June 4, 2013

1. (a) We have

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
\|x-y\|^{2} & =\langle x-y, x-y\rangle \\
& =\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle
\end{aligned}
$$

and hence

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\langle x, x\rangle+2\langle y, y\rangle=2\|x\|^{2}+2\|y\|^{2}
$$

(b) (\Leftarrow) After rearrangement we could assume that $y=\alpha x$ for some $\alpha \in F$. Then

$$
\begin{aligned}
|\langle x, y\rangle|=|\langle x, \alpha x\rangle| & =|\alpha| \cdot\|x\|^{2} \\
& =\|x\| \cdot\|\alpha x\|=\|x\| \cdot\|y\|
\end{aligned}
$$

(\Rightarrow) If $x=0$, then $x=0 \cdot y$ and we are done. Now assume that $x \neq 0$. Write $y=\alpha x+\varepsilon$ for some $\alpha \in F$ and $\varepsilon \in \operatorname{Span}\{x\}^{\perp}$. Then

$$
\begin{gathered}
|\langle x, y\rangle|^{2}=|\alpha|^{2} \cdot\|x\|^{4} \\
\|x\|^{2}\|y\|^{2}=\|x\|^{2}\|\alpha x+\varepsilon\|^{2}=\|x\|^{2}\left(|\alpha|^{2}\|x\|^{2}+\|\varepsilon\|^{2}\right) .
\end{gathered}
$$

Thus we have $\|\varepsilon\|^{2}=0$, which implies that $\varepsilon=0$ and hence y is a multiple of x.
2. (a) Suppose $v \in W_{1}$. Then for all $w \in W_{1}^{\perp}$ we have $\langle v, w\rangle=0$. Thus $W_{1} \subset\left(W_{1}^{\perp}\right)^{\perp}$. Since

$$
\begin{aligned}
\operatorname{dim}\left(W_{1}^{\perp}\right)^{\perp} & =\operatorname{dim} V-\operatorname{dim} W_{1}^{\perp} \\
& =\operatorname{dim} V-\left(\operatorname{dim} V-\operatorname{dim} W_{1}\right) \\
& =\operatorname{dim} W_{1}
\end{aligned}
$$

Therefore $W_{1}=\left(W_{1}^{\perp}\right)^{\perp}$.
(b) Since $W_{1}+W_{2}$ contains W_{1} and W_{2}, we see that $\left(W_{1}+W_{2}\right)^{\perp}$ is contained in both W_{1}^{\perp} and W_{2}^{\perp}.
On the other hand, suppose $v \in W_{1}^{\perp} \cap W_{2}^{\perp}$. For any $w \in W_{1}+W_{2}$, one can write $w=w_{1}+w_{2}$ for some $w_{i} \in W_{i}$. Then we have

$$
\langle v, w\rangle=\left\langle v, w_{1}+w_{2}\right\rangle=\left\langle v, w_{1}\right\rangle+\left\langle v, w_{2}\right\rangle=0+0=0
$$

Thus $W_{1}^{\perp} \cap W_{2}^{\perp} \subset\left(W_{1}+W_{2}\right)^{\perp}$.
(c) Plugging the two subspaces W_{1}^{\perp} and W_{2}^{\perp} into (b) and using (a), one obtains

$$
\left(W_{1}^{\perp}+W_{2}^{\perp}\right)^{\perp}=\left(W_{1}^{\perp}\right)^{\perp} \cap\left(W_{2}^{\perp}\right)^{\perp}=W_{1} \cap W_{2}
$$

Taking perp in the above equation and applying (a) again, we get

$$
\left(W_{1} \cap W_{2}\right)^{\perp}=\left(\left(W_{1}^{\perp}+W_{2}^{\perp}\right)^{\perp}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}
$$

3. Suppose W is T-invariant. Let $v \in W^{\perp}$. For all $w \in W$, we have

$$
\left\langle T^{*}(v), w\right\rangle=\langle v, T(w)\rangle=0
$$

Thus W^{\perp} is T^{*}-invariant.
On the other hand, if W^{\perp} is T^{*}-invariant, then $\left(W^{\perp}\right)^{\perp}$ is $\left(T^{*}\right)^{*}$-invariant. Since $\left(W^{\perp}\right)^{\perp}=$ W and $\left(T^{*}\right)^{*}=T$, the statement follows.
4. We apply the Gram-Schmidt process to the basis

$$
v_{1}=(1,2,2), e_{1}=(1,0,0), e_{2}=(0,1,0)
$$

of \mathbb{R}^{3}.
Using e_{1} to modify v to obtain a vector in $\operatorname{Span}\{v\}^{\perp}$, one gets the vector

$$
v_{2}=-9 e_{1}+v_{1}=(-8,2,2) .
$$

Now suppose

$$
v_{3}:=v_{1}+(\alpha-1) e_{1}+(\beta-2) e_{2}=(\alpha, \beta, 2) \in \operatorname{Span}\left\{v_{1}, e_{1}\right\}^{\perp}
$$

Then

$$
\begin{aligned}
\alpha+2 \beta+4 & =\left\langle v_{3}, v_{1}\right\rangle=0 \\
\alpha & =\left\langle v_{3}, e_{1}\right\rangle=0 .
\end{aligned}
$$

Thus we obtain the orthogonal basis v_{1}, v_{2} and

$$
v_{3}=(0,-2,2)
$$

Normalizing the vectors, we obtain the orthogonal matrix

$$
\left(\begin{array}{ccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\
\frac{-4}{\sqrt{18}} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{18}} \\
0 & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

5. (a) The direction (\Rightarrow) is clear since two similar matrices have the same characteristic polynomial.
(\Leftarrow) A normal complex matrix is unitarily similar to a diagonal matrix whose diagonal entries are the eigenvalues. Thus A and B are unitarily similar to a certain diagonal matrix and hence they are unitarily similar.
(b) In fact there are unitary matrices X, Y and a diagonal matrix D with non-negative diagonal entries $\sigma_{1}, \cdots, \sigma_{n}$ such that $A=X D Y$. Then

$$
\begin{aligned}
A^{*} A & =Y^{*} D^{*} X^{*} X D Y=Y^{*} D^{2} Y \\
A A^{*} & =X D Y Y^{*} D^{*} X^{*}=X D^{2} X^{*}
\end{aligned}
$$

Therefore $A^{*} A$ and $A A^{*}$ are both unitarily similar to D^{2} and consequently they are unitarily similar.
6. In $M_{n}(\mathbb{R})$, there exists an orthogonal matrix X and a diagonal matrix D with diagonal $\lambda_{1}, \cdots, \lambda_{n}$ such that $A=X D X^{t}$. Since $I=X^{t} A^{r} X=D^{r}$, we see that the real numbers λ_{i} satisfy $\lambda_{i}^{r}=1$. Thus $\lambda_{i}= \pm 1$ and we have $A^{2}=X D^{2} X^{t}=I$.
7. (a) We have

$$
\begin{aligned}
0=H(v+w, v+w) & =H(v, v)+H(v, w)+H(w, v)+H(w, w) \\
& =H(v, w)+H(w, v) .
\end{aligned}
$$

(b) We find the desired basis by induction on $\operatorname{dim} V$.

First if $\operatorname{dim} V=1$, then any basis $\{u\}$ would satisfy $H(u, u)=0$. In this case, $a=0, b=1$.

Now suppose $\operatorname{dim} V \geq 2$. If in case $H(x, y)=0$ for all $x, y \in V$, then any basis $\left\{u_{1}, \cdots, u_{n}\right\}$ of V satisfies the requirement (with $a=0, b=n$).
So suppose that $\operatorname{dim} V \geq 2$ and there exist $v_{1}, w_{1} \in V$ such that $H\left(v_{1}, w_{1}\right)=c \neq 0$. First notice that $v_{1}, w_{1} \neq 0$. Secondly after replacing w_{1} by $\frac{1}{c} \cdot w_{1}$, we can assume that $H\left(v_{1}, w_{1}\right)=1$. Thirdly any of v_{1} and w_{1} cannot be a multiple of the other by (a). Thus $W:=\operatorname{Span}\left\{v_{1}, w_{1}\right\}$ is a two-dimensional subspace of V.

Define

$$
W^{\perp}:=\{v \in V \mid H(v, w)=0 \forall w \in W\} ;
$$

it is clearly a subspace of V. We now show that $V=W \oplus W^{\perp}$. Fix $v \in V$. If we have $v=\xi v_{1}+\eta w_{1}+\varepsilon$ for some $\xi, \eta \in F$ and $\varepsilon \in W^{\perp}$, then

$$
\begin{aligned}
H\left(v_{1}, v\right) & =H\left(v_{1}, \xi v_{1}+\eta w_{1}+\varepsilon\right)=\eta \\
H\left(w_{1}, v\right) & =H\left(w_{1}, \xi v_{1}+\eta w_{1}+\varepsilon\right)=-\xi .
\end{aligned}
$$

That is, ξ, η and ε are uniquely determined by v if they exist. This shows that $W \cap W^{\perp}=\{0\}$. On the other hand, if we let $(\xi, \eta)=\left(-H\left(w_{1}, v\right), H\left(v_{1}, v\right)\right)$ and $\varepsilon=v-\xi v_{1}-\eta w_{1}$, then a direct computation shows that $H\left(v_{1}, \varepsilon\right)=H\left(w_{1}, \varepsilon\right)=0$. This shows that $V=W+W^{\perp}$.
At this point, we just restrict the bilinear form H to the subspace W^{\perp}. Since $\operatorname{dim} W^{\perp}$ is strictly smaller than $\operatorname{dim} V$, the induction hypothesis implies that there exists a basis $\beta^{\prime}=\left\{v_{2}, w_{2}, \cdots, u_{1}, \cdots\right\}$ of W^{\perp} such that the matrix $\psi_{\beta^{\prime}}\left(H_{W^{\perp}}\right)$ is of the correct shape. Let $\beta=\left\{v_{1}, w_{1}\right\} \cup \beta^{\prime}$. Then β is a basis of V and it satisfies the requirement.
8. (a) Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n}. We use induction on n to find $v_{r}=e_{r}+$ (a linear combination of e_{1}, \cdots, e_{r-1}) that satisfies the requirement.
If $n=1$, we take v_{1} to be the standard basis. Then $v_{1}^{t} A v_{1}=\Delta_{1}$.
Assume that $n \geq 2$. Then the matrix A_{n-1} is a symmetric matrix whose upper left sub-matrices have determinants $\neq 0$. Thus by induction, there exist column vectors $v_{1}^{\prime}, \cdots, v_{n-1}^{\prime}$ in \mathbb{R}^{n-1} of the shape $v_{r}^{\prime}=e_{r}+$ (a linear combination of e_{1}, \cdots, e_{r-1}) satisfying $\left(v_{r}^{\prime}\right)^{t} A_{n-1} v_{r}^{\prime}=\Delta_{r} / \Delta_{r-1}$, etc (with $\Delta_{0}=1$).
For $r=1, \cdots, n-1$, let $v_{r} \in \mathbb{R}^{n}$ obtained by adding 0 in the n-th entry to v_{r}^{\prime}. Let

$$
\begin{aligned}
v_{n} & =e_{n}+\sum_{i=1}^{n-1} \frac{-a_{n i} \Delta_{i-1}}{\Delta_{i}} v_{i} \\
& =e_{n}+\left(\text { a linear combination of } e_{1}, \cdots, e_{n-1}\right) .
\end{aligned}
$$

Then by a direct computation, we have $v_{n}^{t} A v_{r}=0$ for $1 \leq r<n$. To compute $\alpha:=v_{n}^{t} A v_{n}$, let $P=\left(v_{1}, \cdots, v_{n}\right) \in M_{n}(\mathbb{R})$. We have

$$
P=\left(\begin{array}{llll}
1 & & * & \\
& 1 & & \\
& & \ddots & \\
& 0 & & 1
\end{array}\right)
$$

is upper-triangular with 1 in the diagonal, and

$$
P^{t} A P=\left(v_{i}^{t} A v_{j}\right)=\left(\begin{array}{ccccc}
\Delta_{1} & & & 0 & \\
& \frac{\Delta_{2}}{\Delta_{1}} & & & \\
& & \ddots & & \\
& & & \frac{\Delta_{n-1}}{\Delta_{n-2}} & \\
& 0 & & & \alpha
\end{array}\right)
$$

Taking determinants on both sides, we obtain $\alpha=\operatorname{det}(A) / \Delta_{n-1}$, which is what we want.
[This can be regarded as Gram-Schmidt process for symmetric bilinear forms. Notice that here we do not require the field F to be \mathbb{R}.]
(b) (\Rightarrow) We use induction on n.

If $n=1$, then $\Delta_{1}=e_{1}^{t} A e_{1}>0$ and we are done.
Suppose $n \geq 2$. As in (a), we can consider the smaller matrix A_{n-1}, which is then positive definite because

$$
v^{t} A_{n-1} v=\left(v^{t}, 0\right) A\binom{v}{0}>0
$$

for any non-zero $v \in \mathbb{R}^{n-1}$. By induction, we obtain $\Delta_{r}>0$ for $1 \leq r<n$. For $\Delta_{n}=$ $\operatorname{det} A$, notice that A is diagonalizable (since A is symmetric) and all its eigenvalues are positive (since A is positive definite). Thus $\operatorname{det} A=$ product of eigenvalues >0.
(\Leftarrow) Method I. By (a), there exists a basis $\left\{v_{1}, \cdots, v_{n}\right\}$ such that

$$
v_{i}^{t} A v_{j} \begin{cases}>0 & i=j \\ =0 & i \neq j\end{cases}
$$

Thus for any non-zero $v \in V$, we have $v=\sum_{i} \alpha_{i} v_{i}$ with $\alpha_{j} \neq 0$ for some j and $v^{t} A v=\sum_{i} \alpha_{i}^{2}\left(v_{i}^{t} A v_{i}\right)>0$.
Method II. One can also argue by induction on n as follows. Again we look at the symmetric A_{n-1} of smaller size. Since $\Delta_{r}>0$ for $1 \leq r<n, A_{n-1}$ is positive definite by induction. Thus there exist an orthogonal $Q \in M_{n-1}(\mathbb{R})$ and a diagonal D with diagonal entries $\sigma_{1}, \cdots, \sigma_{n-1}>0$ such that $Q^{t} A_{n-1} Q=D$. We then have

$$
B:=\left(\begin{array}{cc}
Q & 0 \\
0 & 1
\end{array}\right)^{t} A\left(\begin{array}{cc}
Q & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
& & b_{1} \\
& D & \vdots \\
b_{1} & \cdots & b_{n}
\end{array}\right) \quad \text { for some }\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \in \mathbb{R}^{n} .
$$

Notice that A and B are orthogonally similar, and hence A is positive definite if and only if B is. Hence we reduce to consider B. Also by direct computation, we have

$$
\Delta_{n}=\operatorname{det} A=\operatorname{det} B=\sigma_{1} \cdots \sigma_{n-1} \underbrace{\left(b_{n}-\frac{b_{1}^{2}}{\sigma_{1}}-\cdots-\frac{b_{n-1}^{2}}{\sigma_{n-1}}\right)}_{\sigma_{n}}
$$

which is positive by assumption. Thus $\sigma_{n}>0$. Now take any non-zero column vector $x=\sum x_{i} e_{i} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
x^{t} B x & =\sum_{i=1}^{n-1}\left(\sigma_{i} x_{i}^{2}+2 b_{i} x_{i} x_{n}\right)+b_{n} x_{n}^{2} \\
& =\sum_{i=1}^{n-1} \sigma_{i}\left(x_{i}+\frac{b_{i}}{\sigma_{i}} x_{n}\right)^{2}+\underbrace{\left(b_{n}-\sum_{i=1}^{n-1} \frac{b_{i}^{2}}{\sigma_{i}}\right)}_{\sigma_{n}} x_{n}^{2}>0 .
\end{aligned}
$$

Therefore B, and hence A, are positive definite.
(c) Consider $A=\left(\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right)$. Then $\Delta_{1}, \Delta_{2} \geq 0$ but $e_{2}^{t} A e_{2}=-1<0$.

