There are eight problems $1 \sim 8$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

In the following, all vector spaces are assumed to be finite dimensional. the characteristic polynomial of a square matrix $A \in M_{n}(F)$ is defined to be $\operatorname{det}(x I-A)$. Similarly for $T \in \mathcal{L}(V)$, the characteristic polynomial of $T$ is defined by

$$
\operatorname{det}\left(x I-[T]_{\beta}\right)
$$

where $[T]_{\beta}$ is the matrix representation of $T$ with respect to any ordered basis $\beta$ of $V$.

1. [20\%] True or false. (No explanation is needed.)
(a) Any square matrix $A \in M_{n}(F)$ is similar to a Jordan form $J \in M_{n}(F)$.
(b) $T \in \mathcal{L}(T)$ is diagonalizable if and only if the minimal polynomial of $T$ splits.
(c) Let $T \in \mathcal{L}(V)$. Let $W_{1}$ and $W_{2}$ be two $T$-cyclic subspaces of $V$ generated by $w_{1}$ and $w_{2}$, respectively. Suppose $W_{1}=W_{2}$. Then $w_{1}=w_{2}$.
(d) Let $T \in \mathcal{L}(V)$ and $v \in V$. The $T$-cyclic subspaces generated by $v$ and $T(v)$ are the same.
(e) Let $T \in \mathcal{L}(V)$. Suppose $W_{1}$ and $W_{2}$ are $T$-invariant subspaces of $V$ and $V=W_{1} \oplus W_{2}$. Then the characteristic polynomial of $T$ is the product of characteristic polynomials of $T_{W_{1}}$ and of $T_{W_{2}}$.
(f) Let $T \in \mathcal{L}(V)$. Suppose $W_{1}$ and $W_{2}$ are $T$-invariant subspaces of $V$ and $V=W_{1} \oplus W_{2}$. Then the minimal polynomial of $T$ is the product of minimal polynomials of $T_{W_{1}}$ and of $T_{W_{2}}$.
(g) Let $T \in \mathcal{L}(V)$ and $\widetilde{E}_{\lambda}$ be the generalized eigenspace of $V$ with eigenvalue $\lambda$. Then $\widetilde{E}_{\lambda}$ has a basis which is a union of cycles of generalized eigenvectors.
(h) Let $T \in \mathcal{L}(V)$. Then $V$ is a direct sum of $T$-cyclic subspaces.
2. [15\%] Let $T \in \mathcal{L}(V)$ with Jordan canonical form

$$
A:=J_{2}(2) \oplus J_{2}(2) \oplus J_{3}(3)=\left(\begin{array}{ccccccc}
2 & 1 & & & & & \\
& 2 & & & & & \\
& & 2 & 1 & & & \\
& & & 2 & & & \\
& & & & 3 & 1 & \\
& & & & & 3 & 1 \\
& & & & & & 3
\end{array}\right)
$$

(a) Find the characteristic polynomial and the minimal polynomial of $T$.
(b) Find the nullities of the following 6 linear transformations

$$
\begin{array}{lll}
T-2 I, & (T-2 I)^{2}, & (T-2 I)^{3} \\
T-3 I, & (T-3 I)^{2}, & (T-3 I)^{3}
\end{array}
$$

(c) Now suppose the field is $\mathbb{R}$. Find the exponential $e^{A}$ explicitly.
3. $[15 \%]$ Let $T \in \mathcal{L}(V)$. Let $p(x)$ be the characteristic polynomial and $q(x)$ the minimal polynomial of $T$. Prove the following results.
(a) There exists a positive integer $r$ such that $p(x)$ divides $q(x)^{r}$.
(b) $T$ is invertible if and only if $q(0) \neq 0$.
4. $[10 \%]$ Let $A=\left(\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & 1\end{array}\right) \in M_{4}(\mathbb{R})$ whose characteristic polynomial is

$$
x^{4}-4 x^{3}+14 x^{2}-20 x+25=\left(x^{2}-2 x+5\right)^{2}
$$

Find an invertible matrix $P$ and the rational canonical form $Q$ of $A$ such that $P^{-1} A P=Q$.
(Notice that $A^{2}-2 A+5 I=\left(\begin{array}{cccc}0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.)
5. $[20 \%]$ Let $S, T \in \mathcal{L}(V)$. Suppose $S T=0=T S$ and $S+T=I$. Show that
(a) $V=\operatorname{ker}(S) \oplus \operatorname{ker}(T)$ and $V=\operatorname{Im}(S) \oplus \operatorname{Im}(T)$.
(b) $\operatorname{ker}(S)=\operatorname{Im}(T)$ and $\operatorname{Im}(S)=\operatorname{ker}(T)$.
6. [15\%] Prove that any square matrix $A \in M_{n}(F)$ is similar to its transport $A^{t}$. (You may use Jordan forms to get partial credits.)
7. [15\%] Suppose $\operatorname{dim} V=n$ and $T \in \mathcal{L}(V)$ is diagonalizable. Show that $V$ is $T$-cyclic if and only if $T$ has $n$ distinct eigenvalues.
8. [30\%] Let $V$ be a finite dimensional vector space over the field $F$ and $T \in \mathcal{L}(V)$.
(a) Let $k$ be the degree of the minimal polynomial of $T$. Show that there exists a vector $v \in V$ such that the $T$-cyclic subspace $W:=\left\langle v, T(v), T^{2}(v), \cdots\right\rangle$ has dimension $k$.
(b) Prove the following version of rational canonical forms. There exist polynomials $f_{1}(x), f_{2}(x), \cdots, f_{r}(x) \in F[x]$ with

$$
f_{1}(x)\left|f_{2}(x), \quad f_{2}(x)\right| f_{3}(x), \quad \cdots, \quad f_{r-1}(x) \mid f_{r}(x)
$$

and an ordered basis $\beta$ of $V$ such that

$$
[T]_{\beta}=C\left(f_{1}(x)\right) \oplus C\left(f_{2}(x)\right) \oplus \cdots \oplus C\left(f_{r}(x)\right)
$$

Here $f(x) \mid g(x)$ means $f(x)$ divides $g(x)$, and $C\left(f_{i}(x)\right)$ denotes the companion form.

