Section 5.2

23. We have that

$$\sum_{i=1}^{p} K_i + \sum_{j=1}^{q} M_j = W_1 + W_2 = W_1 \oplus W_2.$$
(1)

On the other hand, let β_i and γ_j be bases of K_i and M_j , respectively. Since $W_1 = \bigoplus_{i=1}^p K_i$, the (disjoint) union β of β_i is a basis of W_1 . Similarly the union γ of γ_j is a basis of W_2 and the union of β and γ forms a basis of $W_1 \oplus W_2$. Thus the disjoint union of β_i and γ_j is a basis of $W_1 \oplus W_2$ and this shows that the sum in the left hand side of (1) is a direct sum by Theorem 5.10(d).

Section 7.1

9(b). Clearly β' is a linearly independent set in K_{λ} . To show that β' is a basis of K_{λ} , we shall show that β' consists of at least dim K_{λ} elements,

The set β is a Jordan canonical basis for T means that the matrix $[T]_{\beta}$ is the Jordan canonical form of T. According to the sizes of Jordan blocks in $[T]_{\beta}$, the basis β decomposes into cycles $\gamma_1, \dots, \gamma_r$ where each cycle γ_i corresponds to a Jordan block with diagonal entries equal to λ_i . (Thus λ_i are among the eigenvalues of T and some of them might be the same.) Let ℓ_i be the length of γ_i , which is equal to the size of the corresponding Jordan block. Then

$$\operatorname{ch}_T(x) = \det \left(xI - [T]_\beta \right) = \prod_{i=1}^r (x - \lambda_i)^{\ell_i}.$$

This implies that

$$\dim K_{\lambda} = \sum_{\lambda_i = \lambda} \ell_i.$$

On the other hand, those γ_i with $\lambda_i = \lambda$ are contained in K_{λ} because $(T - \lambda)^{\ell_i}(\gamma_i) = 0$. This shows that β' contains at least $\sum_{\lambda_i=\lambda} \ell_i$ elements, which is what we want.

16. First notice that by deleting the last i dots in each column, the resulting set β' is contained in $\text{Im}(T^i)$ because each remaining dot (= a vector in β') is mapped by another dot in the same column by moving up the dots i steps. Let ℓ_1, \dots, ℓ_r be the lengths of the columns in the dot diagram. Then

$$\#\beta' = \sum_{i=1}^{r} (\ell_k - i)_+ \quad \text{where} \quad (\ell_k - i)_+ := \begin{cases} \ell_k - i & \text{if } \ell_k - i \ge 0\\ 0 & \text{if } \ell_k - i \le 0. \end{cases}$$

On the other hand, $[T]_{\beta}$ consists of r Jordan blocks of sizes ℓ_1, \dots, ℓ_r , and the diagonal entries are all zero. By direct computation, $[T]^i_{\beta}$ has $\sum_{i=1}^r (\ell_k - i)_+$ linearly independent columns (see the computation in Exercise 19(a)). Thus

$$\operatorname{rk}(T^{i}) = \operatorname{rk}([T]^{i}_{\beta}) = \#\beta',$$

which implies that β' is a basis of $\text{Im}(T^i)$.

(Or one can use that the dots you delete = the total dots obtained by adding first *i* dots in each column = $\nu(T^i)$. Thus $\#\beta' = \dim V - \nu(T^i) = \operatorname{rk}(T^i)$.)