There are eight problems $1 \sim 8$ in total; some problems contain sub-problems, indexed by (a), (b), etc.

In the following, all vector spaces are assumed to be finite dimensional. the characteristic polynomial of a square matrix $A \in M_n(F)$ is defined to be $\det(xI - A)$. Similarly for $T \in \mathcal{L}(V)$, the characteristic polynomial of T is defined by

$$\det(xI - [T]_\beta)$$

where $[T]_{\beta}$ is the matrix representation of T with respect to any ordered basis β of V.

- 1. [20%] True or false. (No explanation is needed.)
 - (a) Any square matrix $A \in M_n(F)$ is similar to a Jordan form $J \in M_n(F)$.
 - (b) $T \in \mathcal{L}(T)$ is diagonalizable if and only if the minimal polynomial of T splits.
 - (c) Let $T \in \mathcal{L}(V)$. Let W_1 and W_2 be two *T*-cyclic subspaces of *V* generated by w_1 and w_2 , respectively. Suppose $W_1 = W_2$. Then $w_1 = w_2$.
 - (d) Let $T \in \mathcal{L}(V)$ and $v \in V$. The *T*-cyclic subspaces generated by v and T(v) are the same.
 - (e) Let $T \in \mathcal{L}(V)$. Suppose W_1 and W_2 are *T*-invariant subspaces of *V* and $V = W_1 \oplus W_2$. Then the characteristic polynomial of *T* is the product of characteristic polynomials of T_{W_1} and of T_{W_2} .
 - (f) Let $T \in \mathcal{L}(V)$. Suppose W_1 and W_2 are *T*-invariant subspaces of *V* and $V = W_1 \oplus W_2$. Then the minimal polynomial of *T* is the product of minimal polynomials of T_{W_1} and of T_{W_2} .
 - (g) Let $T \in \mathcal{L}(V)$ and \widetilde{E}_{λ} be the generalized eigenspace of V with eigenvalue λ . Then \widetilde{E}_{λ} has a basis which is a union of cycles of generalized eigenvectors.
 - (h) Let $T \in \mathcal{L}(V)$. Then V is a direct sum of T-cyclic subspaces.
- 2. [15%] Let $T \in \mathcal{L}(V)$ with Jordan canonical form

- (a) Find the characteristic polynomial and the minimal polynomial of T.
- (b) Find the nullities of the following 6 linear transformations

$$T - 2I$$
, $(T - 2I)^2$, $(T - 2I)^3$,
 $T - 3I$, $(T - 3I)^2$, $(T - 3I)^3$.

- (c) Now suppose the field is \mathbb{R} . Find the exponential e^A explicitly.
- 3. [15%] Let $T \in \mathcal{L}(V)$. Let p(x) be the characteristic polynomial and q(x) the minimal polynomial of T. Prove the following results.
 - (a) There exists a positive integer r such that p(x) divides $q(x)^r$.
 - (b) T is invertible if and only if $q(0) \neq 0$.

4. [10%] Let
$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -2 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & 1 \end{pmatrix} \in M_4(\mathbb{R})$$
 whose characteristic polynomial is
 $x^4 - 4x^3 + 14x^2 - 20x + 25 = (x^2 - 2x + 5)^2.$

Find an invertible matrix P and the rational canonical form Q of A such that $P^{-1}AP = Q$. (Notice that $A^2 - 2A + 5I = \begin{pmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.)

- 5. [20%] Let $S, T \in \mathcal{L}(V)$. Suppose ST = 0 = TS and S + T = I. Show that
 - (a) $V = \ker(S) \oplus \ker(T)$ and $V = \operatorname{Im}(S) \oplus \operatorname{Im}(T)$.
 - (b) $\ker(S) = \operatorname{Im}(T)$ and $\operatorname{Im}(S) = \ker(T)$.
- 6. [15%] Prove that any square matrix $A \in M_n(F)$ is similar to its transport A^t . (You may use Jordan forms to get partial credits.)
- 7. [15%] Suppose dim V = n and $T \in \mathcal{L}(V)$ is diagonalizable. Show that V is T-cyclic if and only if T has n distinct eigenvalues.
- 8. [30%] Let V be a finite dimensional vector space over the field F and $T \in \mathcal{L}(V)$.
 - (a) Let k be the degree of the minimal polynomial of T. Show that there exists a vector $v \in V$ such that the T-cyclic subspace $W := \langle v, T(v), T^2(v), \cdots \rangle$ has dimension k.
 - (b) Prove the following version of rational canonical forms. There exist polynomials $f_1(x), f_2(x), \dots, f_r(x) \in F[x]$ with

 $f_1(x)|f_2(x), \quad f_2(x)|f_3(x), \quad \cdots, \quad f_{r-1}(x)|f_r(x)|$

and an ordered basis β of V such that

$$[T]_{\beta} = C(f_1(x)) \oplus C(f_2(x)) \oplus \cdots \oplus C(f_r(x)).$$

Here f(x)|g(x) means f(x) divides g(x), and $C(f_i(x))$ denotes the companion form.