Section 5.2

23. We have that

$$
\begin{equation*}
\sum_{i=1}^{p} K_{i}+\sum_{j=1}^{q} M_{j}=W_{1}+W_{2}=W_{1} \oplus W_{2} \tag{1}
\end{equation*}
$$

On the other hand, let β_{i} and γ_{j} be bases of K_{i} and M_{j}, respectively. Since $W_{1}=\bigoplus_{i=1}^{p} K_{i}$, the (disjoint) union β of β_{i} is a basis of W_{1}. Similarly the union γ of γ_{j} is a basis of W_{2} and the union of β and γ forms a basis of $W_{1} \oplus W_{2}$. Thus the disjoint union of β_{i} and γ_{j} is a basis of $W_{1} \oplus W_{2}$ and this shows that the sum in the left hand side of (1) is a direct sum by Theorem $5.10(\mathrm{~d})$.

Section 7.1

9 (b). Clearly β^{\prime} is a linearly independent set in K_{λ}. To show that β^{\prime} is a basis of K_{λ}, we shall show that β^{\prime} consists of at least $\operatorname{dim} K_{\lambda}$ elements,

The set β is a Jordan canonical basis for T means that the matrix $[T]_{\beta}$ is the Jordan canonical form of T. According to the sizes of Jordan blocks in $[T]_{\beta}$, the basis β decomposes into cycles $\gamma_{1}, \cdots, \gamma_{r}$ where each cycle γ_{i} corresponds to a Jordan block with diagonal entries equal to λ_{i}. (Thus λ_{i} are among the eigenvalues of T and some of them might be the same.) Let ℓ_{i} be the length of γ_{i}, which is equal to the size of the corresponding Jordan block. Then

$$
\operatorname{ch}_{T}(x)=\operatorname{det}\left(x I-[T]_{\beta}\right)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)^{\ell_{i}}
$$

This implies that

$$
\operatorname{dim} K_{\lambda}=\sum_{\lambda_{i}=\lambda} \ell_{i}
$$

On the other hand, those γ_{i} with $\lambda_{i}=\lambda$ are contained in K_{λ} because $(T-\lambda)^{\ell_{i}}\left(\gamma_{i}\right)=0$. This shows that β^{\prime} contains at least $\sum_{\lambda_{i}=\lambda} \ell_{i}$ elements, which is what we want.
16. First notice that by deleting the last i dots in each column, the resulting set β^{\prime} is contained in $\operatorname{Im}\left(T^{i}\right)$ because each remaining dot $\left(=\right.$ a vector in $\left.\beta^{\prime}\right)$ is mapped by another dot in the same column by moving up the dots i steps. Let $\ell_{1}, \cdots, \ell_{r}$ be the lengths of the columns in the dot diagram. Then

$$
\# \beta^{\prime}=\sum_{i=1}^{r}\left(\ell_{k}-i\right)_{+} \quad \text { where } \quad\left(\ell_{k}-i\right)_{+}:=\left\{\begin{array}{cc}
\ell_{k}-i & \text { if } \ell_{k}-i \geq 0 \\
0 & \text { if } \ell_{k}-i \leq 0
\end{array}\right.
$$

On the other hand, $[T]_{\beta}$ consists of r Jordan blocks of sizes $\ell_{1}, \cdots, \ell_{r}$, and the diagonal entries are all zero. By direct computation, $[T]_{\beta}^{i}$ has $\sum_{i=1}^{r}\left(\ell_{k}-i\right)_{+}$linearly independent columns (see the computation in Exercise 19(a)). Thus

$$
\operatorname{rk}\left(T^{i}\right)=\operatorname{rk}\left([T]_{\beta}^{i}\right)=\# \beta^{\prime},
$$

which implies that β^{\prime} is a basis of $\operatorname{Im}\left(T^{i}\right)$.
(Or one can use that the dots you delete $=$ the total dots obtained by adding first i dots in each column $=\nu\left(T^{i}\right)$. Thus $\# \beta^{\prime}=\operatorname{dim} V-\nu\left(T^{i}\right)=\operatorname{rk}\left(T^{i}\right)$.)

