12 Chap. 1 Vector Spaces

Proof. Exercise. |
Corollary 2. The vector y described in (VS 4) is unique.
Proof. Exercise. [ |

The vector 0 in (VS 3) is called the zero vector of V, and the vector y in
(VS 4) (that is, the unique vector such that z+y = 0) is called the additive
inverse of z and is denoted by —z.
The next result contains some of the elementary properties of scalar mul-
tiplication.
Theorem 1.2. In any vector space V, the following statements are true:
(a) Oz = 0 for each z € V.
(b) (—a)z = —(az) = a(—=z) for each a € F and each x € V.
(c) a0 = 0 for each a € F.

Proof. (a) By (VS 8), (VS 3), and (VS 1), it follows that
0z 40z = (0+0)z =0z =0z + 0 = 0 + Ox.

Hence 0z = 0 by Theorem 1.1.

(b) The vector —(az) is the unique element of V such that az + [—(az)] =
0. Thus if az + (—a)z = 0, Corollary 2 to Theorem 1.1 implies that (—a)z =
—(az). But by (VS 8),

az + (—a)z = [a + (—a)jz =0z = 0

by (a). Consequently (—a)z = —(az). In particular, (—=1)z = —z. So,
by (VS 6),
a(-z) = a[(-1)z] = [a(-1)]z = (-a)=.
The proof of (c) is similar to the proof of (a). [ |
EXERCISES

1. Label the following statements as true or false.

(a) Every vector space contains a zero vector.

(b) A vector space may have more than one zero vector.

(c) In any vector space, ax = bz implies that a = b.

(d) In any vector space, az = ay implies that = = y.

(e) A vector in F™ may be regarded as a matrix in My, 1 (F).

(f) An m x n matrix has m columns and n rows.

(g) In P(F), only polynomials of the same degree may be added.

(h) If f and g are polynomials of degree n, then f + g is a polynomial
of degree n.

(i) If f is a polynomial of degree n and c is a nonzero scalar, then cf
is a polynomial of degree n.

Exercises 5 and 6 show why
multiplication (as defined in
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(3) A nonzero scalar of F m
P(F) having degree zero.
(k) Two functions in (S,F) are e
same value at each element of S

ay be considered to be a polynomial in
qual if and only if they have the

2. Write the zero vector of M3y 4(F).

3. If
1 2 3
M =
(4 5 6) ’
what are M3, M1, and My,?

4. Perform the indicated operations.

@ (15 9+(4 2
-6 4 T

@ (196
TSws 2 0

@435 )

-6 4
(d -5 3 —2
1 8

(?) (2z* -7 4z +3) + (82° + 222 63+ 7)
(®) (~3c%+ 70 + 82 — 6) + (22° - 8z + 10)
(8) 5(2z7 — 62 + 842 — 3z)

(h) 3(z® - 223 + 4z + 2)

the definitions of matrix addition and scalar
Example 2) are the appropriate ones.

5. f}'zﬁi:r:i ;}ard.(“]'ﬂffects of Beaver on Trout in Sagehen Creek, Cali-
numb, f. Wildlife .Management, 25, 221-242) reports the fol’lowing
er of trout having crossed beaver dams in Sagehen Creek.

Upstream Crossings

—_—
5o "oll Spring  Summer _
Brook trout 8

3 1

Rainbow trout 3 0 0
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Downstream Crossings

Fall Spring Summer
Brook trout 9 1 4
Rainbow trout 3 0 0
Brown trout 1 il 0

Record the upstream and downstream crossings in two 3 x 3 matrices,
and verify that the sum of these matrices gives the total number of
crossings (both upstream and downstream) categorized by trout species
and season.

6. At the end of May, a furniture store had the following inventory.

Early Mediter-
American Spanish ranean Danish
Living room suites 4 2 1 3
Bedroom suites 5 1 1 4
Dining room suites 3 1 2 6

Record these data as a 3 x 4 matrix M. To prepare for its June sale,
the store decided to double its inventory on each of the items listed in
the preceding table. Assuming that none of the present stock is sold
until the additional furniture arrives, verify that the inventory on hand
after the order is filled is described by the matrix 2M. If the inventory
at the end of June is described by the matrix

5
A=1|6
1

O N W
L =
W Ot N

interpret 2// — A. How many suites were sold during the June sale?

7. Let S={0,1} and F = R. In F(S, R), show that f =g and f+g = h,
where f(t) =2t +1, g(t) = 1+ 4t — 2t%, and h(t) = 5¢ + 1.

8. In any vector space V, show that (a 4+ b)(z +y) = ax + ay + bz + by for
any z,y € V and any a,b € F.

9. Prove Corollaries 1 and 2 of Theorem 1.1 and Theorem 1.2(c).

10. Let V denote the set of all differentiable real-valued functions defined
on the real line. Prove that V is a vector space with the operations of
addition and scalar multiplication defined in Example 3.
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12.

13.

14.

15.

16.

17.

18.

Let V = {0} consist of a single vector 0 and define 0 + 0 = 0 and
c0 = 0 for each scalar c in F. Prove that V is a vector space over F.
(V is called the zero vector space.)

A real-valued function f defined on the real line is called an even func-
tion if f(—t) = f(t) for each real number ¢. Prove that the set of even
functions defined on the real line with the operations of addition and
scalar multiplication defined in Example 3 is a vector space.

Let V denote the set of ordered pairs of real numbers. If (a1,az) and
(b1,b2) are elements of V and ¢ € R, define

(a1,a2) + (b1,b2) = (a1 + by, a2b;) and  c(ay,a2) = (cay, ap).
Is V a vector space over R with these operations? J ustify your answer.

Let V = {(a1,a2,...,a,): a; € Cfori = 1,2,...n}; so V is a vector
space over C' by Example 1. Is V a vector space over the field of real
numbers with the operations of coordinatewise addition and multipli-
cation?

Let V = {(a1,a2,...,a,): a; € Rfori = 1,2,...n}; so V is a vec-
tor space over R by Example 1. Is V a vector space over the field of
complex numbers with the operations of coordinatewise addition and
multiplication?

Let V denote the set of all m X n matrices with real entries; so V
is a vector space over R by Example 2. Let F be the field of rational
numbers. Is V a vector space over F' with the usual definitions of matrix
addition and scalar multiplication?

Let V = {(a1,a2): a1,az2 € F}, where F is a field. Define addition of
elements of V coordinatewise, and for ¢ € F and (a1,a2) € V, define

c(a1,a2) = (ay,0).
Is V a vector space over F' with these operations? Justify your answer.

Let V = {(a1,02): a1,a2 € R}. For (a1,az),(b1,b2) € V and c € R,
define

(a1,a2) + (b1,b2) = (a1 + 2by, ay +3b2) and c(ay,az) = (cas, caz).

Is V a vector space over R with these operations? Justify your answer.
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19. Let V = {(a1,az): a1,a2 € R}. Define addition of elements of V coor-
dinatewise, and for (a;,az) in V and ¢ € R, define

(0,0) ifc=0
(cal,gz) if ¢ # 0.
€

c(a,az) =

Is V a vector space over R with these operations? Justify your answer.

20. Let V be the set of sequences {a,} of real numbers. (See Example 5 for
the definition of a sequence.) For {a,},{b,} € V and any real number
t, define

{an} + {bn} = {an +b,} and t{a,} = {tan}.
Prove that, with these operations, V is a vector space over R.
21. Let V and W be vector spaces over a field F'. Let
Z={(w,w):veVandw e W}.
Prove that Z is a vector space over F' with the operations

(v1,w1) + (v2, w2) = (v1 +vo, w1 +w2) and c(vy,w:) = (cvy, cwy).

22. How many matrices are there in the vector space My,xn(Z2)? (See
Appendix C.)

1.3 SUBSPACES

In the study of any algebraic structure, it is of interest to examine subsets that
possess the same structure as the set under consideration. The appropriate
notion of substructure for vector spaces is introduced in this section.

Definition. A subset W of a vector space V over a field F' is called a
subspace of V if W is a vector space over F' with the operations of addition
and scalar multiplication defined on V.

In any vector space V, note that V and {0} are subspaces. The latter is
called the zero subspace of V.

Fortunately it is not necessary to verify all of the vector space properties
to prove that a subset is a subspace. Because properties (VS 1), (VS 2),
(VS 5), (VS 6), (VS 7), and (VS 8) hold for all vectors in the vector space,
these properties automatically hold for the vectors in any subset. Thus a
subset W of a vector space V is a subspace of V if and only if the following
four properties hold.
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1. z4+y € W whenever z € W and y € W. (W is closed under addition.)

2. cx € W whenever ¢ € F and z € W. (W is closed under scalar
multiplication.)

3. W has a zero vector.

4. Each vector in W has an additive inverse in W.

The next theorem shows- that the zero vector of W must be the same as
the zero vector of V and that property 4 is redundant.

Theorem 1.3. Let V be a vector space and W a subset of V. Then W
is a subspace of V if and only if the following three conditions hold for the
operations defined in V.

(a) 0 €eW.
(b) z+y € W whenever z € W and y € W.
(c) cx € W whenever c € F and x € W.

Proof. If W is a subspace of V, then W is a vector space with the operations
of addition and scalar multiplication defined on V. Hence conditions (b) and
(c) hold, and there exists a vector 0’ € W such that z + 0’ = z for each
z € W. But also z + 0 = z, and thus 0’ = 0 by Theorem 1.1 (p. 11). So
condition (a) holds.

Conversely, if conditions (a), (b), and (c) hold, the discussion preceding
this theorem shows that W is a subspace of V if the additive inverse of each
vector in W lies in W. But if z € W, then (—1)z € W by condition (c), and
—z = (—1)z by Theorem 1.2 (p. 12). Hence W is a subspace of V. [ |

The preceding theorem provides a simple method for determining whether
or not a given subset of a vector space is a subspace. Normally, it is this result
that is used to prove that a subset is, in fact, a subspace.

The transpose A® of an m x n matrix A is the n x m matrix obtained
from A by interchanging the rows with the columns; that is, (A% = Ag.
For example,

1
(1 2 3)1_ S (1 z)t (1 2)
0 -1) ~ -
5 s 2 3 2 3
A symmetric matrix is a matrix A such that A* = A. For example, the
2 x 2 matrix displayed above is a symmetric matrix. Clearly, a symmetric

matrix must be square. The set W of all symmetric matrices in M,,x,(F) is
a subspace of M, x,(F') since the conditions of Theorem 1.3 hold:

1. The zero matrix is equal to its transpose and hence belongs to W.

It is easily proved that for any matrices A and B and any scalars a and b,
(aA+bB)" = aA® + bB'. (See Exercise 3.) Using this fact, we show that the
set of symmetric matrices is closed under addition and scalar multiplication.




