
Section 5.4

20. The direction (⇐) is easy, so we only consider the other direction (⇒).

Suppose that dimV = n and V is T -generated by a vector v ∈ V . Then the set β =
{v, T (v), · · · , Tn−1(v)} forms a basis of V . There exist α0, · · · , αn−1 ∈ F such that

U(v) = α0v + · · ·+ αn−1T
n−1(v). (1)

Let g(t) = α0 + α1t + · · · + αn−1t
n−1. We want to show that U = g(T ). To do this, we

check that U and g(T ) send each vector in the basis β to the same image. We have, for
0 ≤ j ≤ n− 1,

U(T j(v)) = T j(U(v)) (since UT = TU)
= T j(α0v + α1T (v) + · · ·+ αn−1T

n−1(v)) (by (1))
= (α0 + α1T + · · ·+ αn−1T

n−1)(T j(v)) (T i and T j commute)
= g(T )(T j(v)).

Thus U = g(T ).

Section 7.2

8(b). (i) We first show that γ′ is also a cycle. If we write

γ = {· · · , v, x},

we have (T − λ)(x) = v and the vectors in front of v are determined by v via applying
powers of (T − λ). Now to show that

γ′ = {· · · , v, x+ y}

is still a cycle, we then only need to show that (T − λ)(x+ y) = v. We have

(T − λ)(x+ y) = (T − λ)(x) + (T − λ)(y)
= v (since T (y) = λy).

(ii) To show that after replacing γ by γ′ in the original basis β, we still get a basis β′ of
V , first notice that cycles in β′ and in β have the same initial vectors. This shows that
vectors in β′ are linearly independent (Thm.7.6 in textbook). Now β′ and β have the same
number of elements. Therefore β′ must be a basis of V .

13(b). By induction. To construct a basis of β1 of ker(T ), the required condition is empty. So we
take any basis to be our β1, and start running induction.

Now suppose we already construct bases β1, · · · , βr of ker(T ), · · · , ker(T r) with β1 ⊂ · · · ⊂
βr. We want to construct a basis βr+1 of ker(T r+1) with βr ⊂ βr+1. But ker(T r) ⊂
ker(T r+1) so we can regard βr as a linearly independent subset of ker(T r+1). We then can
extend βr to a basis βr+1 of ker(T r+1) and this finishes the induction procedure.

17. The decomposition T = S+U is sometimes called the semisimple-nilpotent decomposition.
Here semisimple means diagonalizable.

(b) Let β be a Jordan basis of T . To show that U is nilpotent and SU = US, we only
need to check that Up(v) = 0 for some p ≥ 1 and S(U(v)) = U(S(v)) for each vector v in
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β. So take one v in β. It is then in some cycle of generalized eigenvectors of eigenvalue λ.
Write this cycle as

{· · · , v︸ ︷︷ ︸
q

, · · · }.

Then S(v) = λv (v is one eigenvectors of S) by definition and

U q(v) = (T − S)q(v)
= (T − λ)q(v)
= 0 (by looking at the structure of the dot diagram).

On the other hand, first notice that Ẽλ is U -invariant because U = T − S and Ẽλ is both
T - and S-invariant. But S on Ẽλ is just the multiplication by λ so it commutes with any
other operator on Ẽλ. This shows S(U(v)) = U(S(v)), which is what we want. (We can
also show that S(U(v)) = U(S(v)) by using the dot diagram and explicit compuation.)

Section 7.3

9. Since T is diagonalizable, we have

chT (x) =
r∏
i=1

(x− λi)mi , minT (x) =
r∏
i=1

(x− λi)

where λ1, · · · , λr are distinct eigenvalues of T .

(⇒) Since V is T -cyclic, there exists v ∈ V such that {v, T (v), · · · , Tn−1(v)} is a basis of
V where n = dimV . Thus if p(x) ∈ F [x] is of degree < n, then p(T ) cannot be zero since
p(T )(v) 6= 0. We therefore obtain that deg minT (x) = deg chT (x). This can only happen if
minT (x) = chT (x), which then implies T has n distinct eigenvalues (and each eigenspace
must have dimension one). (This is just Thm.7.15 in the textbook.)

(⇐) In this case, T has n distinct eigenvalues λ1, · · · , λn and

minT (x) = chT (x) =
n∏
i=1

(x− λi).

Let vi be an eigenvector with eigenvalue λi for each i = 1, · · · , n. Note that β =
{v1, · · · , vn} is a basis of V . Let v = v1 + · · · + vn. We now show that V is T -cyclic
generated by v.

Let W be the T -cyclic subspace generated by v. Then W is T -invariant and contains v.
The last statement then implies that vi ∈ W for each i by Exercise 5.4.(23). (Make sure
you know how to prove the exercise.) Thus W = V since {vi} spans V .

In general we have the following.

Exercise. Fix T ∈ L(V ) and let minT (x) be the minimal polynomial of T . Then there
exists a T -cyclic subspace W of V such that the characteristic polynomial of TW is minT (x).

Section 7.4

6. (a) The dot diagram for Ẽ(φ1) contains only one point. Thus if v corresponds to that
point, then φ1(T )(v) = 0 and βv1 = {v, T (v), · · · , T d−1(v)} forms a basis of Ẽ(φ1(x))
(where d := deg φ1). Therefore v1 has T -annihilator φ1(x). The construction for φ2(x) is
similar.
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All together βv1 ∪ βv2 forms a (rational canonical) basis of V .

(b) Let v1 and v2 be the vectors constructed in (a). Let v3 = v1 + v2. We now show that
this v3 is what we want.

First φ1(T )φ2(T )(v3) = 0 because chT (x) = φ1(x)φ2(x) together with the Cayley-Hamilton
theorem. Secondly we have

φ1(T )(v3) = φ1(T )(v1) + φ1(T )(v2)
= φ1(T )(v2) (since φ1(T )(v1) = 0).

The last term is not zero because φ1(T ) is injective on Ẽ(φ2(x)). Similarly φ2(T )(v3) 6= 0.
Thus the polynomial φ1(x)φ2(x) is the smallest monic polynomial which annihilates v3
and hence {v3, T (v3), · · · , Tn−1(v3)} must be linearly independent.

(c) We have
[T ]βv1∪βv2

= C
(
φ1(x)

)
⊕ C

(
φ2(x)

)
containing two companion forms, while

[T ]βv3
= C

(
φ1(x)φ2(x)

)
is a single companion form.
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