Quiz II

Name: \qquad ID:

1. Determine whether the following are inner products. You do NOT need to explain the reasons.
(a) $\left\langle\binom{ a}{b},\binom{c}{d}\right\rangle=a d+b c$ on \mathbb{R}^{2}.
(b) $\langle A, B\rangle=\operatorname{tr}\left(A^{t} B\right)$ on $M_{n \times n}(\mathbb{C})$.
(c) $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$ on $C([-1,1])$.
2. Let V be a finite dimensional inner product space, and suppose $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a linear transformation that preserves the inner product, i.e. $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all x, y. Show that T is an isomorphism.
3. Let $V=M_{2 \times 2}(\mathbb{R})$ with $\langle A, B\rangle=\operatorname{tr}\left(A^{t} B\right)$ and let

$$
S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\}
$$

Find an orthonormal basis β of V by applying the Gram-Schmidt process to S.

