finite dimensional inner product space V. Prove the following:
(a) $N\left(T^{*} T\right)=N(T)$. Deduce that $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(b) $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$
(c) For any $n \times n$ matrix $A, \operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}(A)$

Problem 3 Let $T: V \rightarrow W$ be a linear transformation, where V and W are finite dimensional inner product spaces. Prove that $\left(R\left(T^{*}\right)\right)^{\perp}=N(T)$.

