April 17, 2013

- 1. (a) (F) If $ch_A(x)$ does not split, A is not similar to a Jordan form.
 - (b) (F) For example if $\min_A(x) = x^2$, then A is not diagonalizable.
 - (c) (F)
 - (d) (F) For example if $v \neq 0$ but T(v) = 0.
 - (e) (T)
 - (f) (F) For example if $\min_{T_{W_1}}(x) = \min_{T_{W_2}}(x)$, then $\min_T(x) = \min_{T_{W_1}}(x)$.
 - (g) (T) This follows from the construction of Jordan forms.
 - (h) (T) This can be seen from the construction of rational canonical forms.

2. (a)

$$ch_T(x) = det(xI - A) = (x - 2)^4 (x - 3)^3$$

 $min_T(x) = (x - 2)^2 (x - 3)^3.$

(b) The dot diagram of T looks like

We have

$$\nu(T - 2I) = \dim E_2 = 2$$

$$\nu((T - 2I)^2) = \dim \widetilde{E}_2 = 4$$

$$\nu((T - 2I)^3) = \dim \widetilde{E}_2 = 4$$

$$\nu(T - 3I) = \dim E_3 = 1$$

$$\nu((T - 3I)^2) = 2$$

$$\nu((T - 3I)^3) = \dim \widetilde{E}_3 = 3.$$

(c)

$$\exp(J_2(2)) = \exp\left(\begin{pmatrix} 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 \end{pmatrix}\right) = \exp\left(\begin{pmatrix} 2 \\ 2 \end{pmatrix}\right)\exp\left(\begin{pmatrix} 0 & 1 \\ 0 \end{pmatrix}\right)$$
$$= e^2 I \left[I + \begin{pmatrix} 0 & 1 \\ 0 \end{pmatrix}\right]$$
$$= e^2 \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix}$$

$$\exp(J_3(3)) = \exp\left(\begin{pmatrix} 3 & & \\ & 3 & \\ & & 3 \end{pmatrix}\right) \exp\left(\begin{pmatrix} 0 & 1 & & \\ & 0 & 1 \\ & & 0 \end{pmatrix}\right)$$
$$= e^3 I \left[I + \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 \\ & & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ & 0 & 0 \\ & & 0 \end{pmatrix}\right]$$
$$= e^3 \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ & 1 & 1 \\ & & 1 \end{pmatrix}$$

Thus

$$e^{A} = e^{2} \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix} \oplus e^{2} \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix} \oplus e^{3} \begin{pmatrix} 1 & 1 & \frac{1}{2} \\ & 1 & 1 \\ & & 1 \end{pmatrix}.$$

3. (a) If we write

$$p(x) = \phi_1(x)^{m_1} \cdots \phi_r(x)^{m_r}$$

where $\phi_i(x)$ are distinct irreducible factors of p(x), then we have

$$q(x) = \phi_1(x)^{a_1} \cdots \phi_r(x)^{a_r}$$

for some integers a_i with $1 \le a_i \le m_i$. Then it is clear that $p(x)|q(x)^r$ if we take, for example, $r = \max\{m_1, \cdots, m_r\}$.

(b) $q(0) \neq 0$ means that x is not a factor of q(x). By (a), we know that x is not a factor of p(x) either. This means that if we write

$$p(x) = x^n + \dots + a_1 x + a_0$$

then $a_0 \neq 0$. On the other hand, $a_0 = (-1)^n \det(T)$. Thus $\det(T) \neq 0$, which implies that T is invertible.

Or we can prove this directly by showing that T is injective as follows. Write

$$q(x) = x^m + \cdots + b_1 x + b_0$$
 with $b_0 \neq 0$

and suppose T(v) = 0 for some $v \in V$. Then

$$0 = q(T)(v) = T^{m}(v) + \dots + b_{1}T(v) + b_{0}v$$

= $(T^{m-1} + \dots + b_{1})(T(v)) + b_{0}v$
= $b_{0}v$.

Since $b_0 \neq 0$, we have v = 0.

4. There is only one irreducible factor $\phi(x) := x^2 - 2x + 5$ of $ch_A(x) = \phi(x)^2$. Thus the dot diagram consists of two points. Because $\phi(A) \neq 0$, the dot diagram is

and the rational canonical form is

$$Q = C(ch_A(x)) = \begin{pmatrix} 0 & 0 & 0 & -25\\ 1 & 0 & 0 & 20\\ 0 & 1 & 0 & -14\\ 0 & 0 & 1 & 4 \end{pmatrix}.$$

To find a cyclic basis corresponding to this digram, we need to find a possible end vector. In this case, this means to find a vector in \mathbb{R}^4 which is not in the kernel of $\phi(A)$. We have $\ker(\phi(A)) = \langle e_1, e_2 \rangle$. Thus we can take e_4 to be the end vector. Then

$$P = \left(e_4, Ae_4, A(Ae_4), A(A(Ae_4))\right) = \left(\begin{array}{rrrr} 0 & 0 & 4 & 12\\ 0 & 1 & 2 & -9\\ 0 & 2 & 4 & -2\\ 1 & 1 & -3 & -11 \end{array}\right)$$

5. Let dim V = n. From S + T = I, we have V = Im(S) + Im(T) and hence

$$n \le \operatorname{rk}(S) + \operatorname{rk}(T). \tag{1}$$

Since ST = TS = 0, we have $Im(S) \subset ker(T), Im(T) \subset ker(S)$ and in particular,

$$\operatorname{rk}(S) \le \nu(T), \quad \operatorname{rk}(T) \le \nu(S).$$
 (2)

Together with the dimension formula, we obtain

$$n \leq \operatorname{rk}(S) + \operatorname{rk}(T) \leq \nu(T) + \operatorname{rk}(T) = n.$$

Thus the above two inequalities are indeed equalities and we have

$$\operatorname{Im}(S) = \ker(T), \quad V = \operatorname{Im}(S) \oplus \operatorname{Im}(T).$$

Similarly we have

$$\operatorname{Im}(T) = \ker(S)$$

and hence $V = \ker(S) \oplus \ker(T)$.

6. To show that A and A^t are similar, it suffices to show that they have the same dot diagram, and hence they have the same rational canonical form.

Write

$$ch_A(x) = \phi_1(x)^{m_1} \cdots \phi_r(x)^{m_r}$$

where $\phi_i(x)$ are distinct irreducible factors of the characteristic polynomial. Then

$$ch_{A^t}(x) = \phi_1(x)^{m_1} \cdots \phi_r(x)^m$$

and for any positive integer k, we have

$$\operatorname{rk}\left(\phi_i(A)^k\right) = \operatorname{rk}\left((\phi_i(A)^k)^t\right) = \operatorname{rk}\left(\phi_i(A^t)^k\right).$$

The statement now follows.

7. *Exercise*. Check out Theorem 7.15 in textbook and see why the theorem is not enough to prove this question easily.

 (\Longrightarrow) Since T is diagonalizable,

$$\min_T(x) = \prod_{i=1}^r (x - \lambda_i)$$

where λ_i are distinct eigenvalues of T. Now V being T-cyclic implies that $ch_T(x) = \min_T(x)$. Therefore $r = \dim V$ and each eigenspace is 1-dimensional.

(\Leftarrow) Let $n = \dim V$. Take eigenvectors $v_i, 1 \le i \le n$, of T with distinct eigenvalues. Then $\{v_i\}_{i=1}^n$ forms a basis of V. Let $v = v_1 + \cdots + v_n$. We shall show that β_v is a basis of V and hence V is T-cyclic. Indeed the subspace W generated by β_v is the smallest T-invariant subspace containing v. Since v_i are in different eigenspaces, $v \in W$ then implies $v_i \in W$ for all i. Therefore W = V.

8. First we prove the following statement.

Let $u, v \in V$ and w = u + v. Let $f(x), g(x), h(x) \in F[x]$ be the monic polynomials of smallest possible degree such that f(T)(u) = g(T)(v) = h(T)(w) = 0 (i.e. f(x) is the Tannihilator of v and so on). Suppose that f(x) and g(x) are co-prime to each other. Then h(x) = f(x)g(x).

Proof. First notice that f(T)g(T)(w) = 0.

Now suppose that $\phi(x)$ is irreducible with deg $\phi(x) \ge 1$ such that $\phi(x) \mid f(x)g(x)$. Then $\phi(x)$ must divide exact one of f(x) and g(x) because gcd(f(x), g(x)) = 1. After rearrangement, we may assume that $\phi(x) \mid f(x)$ but $\phi(x) \nmid g(x)$. Let $k(x) = f(x)/\phi(x)$, which is then a polynomial. We claim that $k(T)g(T)(w) \ne 0$.

Suppose otherwise that k(T)g(T)(w) = 0. Since w = u + v and g(T)(v) = 0, we have k(T)g(T)(u) = 0. This implies that $f(x) \mid k(x)g(x)$, which is impossible. (Remember that gcd(f(x), g(x)) = 1 and deg k(x) < deg f(x).)

Therefore any monic factor $\ell(x)$ of f(x)g(x) of smaller degree will have $\ell(T)(w) \neq 0$. Hence the *T*-annihilator of *w* is f(x)g(x).

(a) Write

$$ch_T(x) = \phi_1(x)^{m_1} \cdots \phi_k(x)^{m_k}$$
 and $min_T(x) = \phi_1(x)^{a_1} \cdots \phi_k(x)^{a_k}$

for some $1 \leq a_i \leq m_i$ where $\phi_i(x)$ are distinct monic factors of $\operatorname{ch}_T(x)$. Then there are vectors v_i whose *T*-annihilators are $\phi_i(x)^{a_i}$. According to the property proved above, we see that $v_1 + v_2$ has *T*-annihilator $\phi_1(x)^{a_1}\phi_2(x)^{a_2}$; $(v_1 + v_2) + v_3$ has *T*-annihilator $(\phi_1(x)^{a_1}\phi_2(x)^{a_2})\phi_3(x)^{a_3}$, and inductively $w := \sum_{i=1}^k v_i$ has *T*-annihilator $\min_T(x)$. Thus w generates a *T*-cyclic subspace of dimension = deg $\min_T(x)$.

(b) Let r_i be the number of $\phi_i(T)$ -cycles, listed from longer to shorter, in the dot diagram for $\tilde{E}(\phi_i)$ and let $r = \max\{r_1, r_2, \dots, r_k\}$. Let $v_{i1}, v_{i2}, \dots, v_{ir}$ be the end vectors of these cycles of lengths $\ell_{i1} \ge \ell_{i2} \ge \dots \ge \ell_{ir}$, respectively. (In case $r_i < r$ and there is no such cycle in the dot diagram, we simply take the end vector to be 0.) Then as in (a), the vector

$$w_j := \sum_{i=1}^k v_{ij} \tag{3}$$

has T-annihilator $g_j(x) := \prod_{i=1}^k \phi_i(x)^{\ell_{ij}}$ for $j = 1, 2, \cdots, r$, satisfying

 $g_r(x) \mid g_{r-1}(x) \mid \cdots \mid g_2(x) \mid g_1(x).$

Thus β_{w_j} is a *T*-cyclic basis of a *T*-invariant subspace W_j and we have $[T_{W_j}]_{\beta_{w_j}} = C(g_j(x))$.

If now the disjoint union of β_{w_j} forms a basis of V, then the ordered basis $\beta = \beta_{w_r} \cup \cdots \cup \beta_{w_1}$ is what we want (with $f_j = g_{r+1-j}$). So we are left to show that β is a basis of V.

Indeed by the definition (3), it is clear that

$$W_j = \langle \beta_{w_j} \rangle \subset W'_j := \langle \beta_{v_{1j}} \rangle \oplus \langle \beta_{v_{2j}} \rangle \oplus \cdots \oplus \langle \beta_{v_{rj}} \rangle.$$

(The W'_j is the sum of *T*-cyclic subspaces corresponding to certain cycles in the dot diagram.) However both spaces have dimension deg $g_j = \sum_{i=1}^k \ell_{ij}$. Thus $W_j = W'_j$ and

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_r.$$

The last equality shows that β is a basis of V.