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1. (a)

We have
lz+yl? = (z+y,x+y)
= (z,z) +(z,y) +(y,7) + (4, 9)
le—yl? = (z—y,x—y)
= (z,z) —(z,y) — (y,7) + (4, 9)
and hence

lz +yl* + llz = ylI* = 2z, 2) + 20y, ) = 2|l + 2lly||*.
(<) After rearrangement we could assume that y = az for some o € F. Then
(9] = [z, a2)] = o] |z
= lll - llezll = ]l - fly]-

(=) If 2 =0, then + = 0 -y and we are done. Now assume that x # 0. Write
y = ax + ¢ for some a € F and € € Span{x}*. Then

[z, 9)? = laf? - ||z]*
lz*yll* = llzl®llazx + el* = ll2* (la?[l2]* + [le]|?) -
Thus we have ||€]|? = 0, which implies that ¢ = 0 and hence y is a multiple of z.

Suppose v € Wy. Then for all w € Wit we have (v,w) = 0. Thus Wy C (W),
Since

dim(WiH)t = dimV — dim Wi

= dimV — (dim V — dim W)

= dim Wl.
Therefore Wy = (WiH)*.
Since W; + Wy contains W and Wa, we see that (W) + I/Vg)L is contained in both
Wit and Wi,
On the other hand, suppose v € Wll N WQL For any w € W1 + W5, one can write
w = wy + wy for some w; € W,;. Then we have

(v,w) = (v, w1 + w2) = (v,w1) + (v, w2) =0+ 0=0.

Thus I/Vll N VVZL c (W + WQ)L.
Plugging the two subspaces Wi and W3- into (b) and using (a), one obtains

(Wi +Wy)™ = (WiH)=n (W)= = WinWa.

Taking perp in the above equation and applying (a) again, we get

1
(Wi nWo)t = (Wi + W) = Wi+ Wi

. Suppose W is T-invariant. Let v € W, For all w € W, we have

(T"(v),w) = (v, T(w)) = 0.

Thus W+ is T*-invariant.

On the other hand, if W+ is T*-invariant, then (W) is (T*)*-invariant. Since (W) =
W and (T*)* = T, the statement follows.



4. We apply the Gram-Schmidt process to the basis
v = (1,2,2),e; = (1,0,0),e2 = (0,1,0)

of R3.

Using e; to modify v to obtain a vector in Span{v}*, one gets the vector

v = —9e; +v1 = (*8, 2, 2)

Now suppose
vy = vy + (@ — 1)er + (B — 2)ea = (o, 3,2) € Spanfuvy, e}
Then

a+2B8+4 = (v3,v1) =0
a = (vs,er)=0.

Thus we obtain the orthogonal basis v1,ve and
vy = (0,—2,2).

Normalizing the vectors, we obtain the orthogonal matrix
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5. (a) The direction (=) is clear since two similar matrices have the same characteristic
polynomial.
(<) A normal complex matrix is unitarily similar to a diagonal matrix whose diagonal
entries are the eigenvalues. Thus A and B are unitarily similar to a certain diagonal
matrix and hence they are unitarily similar.

(b) In fact there are unitary matrices X,Y and a diagonal matrix D with non-negative
diagonal entries o1, -, 0, such that A = XDY. Then

A*A = Y*D*X*XDY =Y*D?*Y
AA* = XDYY*D*X* = XD?X*.
Therefore A*A and AA* are both unitarily similar to D? and consequently they are

unitarily similar.

6. In M, (R), there exists an orthogonal matrix X and a diagonal matrix D with diagonal
M, -, Ap such that A = XDX?. Since I = X*A"X = D", we see that the real numbers
\; satisfy AT = 1. Thus \; = +1 and we have A? = XD?X"! = I.

7. (a) We have

0=Hw+w,v+w) = Hw,v)+ H(v,w)+ H(w,v)+ H(w,w)
= H(v,w)+ H(w,v).

(b) We find the desired basis by induction on dim V.
First if dimV = 1, then any basis {u} would satisfy H(u,u) = 0. In this case,
a=0,b=1.



Now suppose dimV' > 2. If in case H(x,y) = 0 for all z,y € V, then any basis
{u1,--- ,un} of V satisfies the requirement (with a = 0,b = n).
So suppose that dim V' > 2 and there exist v1,w; € V such that H(vy,w1) = ¢ # 0.
First notice that vi,w; # 0. Secondly after replacing w; by % - wp, We can assume
that H(vy,w1) = 1. Thirdly any of v; and w; cannot be a multiple of the other by
(a). Thus W := Span{v;,w } is a two-dimensional subspace of V.
Define

Wh:={veV|H@ww) =0VYweW}
it is clearly a subspace of V. We now show that V. = W @ Wt. Fix v € V. If we
have v = £v1 + nw; + € for some &, € F and e € W, then

H(vi,v) = H(vi,§v1 +nwi+¢)=n
H(wy,v) = H(wi, v +nwp +¢) ==&

That is, £, and e are uniquely determined by v if they exist. This shows that
W N W+ = {0}. On the other hand, if we let (¢,7) = (—H(wy,v), H(vi,v)) and
e = v — v — nwi, then a direct computation shows that H(vq,e) = H(wy,e) = 0.
This shows that V = W + W+,

At this point, we just restrict the bilinear form H to the subspace W+. Since dim W+
is strictly smaller than dim V', the induction hypothesis implies that there exists a
basis ' = {va,wa, -+ ,u1,- - } of W such that the matrix 1z (Hy, L) is of the correct
shape. Let 8 = {v1,w1} UB". Then 3 is a basis of V and it satisfies the requirement.

Let {e1,- - ,en} be the standard basis of R". We use induction on n to find v, = e,+
(a linear combination of ey, --- ,e,_1) that satisfies the requirement.

If n =1, we take v; to be the standard basis. Then v} Av; = A;.

Assume that n > 2. Then the matrix A,_; is a symmetric matrix whose upper left
sub-matrices have determinants # 0. Thus by induction, there exist column vectors
vy, ,vl_; in R"1 of the shape v). = e,+ (a linear combination of ey, ,e,_1)
satisfying (v/)tA,_1v. = A, /Ar_1, etc (with Ag = 1).

For r =1,---,n—1, let v, € R" obtained by adding 0 in the n-th entry to v.. Let

n—1
—apiAi1
Up = en+ E —
; A
i=1
= e, + (a linear combination of ey, -+, €,-1).

Then by a direct computation, we have v{ Av, = 0 for 1 < r < n. To compute
a = Avy,, let P = (v1,--- ,v,) € Mp(R). We have

is upper-triangular with 1 in the diagonal, and

Aq 0
AV
Ay
P'AP = (vf Av;) =
Anfl
An—Q
0 «



()

Taking determinants on both sides, we obtain o = det(A)/A,_1, which is what we
want.

[This can be regarded as Gram-Schmidt process for symmetric bilinear forms. Notice
that here we do not require the field F' to be R.]

(=) We use induction on n.

If n =1, then Ay = etlAel > (0 and we are done.

Suppose n > 2. As in (a), we can consider the smaller matrix A,_1, which is then
positive definite because

V' A, v = (vt,O)A<g) >0

for any non-zero v € R”~!. By induction, we obtain A, > 0 for 1 < r < n. For A,, =
det A, notice that A is diagonalizable (since A is symmetric) and all its eigenvalues
are positive (since A is positive definite). Thus det A = product of eigenvalues > 0.

(<) Method I. By (a), there exists a basis {v1,--- ,v,} such that

f [ >0 i=]
”iA”J{zo i #j.

Thus for any non-zero v € V, we have v = ). a;v; with o # 0 for some j and
v Ay =Y, a2 (vl Av) > 0.

Method II. One can also argue by induction on n as follows. Again we look at the
symmetric A,,_1 of smaller size. Since A, > 0 for 1 < r < n, A,_1 is positive definite

by induction. Thus there exist an orthogonal @ € M,,_1(R) and a diagonal D with
diagonal entries o1, -+ ,0,_1 > 0 such that Q*A,_1Q = D. We then have

0 0\ 0 0 by by
B:z(o 1>A<0 1)2 D for some : € R™
by --- by, b,

Notice that A and B are orthogonally similar, and hence A is positive definite if and
only if B is. Hence we reduce to consider B. Also by direct computation, we have

b2 b2
Ap=detA=detB=o0y - on <bn_1_..._ n1>’

01 On—1

On

which is positive by assumption. Thus o, > 0. Now take any non-zero column vector
x =Y x;e; € R" we have

n—1
#'Br = Z (aix? + Zbia:ixn) + bnxi
=1

n—1 b 2 n—1 b2
= i i = n bn_ -+ 2 0.
ZO‘ <x+aix> —I—( Zai>xn>
—_————

=1

Therefore B, and hence A, are positive definite.

0 0

Consider A = ( 0 —1

>. Then Ay, Ay >0 but e Aes = —1 < 0.



