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Section 6.4

17. Notice that T and U are diagonalizable (self-adjoint) and the eigenvalues are non-negative
(T,U > 0 and Exercise (17.a)).

(c) [Cf. Exercise 13 of §6.6] (=) Take an orthonormal basis v = {wy,--- ,w,} of V such
that T'(w;) = Ajw;. Since T' > 0, we have A\; > 0. Define a new operator S on V by setting

S(wi) = Vi - w;.

Then S is self-adjoint ([S*], ([S1y)* = [S)y) and T = S? = S*S. Thus we have

A = [T'|g = B*B where B = [5];.
(<) We have

(T(v),v) = ¢p(v)" - Ps(T(v))
* (A pp(v))
*-B*B - ¢3(v)

B-¢5(v))" (B - dp(v))
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[Or one lets S : V' — V be the linear operator such that [S]zg = B. Then T' = S$*S and
(T(v),v) = (57S(v),v) = (S(v), S(v)) = 0.]

(d) First we show that 7" and U have the same eigenvalues. If A\j,--- A, and p1,-- -, up
are the eigenvalues of T' and U, respectively, then T2 and U? have eigenvalues )\% and u?,
respectively. Since T2 = U? (our assumption) and \;, u; > 0 (T,U > 0), we see that T
and U have the same collection of eigenvalues.

Fix an eigenvalue A\ of T, which is also an eigenvalue of U. Let W; and W5 be the
eigenspaces with eigenvalue A of T" and U, respectively. We now show that W; = Wa.

Indeed we have

W1 = ker(T? — \?) = ker(U? — \?) = Wh.
(Exercise. Make sure you know (i) Wy = ker(T? — A\?), and (ii) when self-adjoint 7' and
U have the same eigenvalues and same corresponding eigenspaces, then 7' = U.)

(e) Since TU = UT), they can be diagonalized simultaneously (see Exercise 14 of §6.4).
Take an orthonormal basis v = {w1,--- ,w,} such that T'(w;) = \w; and U(w;) = pw;
for some A;, p; > 0. Then TU (w;) = A\jpjw; with eigenvalue Aju; > 0. Thus TU > 0.

Remark. The argument actually shows that if T,U > 0 and TU = UT, then TU > 0.

Remark. Exercises 21 and 22 tell us that all possible inner products on a fixed finite dimen-
sional vector space V' are connected to each other via positive definite operators in L(V).

22. Another way to find T is as follows. Let V* = L(V, F') be the dual space of V. Recall that
we have seen in class the bijection

Vv — V*

v o— T,

where Ty, (w) := (w,v). Now for a fixed z € V, the map y — (y,z)" is in V*. Thus there
exists a unique element in V', call it T'(z), such that

(y,2)" = (y,T(z)) (and hence (x,y)" = (T'(x),y)) (1)



for all y € V. This function T is what we want and we are asked to play a game using
the relation (1). Explicitly we need to show that 7" is (i) linear, (ii) (T'(z),y) = (x, T (y)),
(i) (T'(xz),y) = (x,T(y))’, (iii) (T(x),x) > 0 for all x # 0, and (iii’) (T'(z),z)’ > 0 for all
x #0.
(i) To check that T'(z1 + x2) = T'(z1) + T'(z2), observe that for all y € V', we have

(y, T(x1 +22)) = (y, 21 +22) = (y,21) + (y, 22)’

= (T (21)) + (y, T(22)) = (y, T'(21) + T'(x2)).

Thus the claim. The rest are left as an exercise.
(ii) We have

(T(2),y) = (. T(x)) = (y, ) = (z,9)" = (. T(y)).
(ii”), (iii) and (iii’) are left as exercises.
23. Following the Hint in the textbook, we let 3 = {v;,---,v,} be a basis of V' such that
U(v;) = A\jv; with A; € R. Define a new inner product on V' by requiring
(vi, vj) = &;.
Then there exists a positive definite T} € L£(V) such that (z,y) = (Ti(x),y) for all

z,y € V. The condition \; € R implies that (U(v;),v;)" = (v;, U(v;))’, i.e. U is self-adjoint
with respect to (-, -)’.
In the following, we check that U = Tl_lU*Tl.
First we have that 77" ! is also self-adjoint (although we do not really need this). In fact,
taking adjoint of I = T} 'T}, we obtain I = T} (77 ')* = T1 (T ')*. Hence (T71)* = T, 1.
Now we show that U(v;) = T, 'U*Ty(v;) by comparing (U (v;),v;) and (T} *U*T1(v;),v;).
We have

<U(vi)7 vj) = <)‘ivi’ vj>'
On the other hand,

(T7MU T (i), v5) = (U (i), Ty Hwy)) (T self-adjoint)
= (Ti(o), UT (1))
= (v, UT ! (v;))"  (the definition of T})
(U(v ) “Hw;)) (U self-adjoint w.r.t. (-,-)')
= (\Nv;, T (vj)>/ (definition of v;)
)T () (why?)
= (T (O ’UZ) vj) (why?)
= (\vi, vj).

Thus the assertion follows.

Section 6.5

15. Notice that the arguments below do not require that V' is finite dimensional.
(0) U is one-to-one. Indeed if U(v) = 0 for some v € V, then 0 = (U(v),U(v)) = (v,v)
and hence v = 0.
(a) Since Uy is one-to-one and W is finite dimensional, the inclusion U (W) C W implies
that U(W) = W.

(b) Let v € W+. We want to show that (U(v),w) = 0 for any w € W. By (a), there exists
w’ € W such that U(w’) = w. Thus (U(v),w) = (U(v),Uw')) = (v.w') = 0.



Section 6.6
5. (b) Since T is a projection, we have

ker(T) = Ey, Im(T) =F), V=Ey®E.

Now under the condition ||7(z)| < ||z|| for all z € V', we want to show that By = Ez. We
first show that E C EOL. Consider the new decomposition

V =FEy®Ejy.
Let v € F; and write v = w + w’ where w € Ey and w’ € Ey. We have
[l = flw? + flo'|* (2)
since w L w’. On the other hand, we have
v=Tw)=T(w+w")=T()

and we obtain

[oll = |7 ()] < [[w/]]. (3)
Combining (2) and (3), we see that |Jw|| = 0. Hence w = 0 and we obtain that v € Ej.
This implies that E; C E(J)-.

Since dim F; = dim V' — dim £y = dim E&-, one obtains F; = E&-.

Section 6.7

*
9. Let 8 ={v1, -+ ,vn} and v = {uy, -+ ,um}. Notice that [T*]g = ([T]g) by Exercise 15

of §6.3, which we have discussed in class. Thus T*(u;) = o;v;.



