Section 6.4

17. Notice that T and U are diagonalizable (self-adjoint) and the eigenvalues are non-negative ($T, U \geq 0$ and Exercise (17.a)).
(c) [Cf. Exercise 13 of $\S 6.6](\Rightarrow)$ Take an orthonormal basis $\gamma=\left\{w_{1}, \cdots, w_{n}\right\}$ of V such that $T\left(w_{i}\right)=\lambda_{i} w_{i}$. Since $T \geq 0$, we have $\lambda_{i} \geq 0$. Define a new operator S on V by setting

$$
S\left(w_{i}\right)=\sqrt{\lambda_{i}} \cdot w_{i}
$$

Then S is self-adjoint $\left(\left[S^{*}\right]_{\gamma}=\left([S]_{\gamma}\right)^{*}=[S]_{\gamma}\right)$ and $T=S^{2}=S^{*} S$. Thus we have $A=[T]_{\beta}=B^{*} B$ where $B=[S]_{\beta}$.
(\Leftarrow) We have

$$
\begin{aligned}
\langle T(v), v\rangle & =\phi_{\beta}(v)^{*} \cdot \phi_{\beta}(T(v)) \\
& =\phi_{\beta}(v)^{*} \cdot\left(A \cdot \phi_{\beta}(v)\right) \\
& =\phi_{\beta}(v)^{*} \cdot B^{*} B \cdot \phi_{\beta}(v) \\
& =\left(B \cdot \phi_{\beta}(v)\right)^{*}\left(B \cdot \phi_{\beta}(v)\right) \\
& \geq 0
\end{aligned}
$$

[Or one lets $S: V \rightarrow V$ be the linear operator such that $[S]_{\beta}=B$. Then $T=S^{*} S$ and $\langle T(v), v\rangle=\left\langle S^{*} S(v), v\right\rangle=\langle S(v), S(v)\rangle \geq 0$.]
(d) First we show that T and U have the same eigenvalues. If $\lambda_{1}, \cdots, \lambda_{n}$ and μ_{1}, \cdots, μ_{n} are the eigenvalues of T and U, respectively, then T^{2} and U^{2} have eigenvalues λ_{i}^{2} and μ_{i}^{2}, respectively. Since $T^{2}=U^{2}$ (our assumption) and $\lambda_{i}, \mu_{i} \geq 0(T, U \geq 0)$, we see that T and U have the same collection of eigenvalues.

Fix an eigenvalue λ of T, which is also an eigenvalue of U. Let W_{1} and W_{2} be the eigenspaces with eigenvalue λ of T and U, respectively. We now show that $W_{1}=W_{2}$. Indeed we have

$$
W_{1}=\operatorname{ker}\left(T^{2}-\lambda^{2}\right)=\operatorname{ker}\left(U^{2}-\lambda^{2}\right)=W_{2}
$$

(Exercise. Make sure you know (i) $W_{1}=\operatorname{ker}\left(T^{2}-\lambda^{2}\right.$), and (ii) when self-adjoint T and U have the same eigenvalues and same corresponding eigenspaces, then $T=U$.)
(e) Since $T U=U T$, they can be diagonalized simultaneously (see Exercise 14 of $\S 6.4$). Take an orthonormal basis $\gamma=\left\{w_{1}, \cdots, w_{n}\right\}$ such that $T\left(w_{i}\right)=\lambda_{i} w_{i}$ and $U\left(w_{i}\right)=\mu_{i} w_{i}$ for some $\lambda_{i}, \mu_{i}>0$. Then $T U\left(w_{i}\right)=\lambda_{i} \mu_{i} w_{i}$ with eigenvalue $\lambda_{i} \mu_{i}>0$. Thus $T U>0$.
Remark. The argument actually shows that if $T, U \geq 0$ and $T U=U T$, then $T U \geq 0$.
Remark. Exercises 21 and 22 tell us that all possible inner products on a fixed finite dimensional vector space V are connected to each other via positive definite operators in $\mathcal{L}(V)$.
22. Another way to find T is as follows. Let $V^{*}=\mathcal{L}(V, F)$ be the dual space of V. Recall that we have seen in class the bijection

$$
\begin{array}{rll}
V & \rightarrow V^{*} \\
v & \mapsto T_{v}
\end{array}
$$

where $T_{v}(w):=\langle w, v\rangle$. Now for a fixed $x \in V$, the map $y \mapsto\langle y, x\rangle^{\prime}$ is in V^{*}. Thus there exists a unique element in V, call it $T(x)$, such that

$$
\begin{equation*}
\langle y, x\rangle^{\prime}=\langle y, T(x)\rangle \quad\left(\text { and hence }\langle x, y\rangle^{\prime}=\langle T(x), y\rangle\right) \tag{1}
\end{equation*}
$$

for all $y \in V$. This function T is what we want and we are asked to play a game using the relation (1). Explicitly we need to show that T is (i) linear, (ii) $\langle T(x), y\rangle=\langle x, T(y)\rangle$, (ii') $\langle T(x), y\rangle^{\prime}=\langle x, T(y)\rangle^{\prime}$, (iii) $\langle T(x), x\rangle>0$ for all $x \neq 0$, and (iii') $\langle T(x), x\rangle^{\prime}>0$ for all $x \neq 0$.
(i) To check that $T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)$, observe that for all $y \in V$, we have

$$
\begin{aligned}
\left\langle y, T\left(x_{1}+x_{2}\right)\right\rangle=\left\langle y, x_{1}+x_{2}\right\rangle^{\prime} & =\left\langle y, x_{1}\right\rangle^{\prime}+\left\langle y, x_{2}\right\rangle^{\prime} \\
& =\left\langle y, T\left(x_{1}\right)\right\rangle+\left\langle y, T\left(x_{2}\right)\right\rangle=\left\langle y, T\left(x_{1}\right)+T\left(x_{2}\right)\right\rangle .
\end{aligned}
$$

Thus the claim. The rest are left as an exercise.
(ii) We have

$$
\langle T(x), y\rangle=\overline{\langle y, T(x)\rangle}=\overline{\langle y, x\rangle^{\prime}}=\langle x, y\rangle^{\prime}=\langle x, T(y)\rangle .
$$

(ii'), (iii) and (iii') are left as exercises.
23. Following the Hint in the textbook, we let $\beta=\left\{v_{i}, \cdots, v_{n}\right\}$ be a basis of V such that $U\left(v_{i}\right)=\lambda_{i} v_{i}$ with $\lambda_{i} \in \mathbb{R}$. Define a new inner product on V by requiring

$$
\left\langle v_{i}, v_{j}\right\rangle^{\prime}=\delta_{i j} .
$$

Then there exists a positive definite $T_{1} \in \mathcal{L}(V)$ such that $\langle x, y\rangle^{\prime}=\left\langle T_{1}(x), y\right\rangle$ for all $x, y \in V$. The condition $\lambda_{i} \in \mathbb{R}$ implies that $\left\langle U\left(v_{i}\right), v_{j}\right\rangle^{\prime}=\left\langle v_{i}, U\left(v_{j}\right)\right\rangle^{\prime}$, i.e. U is self-adjoint with respect to $\langle\cdot, \cdot\rangle^{\prime}$.
In the following, we check that $U=T_{1}^{-1} U^{*} T_{1}$.
First we have that T_{1}^{-1} is also self-adjoint (although we do not really need this). In fact, taking adjoint of $I=T_{1}^{-1} T_{1}$, we obtain $I=T_{1}^{*}\left(T_{1}^{-1}\right)^{*}=T_{1}\left(T_{1}^{-1}\right)^{*}$. Hence $\left(T_{1}^{-1}\right)^{*}=T_{1}^{-1}$. Now we show that $U\left(v_{i}\right)=T_{1}^{-1} U^{*} T_{1}\left(v_{i}\right)$ by comparing $\left\langle U\left(v_{i}\right), v_{j}\right\rangle$ and $\left\langle T_{1}^{-1} U^{*} T_{1}\left(v_{i}\right), v_{j}\right\rangle$. We have

$$
\left\langle U\left(v_{i}\right), v_{j}\right\rangle=\left\langle\lambda_{i} v_{i}, v_{j}\right\rangle .
$$

On the other hand,

$$
\begin{aligned}
\left\langle T_{1}^{-1} U^{*} T_{1}\left(v_{i}\right), v_{j}\right\rangle & =\left\langle U^{*} T_{1}\left(v_{i}\right), T_{1}^{-1}\left(v_{j}\right)\right\rangle \quad\left(T_{1}^{-1}\right. \text { self-adjoint) } \\
& =\left\langle T_{1}\left(v_{i}\right), U T_{1}^{-1}\left(v_{j}\right)\right\rangle \\
& \left.=\left\langle v_{i}, U T_{1}^{-1}\left(v_{j}\right)\right\rangle^{\prime} \quad \text { (the definition of } T_{1}\right) \\
& =\left\langle U\left(v_{i}\right), T_{1}^{-1}\left(v_{j}\right)\right\rangle^{\prime} \quad\left(U \text { self-adjoint w.r.t. }\langle\cdot, \cdot\rangle^{\prime}\right) \\
& =\left\langle\lambda_{i} v_{i}, T_{1}^{-1}\left(v_{j}\right)\right\rangle^{\prime} \quad\left(\text { definition of } v_{i}\right) \\
& =\left\langle T_{1}\left(\lambda_{i} v_{i}\right), T_{1}^{-1}\left(v_{j}\right)\right\rangle \quad(\text { why? }) \\
& =\left\langle T_{1}^{-1} T_{1}\left(\lambda_{i} v_{i}\right), v_{j}\right\rangle \quad(\text { why? }) \\
& =\left\langle\lambda_{i} v_{i}, v_{j}\right\rangle .
\end{aligned}
$$

Thus the assertion follows.

Section 6.5

15. Notice that the arguments below do not require that V is finite dimensional.
(0) U is one-to-one. Indeed if $U(v)=0$ for some $v \in V$, then $0=\langle U(v), U(v)\rangle=\langle v, v\rangle$ and hence $v=0$.
(a) Since U_{W} is one-to-one and W is finite dimensional, the inclusion $U(W) \subset W$ implies that $U(W)=W$.
(b) Let $v \in W^{\perp}$. We want to show that $\langle U(v), w\rangle=0$ for any $w \in W$. By (a), there exists $w^{\prime} \in W$ such that $U\left(w^{\prime}\right)=w$. Thus $\langle U(v), w\rangle=\left\langle U(v), U\left(w^{\prime}\right)\right\rangle=\left\langle v . w^{\prime}\right\rangle=0$.

Section 6.6

5. (b) Since T is a projection, we have

$$
\operatorname{ker}(T)=E_{0}, \quad \operatorname{Im}(T)=E_{1}, \quad V=E_{0} \oplus E_{1} .
$$

Now under the condition $\|T(x)\| \leq\|x\|$ for all $x \in V$, we want to show that $E_{1}=E_{0}^{\perp}$. We first show that $E_{1} \subset E_{0}^{\perp}$. Consider the new decomposition

$$
V=E_{0} \oplus E_{0}^{\perp} .
$$

Let $v \in E_{1}$ and write $v=w+w^{\prime}$ where $w \in E_{0}$ and $w^{\prime} \in E_{0}^{\perp}$. We have

$$
\begin{equation*}
\|v\|^{2}=\|w\|^{2}+\left\|w^{\prime}\right\|^{2} \tag{2}
\end{equation*}
$$

since $w \perp w^{\prime}$. On the other hand, we have

$$
v=T(v)=T\left(w+w^{\prime}\right)=T\left(w^{\prime}\right)
$$

and we obtain

$$
\begin{equation*}
\|v\|=\left\|T\left(w^{\prime}\right)\right\| \leq\left\|w^{\prime}\right\| . \tag{3}
\end{equation*}
$$

Combining (2) and (3), we see that $\|w\|=0$. Hence $w=0$ and we obtain that $v \in E_{0}^{\perp}$. This implies that $E_{1} \subset E_{0}^{\perp}$.
Since $\operatorname{dim} E_{1}=\operatorname{dim} V-\operatorname{dim} E_{0}=\operatorname{dim} E_{0}^{\perp}$, one obtains $E_{1}=E_{0}^{\perp}$.

Section 6.7

9. Let $\beta=\left\{v_{1}, \cdots, v_{n}\right\}$ and $\gamma=\left\{u_{1}, \cdots, u_{m}\right\}$. Notice that $\left[T^{*}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{*}$ by Exercise 15 of $\S 6.3$, which we have discussed in class. Thus $T^{*}\left(u_{j}\right)=\sigma_{j} v_{j}$.
