Section 5.4

20.

The direction (<) is easy, so we only consider the other direction (=).

Suppose that dimV = n and V is T-generated by a vector v € V. Then the set § =
{v,T(v),--,T" 1 (v)} forms a basis of V. There exist ag, - ,a,—1 € F such that

U(v) = agv + -+ + a1 T (v). (1)

Let g(t) = ap + aqt + - + a,—1t" 1. We want to show that U = g(T). To do this, we
check that U and ¢(T') send each vector in the basis § to the same image. We have, for

U(T(v)) = TV(U(v)) (since UT =TU)

T (agv +onT(v) + -+ + a1 T H(v))  (by (1))

(g + 1T + -4 o T H(T(v) (T and T? commute)
= g(T)(T(v)).

Thus U = ¢(T).
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8(b).

13(b).

17.

(i) We first show that 4/ is also a cycle. If we write

7:{ 7’U7;U}>

we have (T'— A)(z) = v and the vectors in front of v are determined by v via applying
powers of (T'— A). Now to show that

'Y/: { ,U,IL‘+y}
is still a cycle, we then only need to show that (7' — A)(z +y) = v. We have

(T=N+y) = (T-=N@)+ (T -N)
= v (since T(y) = A\y).

(ii) To show that after replacing v by 7 in the original basis 3, we still get a basis 3 of
V, first notice that cycles in 3’ and in 3 have the same initial vectors. This shows that
vectors in (3’ are linearly independent (Thm.7.6 in textbook). Now /' and (3 have the same
number of elements. Therefore 3 must be a basis of V.

By induction. To construct a basis of 3 of ker(T"), the required condition is empty. So we
take any basis to be our (1, and start running induction.

Now suppose we already construct bases i, --- , 8, of ker(T),--- ,ker(T") with 51 C --- C
B,. We want to construct a basis 8,11 of ker(T"t) with 3, C B,11. But ker(T") C
ker(T"t1) so we can regard 3, as a linearly independent subset of ker(7"!). We then can
extend [, to a basis §,41 of ker(TT‘H) and this finishes the induction procedure.

The decomposition T' = S+U is sometimes called the semisimple-nilpotent decomposition.
Here semisimple means diagonalizable.

(b) Let 8 be a Jordan basis of T. To show that U is nilpotent and SU = US, we only
need to check that UP(v) = 0 for some p > 1 and S(U(v)) = U(S(v)) for each vector v in



(. So take one v in 8. It is then in some cycle of generalized eigenvectors of eigenvalue A.
Write this cycle as

Then S(v) = Av (v is one eigenvectors of S) by definition and

Ulfv) = (T'—9)(v)
(T = A)*(v)
0 (by looking at the structure of the dot diagram).

On the other hand, first notice that EA is U-invariant because U = T — S and E \ is both
T- and S-invariant. But S on EA is just the multiplication by A so it commutes with any
other operator on Ey. This shows S(U(v)) = U(S(v)), which is what we want. (We can
also show that S(U(v)) = U(S(v)) by using the dot diagram and explicit compuation.)
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9. Since T is diagonalizable, we have

chy(z) = H(x —A)™ , minp(z) = H(x - \i)
i=1 =1
where Ay, .-+, )\, are distinct eigenvalues of T'.

(=) Since V is T-cyclic, there exists v € V such that {v,T(v),---,T" 1(v)} is a basis of
V where n = dim V. Thus if p(x) € F[z] is of degree < n, then p(T") cannot be zero since
p(T)(v) # 0. We therefore obtain that deg miny(x) = degchp(x). This can only happen if
miny(z) = chy(x), which then implies T has n distinct eigenvalues (and each eigenspace
must have dimension one). (This is just Thm.7.15 in the textbook.)

(<) In this case, T has n distinct eigenvalues A, -- -, A\, and

n

ming(z) = chy(z) = H(:U — i)

i=1
Let v; be an eigenvector with eigenvalue A; for each ¢ = 1,---,n. Note that § =
{vi,---,v,} is a basis of V. Let v = vy + -+ + v,. We now show that V is T-cyclic
generated by v.
Let W be the T-cyclic subspace generated by v. Then W is T-invariant and contains v.

The last statement then implies that v; € W for each i by Exercise 5.4.(23). (Make sure
you know how to prove the exercise.) Thus W =V since {v;} spans V.

In general we have the following.

Exercise. Fix T' € £(V) and let miny(z) be the minimal polynomial of 7. Then there
exists a T-cyclic subspace W of V' such that the characteristic polynomial of Ty is minp(x).
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6. (a) The dot diagram for E(aﬁl) contains only one point. Thus if v corresponds to that
point, then ¢1(T)(v) = 0 and B,, = {v,T(v), -, T (v)} forms a basis of E(¢(z))
(where d := deg ¢1). Therefore v; has T-annihilator ¢1(z). The construction for ¢o(x) is
similar.



All together (3,, U f3,, forms a (rational canonical) basis of V.

(b) Let v1 and ve be the vectors constructed in (a). Let v3 = v1 + vo. We now show that
this vz is what we want.

First ¢1(T)¢p2(T)(v3) = 0 because chr(x) = ¢1(z)p2(z) together with the Cayley-Hamilton
theorem. Secondly we have

¢1(T)(v3) = ¢1(T)(v1) + ¢1(T)(v2)
$1(T)(va) (since ¢1(T)(v1) = 0).
The last term is not zero because ¢ (T) is injective on E(¢y(x)). Similarly ¢o(T)(vs) # 0.

Thus the polynomial ¢;(x)¢2(x) is the smallest monic polynomial which annihilates v
and hence {vs, T'(v3), - ,T" *(v3)} must be linearly independent.

(c) We have
[T15.,08., = C(é1(x)) © C(¢2(x))

containing two companion forms, while

[T]5,, = C(¢1(x)p2(x))

is a single companion form.



