## Section 5.4

20. The direction $(\Leftarrow)$ is easy, so we only consider the other direction $(\Rightarrow)$.

Suppose that $\operatorname{dim} V=n$ and $V$ is $T$-generated by a vector $v \in V$. Then the set $\beta=$ $\left\{v, T(v), \cdots, T^{n-1}(v)\right\}$ forms a basis of $V$. There exist $\alpha_{0}, \cdots, \alpha_{n-1} \in F$ such that

$$
\begin{equation*}
U(v)=\alpha_{0} v+\cdots+\alpha_{n-1} T^{n-1}(v) . \tag{1}
\end{equation*}
$$

Let $g(t)=\alpha_{0}+\alpha_{1} t+\cdots+\alpha_{n-1} t^{n-1}$. We want to show that $U=g(T)$. To do this, we check that $U$ and $g(T)$ send each vector in the basis $\beta$ to the same image. We have, for $0 \leq j \leq n-1$,

$$
\begin{aligned}
U\left(T^{j}(v)\right) & =T^{j}(U(v)) \quad(\text { since } U T=T U) \\
& =T^{j}\left(\alpha_{0} v+\alpha_{1} T(v)+\cdots+\alpha_{n-1} T^{n-1}(v)\right) \quad(\text { by }(1)) \\
& =\left(\alpha_{0}+\alpha_{1} T+\cdots+\alpha_{n-1} T^{n-1}\right)\left(T^{j}(v)\right) \quad\left(T^{i} \text { and } T^{j} \text { commute }\right) \\
& =g(T)\left(T^{j}(v)\right) .
\end{aligned}
$$

Thus $U=g(T)$.

## Section 7.2

8(b). (i) We first show that $\gamma^{\prime}$ is also a cycle. If we write

$$
\gamma=\{\cdots, v, x\},
$$

we have $(T-\lambda)(x)=v$ and the vectors in front of $v$ are determined by $v$ via applying powers of $(T-\lambda)$. Now to show that

$$
\gamma^{\prime}=\{\cdots, v, x+y\}
$$

is still a cycle, we then only need to show that $(T-\lambda)(x+y)=v$. We have

$$
\begin{aligned}
(T-\lambda)(x+y) & =(T-\lambda)(x)+(T-\lambda)(y) \\
& =v \quad(\text { since } T(y)=\lambda y) .
\end{aligned}
$$

(ii) To show that after replacing $\gamma$ by $\gamma^{\prime}$ in the original basis $\beta$, we still get a basis $\beta^{\prime}$ of $V$, first notice that cycles in $\beta^{\prime}$ and in $\beta$ have the same initial vectors. This shows that vectors in $\beta^{\prime}$ are linearly independent (Thm.7.6 in textbook). Now $\beta^{\prime}$ and $\beta$ have the same number of elements. Therefore $\beta^{\prime}$ must be a basis of $V$.

13(b). By induction. To construct a basis of $\beta_{1}$ of $\operatorname{ker}(T)$, the required condition is empty. So we take any basis to be our $\beta_{1}$, and start running induction.
Now suppose we already construct bases $\beta_{1}, \cdots, \beta_{r}$ of $\operatorname{ker}(T), \cdots, \operatorname{ker}\left(T^{r}\right)$ with $\beta_{1} \subset \cdots \subset$ $\beta_{r}$. We want to construct a basis $\beta_{r+1}$ of $\operatorname{ker}\left(T^{r+1}\right)$ with $\beta_{r} \subset \beta_{r+1}$. But $\operatorname{ker}\left(T^{r}\right) \subset$ $\operatorname{ker}\left(T^{r+1}\right)$ so we can regard $\beta_{r}$ as a linearly independent subset of $\operatorname{ker}\left(T^{r+1}\right)$. We then can extend $\beta_{r}$ to a basis $\beta_{r+1}$ of $\operatorname{ker}\left(T^{r+1}\right)$ and this finishes the induction procedure.
17. The decomposition $T=S+U$ is sometimes called the semisimple-nilpotent decomposition. Here semisimple means diagonalizable.
(b) Let $\beta$ be a Jordan basis of $T$. To show that $U$ is nilpotent and $S U=U S$, we only need to check that $U^{p}(v)=0$ for some $p \geq 1$ and $S(U(v))=U(S(v))$ for each vector $v$ in
$\beta$. So take one $v$ in $\beta$. It is then in some cycle of generalized eigenvectors of eigenvalue $\lambda$. Write this cycle as


Then $S(v)=\lambda v(v$ is one eigenvectors of $S)$ by definition and

$$
\begin{aligned}
U^{q}(v) & =(T-S)^{q}(v) \\
& =(T-\lambda)^{q}(v) \\
& =0 \quad(\text { by looking at the structure of the dot diagram })
\end{aligned}
$$

On the other hand, first notice that $\widetilde{E}_{\lambda}$ is $U$-invariant because $U=T-S$ and $\widetilde{E}_{\lambda}$ is both $T$ - and $S$-invariant. But $S$ on $\widetilde{E}_{\lambda}$ is just the multiplication by $\lambda$ so it commutes with any other operator on $\widetilde{E}_{\lambda}$. This shows $S(U(v))=U(S(v))$, which is what we want. (We can also show that $S(U(v))=U(S(v))$ by using the dot diagram and explicit compuation.)

## Section 7.3

9. Since $T$ is diagonalizable, we have

$$
\operatorname{ch}_{T}(x)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)^{m_{i}} \quad, \quad \min _{T}(x)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)
$$

where $\lambda_{1}, \cdots, \lambda_{r}$ are distinct eigenvalues of $T$.
$(\Rightarrow)$ Since $V$ is $T$-cyclic, there exists $v \in V$ such that $\left\{v, T(v), \cdots, T^{n-1}(v)\right\}$ is a basis of $V$ where $n=\operatorname{dim} V$. Thus if $p(x) \in F[x]$ is of degree $<n$, then $p(T)$ cannot be zero since $p(T)(v) \neq 0$. We therefore obtain that $\operatorname{deg} \min _{T}(x)=\operatorname{deg} \operatorname{ch}_{T}(x)$. This can only happen if $\min _{T}(x)=\operatorname{ch}_{T}(x)$, which then implies $T$ has $n$ distinct eigenvalues (and each eigenspace must have dimension one). (This is just Thm.7.15 in the textbook.)
$(\Leftarrow)$ In this case, $T$ has $n$ distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and

$$
\min _{T}(x)=\operatorname{ch}_{T}(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)
$$

Let $v_{i}$ be an eigenvector with eigenvalue $\lambda_{i}$ for each $i=1, \cdots, n$. Note that $\beta=$ $\left\{v_{1}, \cdots, v_{n}\right\}$ is a basis of $V$. Let $v=v_{1}+\cdots+v_{n}$. We now show that $V$ is $T$-cyclic generated by $v$.
Let $W$ be the $T$-cyclic subspace generated by $v$. Then $W$ is $T$-invariant and contains $v$. The last statement then implies that $v_{i} \in W$ for each $i$ by Exercise 5.4.(23). (Make sure you know how to prove the exercise.) Thus $W=V$ since $\left\{v_{i}\right\}$ spans $V$.

In general we have the following.
Exercise. Fix $T \in \mathcal{L}(V)$ and let $\min _{T}(x)$ be the minimal polynomial of $T$. Then there exists a $T$-cyclic subspace $W$ of $V$ such that the characteristic polynomial of $T_{W}$ is $\min _{T}(x)$.

## Section 7.4

6. (a) The dot diagram for $\widetilde{E}\left(\phi_{1}\right)$ contains only one point. Thus if $v$ corresponds to that point, then $\phi_{1}(T)(v)=0$ and $\beta_{v_{1}}=\left\{v, T(v), \cdots, T^{d-1}(v)\right\}$ forms a basis of $\widetilde{E}\left(\phi_{1}(x)\right)$ (where $\left.d:=\operatorname{deg} \phi_{1}\right)$. Therefore $v_{1}$ has $T$-annihilator $\phi_{1}(x)$. The construction for $\phi_{2}(x)$ is similar.

All together $\beta_{v_{1}} \cup \beta_{v_{2}}$ forms a (rational canonical) basis of $V$.
(b) Let $v_{1}$ and $v_{2}$ be the vectors constructed in (a). Let $v_{3}=v_{1}+v_{2}$. We now show that this $v_{3}$ is what we want.

First $\phi_{1}(T) \phi_{2}(T)\left(v_{3}\right)=0$ because $\mathrm{ch}_{T}(x)=\phi_{1}(x) \phi_{2}(x)$ together with the Cayley-Hamilton theorem. Secondly we have

$$
\begin{aligned}
\phi_{1}(T)\left(v_{3}\right) & =\phi_{1}(T)\left(v_{1}\right)+\phi_{1}(T)\left(v_{2}\right) \\
& =\phi_{1}(T)\left(v_{2}\right) \quad\left(\text { since } \phi_{1}(T)\left(v_{1}\right)=0\right) .
\end{aligned}
$$

The last term is not zero because $\phi_{1}(T)$ is injective on $\widetilde{E}\left(\phi_{2}(x)\right)$. Similarly $\phi_{2}(T)\left(v_{3}\right) \neq 0$. Thus the polynomial $\phi_{1}(x) \phi_{2}(x)$ is the smallest monic polynomial which annihilates $v_{3}$ and hence $\left\{v_{3}, T\left(v_{3}\right), \cdots, T^{n-1}\left(v_{3}\right)\right\}$ must be linearly independent.
(c) We have

$$
[T]_{\beta_{v_{1}} \cup \beta_{v_{2}}}=C\left(\phi_{1}(x)\right) \oplus C\left(\phi_{2}(x)\right)
$$

containing two companion forms, while

$$
[T]_{\beta_{v_{3}}}=C\left(\phi_{1}(x) \phi_{2}(x)\right)
$$

is a single companion form.

