May 18, 2013

Section 6.4

17. Notice that T and U are diagonalizable (self-adjoint) and the eigenvalues are non-negative $(T, U \ge 0 \text{ and Exercise (17.a)}).$

(c) [Cf. Exercise 13 of §6.6] (\Rightarrow) Take an orthonormal basis $\gamma = \{w_1, \dots, w_n\}$ of V such that $T(w_i) = \lambda_i w_i$. Since $T \ge 0$, we have $\lambda_i \ge 0$. Define a new operator S on V by setting

$$S(w_i) = \sqrt{\lambda_i} \cdot w_i.$$

Then S is self-adjoint $([S^*]_{\gamma} = ([S]_{\gamma})^* = [S]_{\gamma})$ and $T = S^2 = S^*S$. Thus we have $A = [T]_{\beta} = B^*B$ where $B = [S]_{\beta}$.

(\Leftarrow) We have

[Or one lets $S: V \to V$ be the linear operator such that $[S]_{\beta} = B$. Then $T = S^*S$ and $\langle T(v), v \rangle = \langle S^*S(v), v \rangle = \langle S(v), S(v) \rangle \ge 0$.]

(d) First we show that T and U have the same eigenvalues. If $\lambda_1, \dots, \lambda_n$ and μ_1, \dots, μ_n are the eigenvalues of T and U, respectively, then T^2 and U^2 have eigenvalues λ_i^2 and μ_i^2 , respectively. Since $T^2 = U^2$ (our assumption) and $\lambda_i, \mu_i \ge 0$ ($T, U \ge 0$), we see that T and U have the same collection of eigenvalues.

Fix an eigenvalue λ of T, which is also an eigenvalue of U. Let W_1 and W_2 be the eigenspaces with eigenvalue λ of T and U, respectively. We now show that $W_1 = W_2$. Indeed we have

$$W_1 = \ker(T^2 - \lambda^2) = \ker(U^2 - \lambda^2) = W_2.$$

(Exercise. Make sure you know (i) $W_1 = \ker(T^2 - \lambda^2)$, and (ii) when self-adjoint T and U have the same eigenvalues and same corresponding eigenspaces, then T = U.)

(e) Since TU = UT, they can be diagonalized simultaneously (see Exercise 14 of §6.4). Take an orthonormal basis $\gamma = \{w_1, \dots, w_n\}$ such that $T(w_i) = \lambda_i w_i$ and $U(w_i) = \mu_i w_i$ for some $\lambda_i, \mu_i > 0$. Then $TU(w_i) = \lambda_i \mu_i w_i$ with eigenvalue $\lambda_i \mu_i > 0$. Thus TU > 0.

Remark. The argument actually shows that if $T, U \ge 0$ and TU = UT, then $TU \ge 0$.

Remark. Exercises 21 and 22 tell us that all possible inner products on a fixed finite dimensional vector space V are connected to each other via positive definite operators in $\mathcal{L}(V)$.

22. Another way to find T is as follows. Let $V^* = \mathcal{L}(V, F)$ be the dual space of V. Recall that we have seen in class the bijection

$$\begin{array}{rccc} V & \to & V^* \\ v & \mapsto & T_v \end{array}$$

where $T_v(w) := \langle w, v \rangle$. Now for a fixed $x \in V$, the map $y \mapsto \langle y, x \rangle'$ is in V^* . Thus there exists a unique element in V, call it T(x), such that

$$\langle y, x \rangle' = \langle y, T(x) \rangle$$
 (and hence $\langle x, y \rangle' = \langle T(x), y \rangle$) (1)

for all $y \in V$. This function T is what we want and we are asked to play a game using the relation (1). Explicitly we need to show that T is (i) linear, (ii) $\langle T(x), y \rangle = \langle x, T(y) \rangle$, (ii') $\langle T(x), y \rangle' = \langle x, T(y) \rangle'$, (iii) $\langle T(x), x \rangle > 0$ for all $x \neq 0$, and (iii') $\langle T(x), x \rangle' > 0$ for all $x \neq 0$.

(i) To check that $T(x_1 + x_2) = T(x_1) + T(x_2)$, observe that for all $y \in V$, we have

$$\begin{aligned} \langle y, T(x_1 + x_2) \rangle &= \langle y, x_1 + x_2 \rangle' &= \langle y, x_1 \rangle' + \langle y, x_2 \rangle' \\ &= \langle y, T(x_1) \rangle + \langle y, T(x_2) \rangle = \langle y, T(x_1) + T(x_2) \rangle. \end{aligned}$$

Thus the claim. The rest are left as an exercise.

(ii) We have

$$\langle T(x), y \rangle = \overline{\langle y, T(x) \rangle} = \overline{\langle y, x \rangle'} = \langle x, y \rangle' = \langle x, T(y) \rangle.$$

(ii'), (iii) and (iii') are left as exercises.

23. Following the *Hint* in the textbook, we let $\beta = \{v_i, \dots, v_n\}$ be a basis of V such that $U(v_i) = \lambda_i v_i$ with $\lambda_i \in \mathbb{R}$. Define a new inner product on V by requiring

$$\langle v_i, v_j \rangle' = \delta_{ij}$$

Then there exists a positive definite $T_1 \in \mathcal{L}(V)$ such that $\langle x, y \rangle' = \langle T_1(x), y \rangle$ for all $x, y \in V$. The condition $\lambda_i \in \mathbb{R}$ implies that $\langle U(v_i), v_j \rangle' = \langle v_i, U(v_j) \rangle'$, i.e. U is self-adjoint with respect to $\langle \cdot, \cdot \rangle'$.

In the following, we check that $U = T_1^{-1} U^* T_1$.

First we have that T_1^{-1} is also self-adjoint (although we do not really need this). In fact, taking adjoint of $I = T_1^{-1}T_1$, we obtain $I = T_1^*(T_1^{-1})^* = T_1(T_1^{-1})^*$. Hence $(T_1^{-1})^* = T_1^{-1}$. Now we show that $U(v_i) = T_1^{-1}U^*T_1(v_i)$ by comparing $\langle U(v_i), v_j \rangle$ and $\langle T_1^{-1}U^*T_1(v_i), v_j \rangle$. We have

$$\langle U(v_i), v_j \rangle = \langle \lambda_i v_i, v_j \rangle.$$

On the other hand,

$$\begin{split} \langle T_1^{-1}U^*T_1(v_i), v_j \rangle &= \langle U^*T_1(v_i), T_1^{-1}(v_j) \rangle \quad (T_1^{-1} \text{ self-adjoint}) \\ &= \langle T_1(v_i), UT_1^{-1}(v_j) \rangle \\ &= \langle v_i, UT_1^{-1}(v_j) \rangle' \quad (\text{the definition of } T_1) \\ &= \langle U(v_i), T_1^{-1}(v_j) \rangle' \quad (U \text{ self-adjoint w.r.t. } \langle \cdot, \cdot \rangle') \\ &= \langle \lambda_i v_i, T_1^{-1}(v_j) \rangle' \quad (\text{definition of } v_i) \\ &= \langle T_1(\lambda_i v_i), T_1^{-1}(v_j) \rangle \quad (\text{why?}) \\ &= \langle \lambda_i v_i, v_j \rangle. \end{split}$$

Thus the assertion follows.

Section 6.5

15. Notice that the arguments below do not require that V is finite dimensional.

(0) U is one-to-one. Indeed if U(v) = 0 for some $v \in V$, then $0 = \langle U(v), U(v) \rangle = \langle v, v \rangle$ and hence v = 0.

(a) Since U_W is one-to-one and W is finite dimensional, the inclusion $U(W) \subset W$ implies that U(W) = W.

(b) Let $v \in W^{\perp}$. We want to show that $\langle U(v), w \rangle = 0$ for any $w \in W$. By (a), there exists $w' \in W$ such that U(w') = w. Thus $\langle U(v), w \rangle = \langle U(v), U(w') \rangle = \langle v.w' \rangle = 0$.

Section 6.6

5. (b) Since T is a projection, we have

$$\ker(T) = E_0, \quad \operatorname{Im}(T) = E_1, \quad V = E_0 \oplus E_1.$$

Now under the condition $||T(x)|| \leq ||x||$ for all $x \in V$, we want to show that $E_1 = E_0^{\perp}$. We first show that $E_1 \subset E_0^{\perp}$. Consider the new decomposition

$$V = E_0 \oplus E_0^{\perp}$$

Let $v \in E_1$ and write v = w + w' where $w \in E_0$ and $w' \in E_0^{\perp}$. We have

$$\|v\|^{2} = \|w\|^{2} + \|w'\|^{2}$$
(2)

since $w \perp w'$. On the other hand, we have

$$v = T(v) = T(w + w') = T(w')$$

and we obtain

$$\|v\| = \|T(w')\| \le \|w'\|.$$
(3)

Combining (2) and (3), we see that ||w|| = 0. Hence w = 0 and we obtain that $v \in E_0^{\perp}$. This implies that $E_1 \subset E_0^{\perp}$.

Since dim $E_1 = \dim V - \dim E_0 = \dim E_0^{\perp}$, one obtains $E_1 = E_0^{\perp}$.

Section 6.7

9. Let $\beta = \{v_1, \dots, v_n\}$ and $\gamma = \{u_1, \dots, u_m\}$. Notice that $[T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^*$ by Exercise 15 of §6.3, which we have discussed in class. Thus $T^*(u_j) = \sigma_j v_j$.