April 17, 2013

1. (a) (F) If $\operatorname{ch}_{A}(x)$ does not split, A is not similar to a Jordan form.
(b) (F) For example if $\min _{A}(x)=x^{2}$, then A is not diagonalizable.
(c) (F)
(d) (F) For example if $v \neq 0$ but $T(v)=0$.
(e) (T)
(f) (F) For example if $\min _{T_{W_{1}}}(x)=\min _{T_{W_{2}}}(x)$, then $\min _{T}(x)=\min _{T_{W_{1}}}(x)$.
(g) (T) This follows from the construction of Jordan forms.
(h) (T) This can be seen from the construction of rational canonical forms.
2. (a)

$$
\begin{aligned}
\operatorname{ch}_{T}(x) & =\operatorname{det}(x I-A)=(x-2)^{4}(x-3)^{3} \\
\min _{T}(x) & =(x-2)^{2}(x-3)^{3} .
\end{aligned}
$$

(b) The dot diagram of T looks like

We have

$$
\begin{aligned}
\nu(T-2 I) & =\operatorname{dim} E_{2}=2 \\
\nu\left((T-2 I)^{2}\right) & =\operatorname{dim} \widetilde{E}_{2}=4 \\
\nu\left((T-2 I)^{3}\right) & =\operatorname{dim} \widetilde{E}_{2}=4 \\
\nu(T-3 I) & =\operatorname{dim} E_{3}=1 \\
\nu\left((T-3 I)^{2}\right) & =2 \\
\nu\left((T-3 I)^{3}\right) & =\operatorname{dim} \widetilde{E}_{3}=3 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\exp \left(J_{2}(2)\right)=\exp \left(\left(\begin{array}{ll}
2 & \\
& 2
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
& 0
\end{array}\right)\right) & =\exp \left(\left(\begin{array}{ll}
2 & \\
& 2
\end{array}\right)\right) \exp \left(\left(\begin{array}{ll}
0 & 1 \\
& 0
\end{array}\right)\right) \\
& =e^{2} I\left[I+\left(\begin{array}{ll}
0 & 1 \\
& 0
\end{array}\right)\right] \\
& =e^{2}\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right) \\
\exp \left(J_{3}(3)\right)= & \exp \left(\left(\begin{array}{lll}
3 & & \\
& 3 & \\
& & 3
\end{array}\right)\right) \exp \left(\left(\begin{array}{lll}
0 & 1 \\
& 0 & 1 \\
& & 0
\end{array}\right)\right) \\
& =e^{3} I\left[I+\left(\begin{array}{lll}
0 & 1 & \\
& 0 & 1 \\
& & \\
& & 0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
& 0 & 0 \\
& & 0
\end{array}\right)\right] \\
& \\
&
\end{aligned}
$$

Thus

$$
e^{A}=e^{2}\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right) \oplus e^{2}\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right) \oplus e^{3}\left(\begin{array}{ccc}
1 & 1 & \frac{1}{2} \\
& 1 & 1 \\
& & 1
\end{array}\right)
$$

3. (a) If we write

$$
p(x)=\phi_{1}(x)^{m_{1}} \cdots \phi_{r}(x)^{m_{r}}
$$

where $\phi_{i}(x)$ are distinct irreducible factors of $p(x)$, then we have

$$
q(x)=\phi_{1}(x)^{a_{1}} \cdots \phi_{r}(x)^{a_{r}}
$$

for some integers a_{i} with $1 \leq a_{i} \leq m_{i}$. Then it is clear that $p(x) \mid q(x)^{r}$ if we take, for example, $r=\max \left\{m_{1}, \cdots, m_{r}\right\}$.
(b) $q(0) \neq 0$ means that x is not a factor of $q(x)$. By (a), we know that x is not a factor of $p(x)$ either. This means that if we write

$$
p(x)=x^{n}+\cdots+a_{1} x+a_{0},
$$

then $a_{0} \neq 0$. On the other hand, $a_{0}=(-1)^{n} \operatorname{det}(T)$. Thus $\operatorname{det}(T) \neq 0$, which implies that T is invertible.
Or we can prove this directly by showing that T is injective as follows. Write

$$
q(x)=x^{m}+\cdots b_{1} x+b_{0} \quad \text { with } b_{0} \neq 0
$$

and suppose $T(v)=0$ for some $v \in V$. Then

$$
\begin{aligned}
0=q(T)(v) & =T^{m}(v)+\cdots+b_{1} T(v)+b_{0} v \\
& =\left(T^{m-1}+\cdots+b_{1}\right)(T(v))+b_{0} v \\
& =b_{0} v .
\end{aligned}
$$

Since $b_{0} \neq 0$, we have $v=0$.
4. There is only one irreducible factor $\phi(x):=x^{2}-2 x+5$ of $\operatorname{ch}_{A}(x)=\phi(x)^{2}$. Thus the dot diagram consists of two points. Because $\phi(A) \neq 0$, the dot diagram is

and the rational canonical form is

$$
Q=C\left(\operatorname{ch}_{A}(x)\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & -25 \\
1 & 0 & 0 & 20 \\
0 & 1 & 0 & -14 \\
0 & 0 & 1 & 4
\end{array}\right) .
$$

To find a cyclic basis corresponding to this digram, we need to find a possible end vector. In this case, this means to find a vector in \mathbb{R}^{4} which is not in the kernel of $\phi(A)$. We have $\operatorname{ker}(\phi(A))=\left\langle e_{1}, e_{2}\right\rangle$. Thus we can take e_{4} to be the end vector. Then

$$
P=\left(e_{4}, A e_{4}, A\left(A e_{4}\right), A\left(A\left(A e_{4}\right)\right)\right)=\left(\begin{array}{cccc}
0 & 0 & 4 & 12 \\
0 & 1 & 2 & -9 \\
0 & 2 & 4 & -2 \\
1 & 1 & -3 & -11
\end{array}\right) .
$$

5. Let $\operatorname{dim} V=n$. From $S+T=I$, we have $V=\operatorname{Im}(S)+\operatorname{Im}(T)$ and hence

$$
\begin{equation*}
n \leq \operatorname{rk}(S)+\operatorname{rk}(T) \tag{1}
\end{equation*}
$$

Since $S T=T S=0$, we have $\operatorname{Im}(S) \subset \operatorname{ker}(T), \operatorname{Im}(T) \subset \operatorname{ker}(S)$ and in particular,

$$
\begin{equation*}
\operatorname{rk}(S) \leq \nu(T), \quad \operatorname{rk}(T) \leq \nu(S) \tag{2}
\end{equation*}
$$

Together with the dimension formula, we obtain

$$
n \underset{(1)}{\leq} \operatorname{rk}(S)+\operatorname{rk}(T) \underset{(2)}{\leq} \nu(T)+\operatorname{rk}(T)=n
$$

Thus the above two inequalities are indeed equalities and we have

$$
\operatorname{Im}(S)=\operatorname{ker}(T), \quad V=\operatorname{Im}(S) \oplus \operatorname{Im}(T)
$$

Similarly we have

$$
\operatorname{Im}(T)=\operatorname{ker}(S)
$$

and hence $V=\operatorname{ker}(S) \oplus \operatorname{ker}(T)$.
6. To show that A and A^{t} are similar, it suffices to show that they have the same dot diagram, and hence they have the same rational canonical form.

Write

$$
\operatorname{ch}_{A}(x)=\phi_{1}(x)^{m_{1}} \cdots \phi_{r}(x)^{m_{r}}
$$

where $\phi_{i}(x)$ are distinct irreducible factors of the characteristic polynomial. Then

$$
\operatorname{ch}_{A^{t}}(x)=\phi_{1}(x)^{m_{1}} \cdots \phi_{r}(x)^{m_{r}}
$$

and for any positive integer k, we have

$$
\operatorname{rk}\left(\phi_{i}(A)^{k}\right)=\operatorname{rk}\left(\left(\phi_{i}(A)^{k}\right)^{t}\right)=\operatorname{rk}\left(\phi_{i}\left(A^{t}\right)^{k}\right)
$$

The statement now follows.
7. Exercise. Check out Theorem 7.15 in textbook and see why the theorem is not enough to prove this question easily.
(\Longrightarrow) Since T is diagonalizable,

$$
\min _{T}(x)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)
$$

where λ_{i} are distinct eigenvalues of T. Now V being T-cyclic implies that $\operatorname{ch}_{T}(x)=$ $\min _{T}(x)$. Therefore $r=\operatorname{dim} V$ and each eigenspace is 1-dimensional.
(\Longleftarrow) Let $n=\operatorname{dim} V$. Take eigenvectors $v_{i}, 1 \leq i \leq n$, of T with distinct eigenvalues. Then $\left\{v_{i}\right\}_{i=1}^{n}$ forms a basis of V. Let $v=v_{1}+\cdots+v_{n}$. We shall show that β_{v} is a basis of V and hence V is T-cyclic. Indeed the subspace W generated by β_{v} is the smallest T-invariant subspace containing v. Since v_{i} are in different eigenspaces, $v \in W$ then implies $v_{i} \in W$ for all i. Therefore $W=V$.
8. First we prove the following statement.

Let $u, v \in V$ and $w=u+v$. Let $f(x), g(x), h(x) \in F[x]$ be the monic polynomials of smallest possible degree such that $f(T)(u)=g(T)(v)=h(T)(w)=0 \quad$ (i.e. $f(x)$ is the T annihilator of v and so on). Suppose that $f(x)$ and $g(x)$ are co-prime to each other. Then $h(x)=f(x) g(x)$.
Proof. First notice that $f(T) g(T)(w)=0$.
Now suppose that $\phi(x)$ is irreducible with $\operatorname{deg} \phi(x) \geq 1$ such that $\phi(x) \mid f(x) g(x)$. Then $\phi(x)$ must divide exact one of $f(x)$ and $g(x)$ because $\operatorname{gcd}(f(x), g(x))=1$. After rearrangement, we may assume that $\phi(x) \mid f(x)$ but $\phi(x) \nmid g(x)$. Let $k(x)=f(x) / \phi(x)$, which is then a polynomial. We claim that $k(T) g(T)(w) \neq 0$.
Suppose otherwise that $k(T) g(T)(w)=0$. Since $w=u+v$ and $g(T)(v)=0$, we have $k(T) g(T)(u)=0$. This implies that $f(x) \mid k(x) g(x)$, which is impossible. (Remember that $\operatorname{gcd}(f(x), g(x))=1$ and $\operatorname{deg} k(x)<\operatorname{deg} f(x)$.
Therefore any monic factor $\ell(x)$ of $f(x) g(x)$ of smaller degree will have $\ell(T)(w) \neq 0$. Hence the T-annihilator of w is $f(x) g(x)$.
(a) Write

$$
\operatorname{ch}_{T}(x)=\phi_{1}(x)^{m_{1}} \cdots \phi_{k}(x)^{m_{k}} \quad \text { and } \quad \min _{T}(x)=\phi_{1}(x)^{a_{1}} \cdots \phi_{k}(x)^{a_{k}}
$$

for some $1 \leq a_{i} \leq m_{i}$ where $\phi_{i}(x)$ are distinct monic factors of $\operatorname{ch}_{T}(x)$. Then there are vectors v_{i} whose T-annihilators are $\phi_{i}(x)^{a_{i}}$. According to the property proved above, we see that $v_{1}+v_{2}$ has T-annihilator $\phi_{1}(x)^{a_{1}} \phi_{2}(x)^{a_{2}} ;\left(v_{1}+v_{2}\right)+v_{3}$ has T-annihilator $\left(\phi_{1}(x)^{a_{1}} \phi_{2}(x)^{a_{2}}\right) \phi_{3}(x)^{a_{3}}$, and inductively $w:=\sum_{i=1}^{k} v_{i}$ has T-annihilator $\min _{T}(x)$. Thus w generates a T-cyclic subspace of dimension $=\operatorname{deg} \min _{T}(x)$.
(b) Let ${\underset{\sim}{r}}$ be the number of $\phi_{i}(T)$-cycles, listed from longer to shorter, in the dot diagram for $\widetilde{E}\left(\phi_{i}\right)$ and let $r=\max \left\{r_{1}, r_{2}, \cdots, r_{k}\right\}$. Let $v_{i 1}, v_{i 2}, \cdots, v_{i r}$ be the end vectors of these cycles of lengths $\ell_{i 1} \geq \ell_{i 2} \geq \cdots \geq \ell_{i r}$, respectively. (In case $r_{i}<r$ and there is no such cycle in the dot diagram, we simply take the end vector to be 0.) Then as in (a), the vector

$$
\begin{equation*}
w_{j}:=\sum_{i=1}^{k} v_{i j} \tag{3}
\end{equation*}
$$

has T-annihilator $g_{j}(x):=\prod_{i=1}^{k} \phi_{i}(x)^{\ell_{i j}}$ for $j=1,2, \cdots, r$, satisfying

$$
g_{r}(x)\left|g_{r-1}(x)\right| \cdots\left|g_{2}(x)\right| g_{1}(x)
$$

Thus $\beta_{w_{j}}$ is a T-cyclic basis of a T-invariant subspace W_{j} and we have $\left[T_{W_{j}}\right]_{\beta_{w_{j}}}=$ $C\left(g_{j}(x)\right)$.
If now the disjoint union of $\beta_{w_{j}}$ forms a basis of V, then the ordered basis $\beta=$ $\beta_{w_{r}} \cup \cdots \cup \beta_{w_{1}}$ is what we want (with $f_{j}=g_{r+1-j}$). So we are left to show that β is a basis of V.
Indeed by the definition (3), it is clear that

$$
W_{j}=\left\langle\beta_{w_{j}}\right\rangle \subset W_{j}^{\prime}:=\left\langle\beta_{v_{1 j}}\right\rangle \oplus\left\langle\beta_{v_{2 j}}\right\rangle \oplus \cdots \oplus\left\langle\beta_{v_{r j}}\right\rangle
$$

(The W_{j}^{\prime} is the sum of T-cyclic subspaces corresponding to certain cycles in the dot diagram.) However both spaces have dimension $\operatorname{deg} g_{j}=\sum_{i=1}^{k} \ell_{i j}$. Thus $W_{j}=W_{j}^{\prime}$ and

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}
$$

The last equality shows that β is a basis of V.

