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Section 6.4

17. Notice that T and U are diagonalizable (self-adjoint) and the eigenvalues are non-negative
(T,U ≥ 0 and Exercise (17.a)).

(c) [Cf. Exercise 13 of §6.6] (⇒) Take an orthonormal basis γ = {w1, · · · , wn} of V such
that T (wi) = λiwi. Since T ≥ 0, we have λi ≥ 0. Define a new operator S on V by setting

S(wi) =
√
λi · wi.

Then S is self-adjoint ([S∗]γ = ([S]γ)∗ = [S]γ) and T = S2 = S∗S. Thus we have
A = [T ]β = B∗B where B = [S]β.

(⇐) We have

〈T (v), v〉 = φβ(v)∗ · φβ(T (v))
= φβ(v)∗ ·

(
A · φβ(v)

)
= φβ(v)∗ ·B∗B · φβ(v)
=

(
B · φβ(v)

)∗(
B · φβ(v)

)
≥ 0.

[Or one lets S : V → V be the linear operator such that [S]β = B. Then T = S∗S and
〈T (v), v〉 = 〈S∗S(v), v〉 = 〈S(v), S(v)〉 ≥ 0.]

(d) First we show that T and U have the same eigenvalues. If λ1, · · · , λn and µ1, · · · , µn
are the eigenvalues of T and U , respectively, then T 2 and U2 have eigenvalues λ2

i and µ2
i ,

respectively. Since T 2 = U2 (our assumption) and λi, µi ≥ 0 (T,U ≥ 0), we see that T
and U have the same collection of eigenvalues.

Fix an eigenvalue λ of T , which is also an eigenvalue of U . Let W1 and W2 be the
eigenspaces with eigenvalue λ of T and U , respectively. We now show that W1 = W2.
Indeed we have

W1 = ker(T 2 − λ2) = ker(U2 − λ2) = W2.

(Exercise. Make sure you know (i) W1 = ker(T 2 − λ2), and (ii) when self-adjoint T and
U have the same eigenvalues and same corresponding eigenspaces, then T = U .)

(e) Since TU = UT , they can be diagonalized simultaneously (see Exercise 14 of §6.4).
Take an orthonormal basis γ = {w1, · · · , wn} such that T (wi) = λiwi and U(wi) = µiwi
for some λi, µi > 0. Then TU(wi) = λiµiwi with eigenvalue λiµi > 0. Thus TU > 0.

Remark. The argument actually shows that if T,U ≥ 0 and TU = UT , then TU ≥ 0.

Remark. Exercises 21 and 22 tell us that all possible inner products on a fixed finite dimen-
sional vector space V are connected to each other via positive definite operators in L(V ).

22. Another way to find T is as follows. Let V ∗ = L(V, F ) be the dual space of V . Recall that
we have seen in class the bijection

V → V ∗

v 7→ Tv

where Tv(w) := 〈w, v〉. Now for a fixed x ∈ V , the map y 7→ 〈y, x〉′ is in V ∗. Thus there
exists a unique element in V , call it T (x), such that

〈y, x〉′ = 〈y, T (x)〉 (and hence 〈x, y〉′ = 〈T (x), y〉) (1)

1



for all y ∈ V . This function T is what we want and we are asked to play a game using
the relation (1). Explicitly we need to show that T is (i) linear, (ii) 〈T (x), y〉 = 〈x, T (y)〉,
(ii’) 〈T (x), y〉′ = 〈x, T (y)〉′, (iii) 〈T (x), x〉 > 0 for all x 6= 0, and (iii’) 〈T (x), x〉′ > 0 for all
x 6= 0.

(i) To check that T (x1 + x2) = T (x1) + T (x2), observe that for all y ∈ V , we have

〈y, T (x1 + x2)〉 = 〈y, x1 + x2〉′ = 〈y, x1〉′ + 〈y, x2〉′

= 〈y, T (x1)〉+ 〈y, T (x2)〉 = 〈y, T (x1) + T (x2)〉.

Thus the claim. The rest are left as an exercise.

(ii) We have
〈T (x), y〉 = 〈y, T (x)〉 = 〈y, x〉′ = 〈x, y〉′ = 〈x, T (y)〉.

(ii’), (iii) and (iii’) are left as exercises.

23. Following the Hint in the textbook, we let β = {vi, · · · , vn} be a basis of V such that
U(vi) = λivi with λi ∈ R. Define a new inner product on V by requiring

〈vi, vj〉′ = δij .

Then there exists a positive definite T1 ∈ L(V ) such that 〈x, y〉′ = 〈T1(x), y〉 for all
x, y ∈ V . The condition λi ∈ R implies that 〈U(vi), vj〉′ = 〈vi, U(vj)〉′, i.e. U is self-adjoint
with respect to 〈·, ·〉′.
In the following, we check that U = T−1

1 U∗T1.

First we have that T−1
1 is also self-adjoint (although we do not really need this). In fact,

taking adjoint of I = T−1
1 T1, we obtain I = T ∗1 (T−1

1 )∗ = T1(T−1
1 )∗. Hence (T−1

1 )∗ = T−1
1 .

Now we show that U(vi) = T−1
1 U∗T1(vi) by comparing 〈U(vi), vj〉 and 〈T−1

1 U∗T1(vi), vj〉.
We have

〈U(vi), vj〉 = 〈λivi, vj〉.
On the other hand,

〈T−1
1 U∗T1(vi), vj〉 = 〈U∗T1(vi), T−1

1 (vj)〉 (T−1
1 self-adjoint)

= 〈T1(vi), UT−1
1 (vj)〉

= 〈vi, UT−1
1 (vj)〉′ (the definition of T1)

= 〈U(vi), T−1
1 (vj)〉′ (U self-adjoint w.r.t. 〈·, ·〉′)

= 〈λivi, T−1
1 (vj)〉′ (definition of vi)

= 〈T1(λivi), T−1
1 (vj)〉 (why?)

= 〈T−1
1 T1(λivi), vj〉 (why?)

= 〈λivi, vj〉.

Thus the assertion follows.

Section 6.5

15. Notice that the arguments below do not require that V is finite dimensional.

(0) U is one-to-one. Indeed if U(v) = 0 for some v ∈ V , then 0 = 〈U(v), U(v)〉 = 〈v, v〉
and hence v = 0.

(a) Since UW is one-to-one and W is finite dimensional, the inclusion U(W ) ⊂W implies
that U(W ) = W .

(b) Let v ∈W⊥. We want to show that 〈U(v), w〉 = 0 for any w ∈W . By (a), there exists
w′ ∈W such that U(w′) = w. Thus 〈U(v), w〉 = 〈U(v), U(w′)〉 = 〈v.w′〉 = 0.
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Section 6.6

5. (b) Since T is a projection, we have

ker(T ) = E0, Im(T ) = E1, V = E0 ⊕ E1.

Now under the condition ‖T (x)‖ ≤ ‖x‖ for all x ∈ V , we want to show that E1 = E⊥0 . We
first show that E1 ⊂ E⊥0 . Consider the new decomposition

V = E0 ⊕ E⊥0 .

Let v ∈ E1 and write v = w + w′ where w ∈ E0 and w′ ∈ E⊥0 . We have

‖v‖2 = ‖w‖2 + ‖w′‖2 (2)

since w ⊥ w′. On the other hand, we have

v = T (v) = T (w + w′) = T (w′)

and we obtain
‖v‖ = ‖T (w′)‖ ≤ ‖w′‖. (3)

Combining (2) and (3), we see that ‖w‖ = 0. Hence w = 0 and we obtain that v ∈ E⊥0 .
This implies that E1 ⊂ E⊥0 .

Since dimE1 = dimV − dimE0 = dimE⊥0 , one obtains E1 = E⊥0 .

Section 6.7

9. Let β = {v1, · · · , vn} and γ = {u1, · · · , um}. Notice that [T ∗]βγ =
(

[T ]γβ
)∗

by Exercise 15
of §6.3, which we have discussed in class. Thus T ∗(uj) = σjvj .
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