Section 5.4

23. Hit the relation

$$
\begin{equation*}
v_{1}+\cdots+v_{k} \in W \tag{1}
\end{equation*}
$$

by T to obtain

$$
\begin{equation*}
\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k} \in W \tag{2}
\end{equation*}
$$

Use (1) and (2) to obtain a shorter sum which belongs to W, and then use induction.
24. First we have

$$
V=E_{\lambda_{1}} \oplus \cdots \oplus E_{\lambda_{r}}
$$

and we want to show that

$$
W=\left(W \cap E_{\lambda_{1}}\right) \oplus \cdots \oplus\left(W \cap E_{\lambda_{r}}\right)
$$

(Why is this enough?)
The inclusion " \supset " is clear. For " \subset " take any $w \in W$. Then $w=v_{1}+\cdots+v_{r}$ for some $v_{i} \in E_{\lambda_{i}}$ (why?). By Exercise 23, each v_{i} is also in W.
25. To show that $U\left(E_{\lambda}\right) \subset E_{\lambda}$, one hits $U\left(E_{\lambda}\right)$ by T and obtains

$$
T\left(U\left(E_{\lambda}\right)\right)=U\left(T\left(E_{\lambda}\right)\right)=U\left(\lambda \cdot E_{\lambda}\right)=\lambda \cdot U\left(E_{\lambda}\right)
$$

(Make sure you know the reason for each equality.) Thus $U\left(E_{\lambda}\right) \subset E_{\lambda}$ (why?).
38. For $" \Rightarrow$ ", use Exercise 23.
42. The matrix A is in fact diagonalizable with eigenvalues 0 and n. Your job: find $n-1$ linearly independent eigenvectors with eigenvalue 0 , and one eigenvector with eigenvalue n.

Section 2.6

13. (b) Construct a basis β of V which contains a basis of W and the vector x. Then take the dual basis of β.
(c) This exercise shows that $\left(S^{\circ}\right)^{\circ}$ is the smallest subspace of V containing S. In particular if W is a subspace of V, then $\left(W^{\circ}\right)^{\circ}=W$.
14. If we have shown that " W is T-invariant $\Rightarrow W^{\circ}$ is T^{t}-invariant", the other direction can be obtained by taking dual space again (using $\left(W^{\circ}\right)^{\circ}=W$ and $\left.\left(T^{t}\right)^{t}=T\right)$.
