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Section 6.1

15. (b) (i) We show that ‖x + y‖ = ‖x‖ + ‖y‖ if and only if one of x, y is a non-negative
multiple of the other.

(⇐) After rearrangement, we may assume that x = cy for some c ≥ 0. Then

‖x+ y‖ = ‖(c+ 1)y‖ = |c+ 1|.‖y‖ = (c+ 1)‖y‖ = c‖y‖+ ‖y‖ = ‖cy‖+ ‖y‖ = ‖x‖+ ‖y‖.

(⇒) If one of x or y is zero, say x = 0, then x = c.y with c = 0, which is non-negative.
Thus we now assume both x and y are non-zero. We have

‖x+ y‖2 = ‖x‖2 + 2<(〈x, y〉) + ‖y‖2

and
(‖x‖+ ‖y‖)2 = ‖x‖2 + 2‖x‖.‖y‖+ ‖y‖2.

Thus we obtain
<(〈x, y〉) = ‖x‖ · ‖y‖. (1)

In particular <(〈x, y〉) ≥ 0. On the other hand,

‖x‖ · ‖y‖ ≥ |〈x, y〉| (Cauchy-Schwarz)
≥ |<(〈x, y〉)|
= ‖x‖ · ‖y‖ (by (1)).

Hence |〈x, y〉| = ‖x‖.‖y‖ and part (a) then implies that x = cy for some c ∈ F .

We then have
<(〈x, y〉) = <(〈cy, y〉) = <(c) · ‖y‖2

and
‖x‖ · ‖y‖ = ‖cx‖ · ‖y‖ = |c| · ‖y‖2.

Since ‖y‖ 6= 0, the equation (1) says <(c) = |c|, which implies c ∈ R and c ≥ 0.

(ii) Consider vectors x1, · · · , xm ∈ V such that

‖x1 + · · ·+ xm‖ = ‖x1‖+ · · ·+ ‖xm‖. (2)

We want to show that this is true if and only if all vectors should point to the same
direction. There are several ways to say this last condition mathematically. For example,
one can use one of the following conditions:

(A) There exists a non-zero vector v ∈ V and αi ≥ 0 such that xi = αiv for all i.

(B) There exists a vector v ∈ V with ‖v‖ = 1 and αi ≥ 0 such that xi = αiv for all i.

(C) For any i 6= j, there exist a, b ≥ 0, but not both zero, such that axi = bxj .

(D) For any i 6= j, there exists c ≥ 0 such that either xi = cxj or cxi = xj .

Exercise. Show that (A), (B), (C), (D) are equivalent.

In the following we show by induction that (2) holds if and only if condition (B) is true.
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The direction (⇐) is clear since

‖x1 + · · ·+ xm‖ =

∥∥∥∥∥
(

m∑
i=1

αi

)
v

∥∥∥∥∥ =

∣∣∣∣∣
m∑

i=1

αi

∣∣∣∣∣
=

m∑
i=1

αi

=
m∑

i=1

‖αiv‖ =
m∑

i=1

‖xi‖.

Consider the direction (⇒). If m = 1, we simply{
let v = x1/‖xi‖ and α1 = ‖x1‖ if x1 6= 0
pick any v with ‖v‖ = 1 and α1 = 0 if x1 = 0

and we are done.

Assume now m > 1 and suppose that if we have ‖
∑m−1

i=1 xi‖ =
∑m−1

i=1 ‖xi‖, then condition
(B) holds. Suppose we have m vectors x1, · · · , xm ∈ V and we can assume that none of
them is zero. We have

m∑
i=1

‖xi‖ =

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥ (our assumption)

=

∥∥∥∥∥
(

m−1∑
i=1

xi

)
+ xm

∥∥∥∥∥
≤

∥∥∥∥∥
(

m−1∑
i=1

xi

)∥∥∥∥∥+ ‖xm‖ (triangle inequality)

≤
m∑

i=1

‖xi‖ (use triangle inequality iteratively).

Thus the inequalities above are indeed equalties and we have ‖
∑m−1

i=1 xi‖ =
∑m−1

i=1 ‖xi‖
by the last equality. By induction hypothesis, there exist v ∈ V with ‖v‖ = 1 and
αi ≥ 0, 1 ≤ i < m such that xi = αiv for 1 ≤ i < m.

On the other hand, if we let y =
∑m−1

i=1 xi, then one has ‖y + xm‖ = ‖y‖ + ‖xm‖ by the
third equality above. Thus by part (i), y and xm point to the same direction. [Warning:
Here one cannot use the induction hypothesis. Exercise: why?] Since we already assume
that none of xi is zero, we have y 6= 0 and xm = cy for some c ≥ 0. Therefore xm = αmv
for αm = c(α1 + · · ·+ αm−1) ≥ 0.

29. Be careful that [•, •] is in R and hence [iv, w] 6= i[v, w] in general. We first show that

[ix, y] = −[x, iy] (3)

for any x, y ∈ V . Indeed we have

0 = [x+ y, i(x+ y)] = [x, ix] + [x, iy] + [y, ix] + [y, iy] = [x, iy] + [y, ix].

(In fact, for any c ∈ C, we have [cx, y] = [x, c̄y].)

Use this, it is easy to prove that 〈•, •〉 is an inner product. For example, let x, y ∈ V and
c ∈ C. Write c = a+ bi with a, b ∈ R. We have

〈cx, y〉 = [ax+ bix, y] + i[ax+ bix, iy] = a[x, y] + b[ix, y] + ia[x, iy] + ib[ix, iy], (4)

2



while

c〈x, y〉 = (a+ bi)
(
[x, y] + i[x, iy]

)
= a[x, y]− b[x, iy] + ia[x, iy] + ib[x, y]. (5)

Then (4) = (5) by (3).
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